
A Study of Convergence Speed in

Multi-Objective Metaheuristics

A. J. Nebro1, J. J. Durillo1, C. A. Coello Coello2, F. Luna1, and E. Alba1

1 Department of Computer Science, University of Málaga (Spain)
{antonio,durillo,flv,eat}@lcc.uma.es

2 Department of Computer Science, CINVESTAV-IPN, Mexico
ccoello@cs.cinvestav.mx

Abstract. An open issue in multi-objective optimization is designing
metaheuristics that reach the Pareto front using a low number of function
evaluations. In this paper, we adopt a benchmark composed of three
well-known problem families (ZDT, DTLZ, and WFG) and analyze the
behavior of six state-of-the-art multi-objective metaheuristics, namely,
NSGA-II, SPEA2, PAES, OMOPSO, AbYSS, and MOCell, according
to their convergence speed, i.e., the number of evaluations required to
obtain an accurate Pareto front. By using the hypervolume as a quality
indicator, we measure the algorithm that converges faster, as well as their
hit rate over 100 independent runs. We also determine the robustness
of the metaheuristics analyzed. Our study reveals that modern multi-
objective metaheuristics such as MOCell, OMOPSO, and AbYSS provide
the best overall performance, while NSGA-II and AbYSS again are the
most robust solvers.

1 Introduction

Many real-world optimization problems require to optimize more than one objec-
tive function at the same time. These problems are called Multi-objective Opti-
mization Problems (MOPs). Contrary to single-objective optimization problems,
the solution of MOPs is not given by a single solution, but by a set of nondomi-
nated solutions called the Pareto optimal set. A solution that belongs to this set
is said to be a Pareto optimum and, when the solutions of this set are plotted
in objective space they are collectively known as the Pareto front. Obtaining a
well-distributed Pareto front is the main goal in multi-objective optimization.
This means that multi-objective optimizers need to explore larger portions of
the search space because they search for the Pareto front, i.e., not a single opti-
mum but a set of Pareto optima. Additionally, many real-world MOPs typically
need computationally expensive methods for computing the objective functions
and constraints. In this context, deterministic techniques are generally not ap-
plicable, which leads therefore to using approximate methods [7]. Among them,
metaheuristics [1, 7] are nowadays used extensively to deal with MOPs.

The performance of these algorithms is normally assessed using benchmarks,
such as the Zitzler-Deb-Thiele (ZDT) test suite [19], the Deb-Thiele-Laumanns-



Zitzler (DTLZ) test suite [3], and the Walking-Fish-Group (WFG) test prob-
lems [9]). The experimentation methodology typically lies in computing a pre-
fixed number of function evaluations and then comparing the obtained results
by considering different quality indicators [11].

The motivation driving us is that the objective functions of many real-world
problems are hard to compute, so applying metaheuristics requiring a high num-
ber of function evaluations to solve them is not a satisfactory approach in prac-
tice. So therefore, it can be more important to obtain a reasonably good ap-
proximation to the Pareto front of a given MOP faster than to search for a high
quality solution set but requiring more time. Thus, an open research area is
to design techniques with this goal in mind, and some works that address this
issue have recently appeared. Santana-Quintero et al. propose in [17] a PSO algo-
rithm using rough sets theory, and it is used to solve problems using 4,000 fitness
function evaluations, which is a low number compared to today’s standards in
the specialized literature. In a related paper, Hernández-Dı́az et al. [8] propose
a hybrid algorithm between a multi-objective differential evolution approach
and rough sets theory, which only performs 3,000 fitness function evaluations.
In [18], a more efficient multi-objective PSO algorithm is presented; this algo-
rithm is able to provide accurate Pareto fronts of MOPs computing only 2,000
fitness function evaluations. Eskandari et al. explore in [6] the use of dynamic
population sizing to design an algorithm called FastPGA, which outperforms
NSGA-II when computing less than 10,000 solution evaluations. Knowles [10]
studies multi-objective optimization calculating only 260 function evaluations;
he proposes an algorithm called ParEGO, which outperforms NSGA-II using
such a low number of evaluations.

In this paper, we are interested in analyzing the convergence speed of six
state-of-the-art multi-objective metaheuristics to give hints about their effi-
ciency when solving 21 MOPs comprising the test suites ZDT, DTLZ, and WFG.
The algorithms are two Genetic Algorithms (NSGA-II [2], and SPEA2 [20]), an
Evolution Strategy (PAES [12, 13]), a Particle Swarm Optimization algorithm
(OMOPSO [16]), a Scatter Search method (AbYSS [15]), and a cellular Genetic
Algorithm (MOCell [14]). In our study to assess the quality of a front we have
employed the hypervolume quality indicator (HV ) [21]. To assure that an al-
gorithm has successfully solved a problem it needs reaching a fixed percent of
the hypervolume of the true Pareto front. In Fig. 1 we show different approx-
imations of the Pareto front for the problem ZDT1 with different percentages
of HV . We can observe that a front with a hypervolume of 98.26% represents
a reasonable approximation to the true Pareto fronts in terms of convergence
and diversity of solutions. So, we have taken 98% of the hypervolume of the
true Pareto front as a criterion to consider that a MOP has been successfully
solved. Thus, those algorithms requiring fewer function evaluations to achieve
this termination condition can be consider to be faster. Using the hypervolume
in the stopping condition also allows us to obtain a hit rate for the algorithms,
i.e., their percentage of successful executions. This way, we can not only analyze
the convergence speed but also the robustness of the compared techniques.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

f
1

f 2

ZDT1

 

 

True front
HV = 60.32% 
HV = 75.45%
HV = 96.82%
HV = 98.26%

Fig. 1. Fronts with different HV values obtained for problem ZDT1.

The rest of the paper is organized as follows. In Section 2, we describe the
multi-objective metaheuristics used in our study, the parameter settings used in
the experiments, the benchmark problems, and the methodology adopted in the
tests. Section 3 provides an analysis of the results obtained. The conclusions and
potential lines for future work are presented in Section 4.

2 Experimentation

In this section, we present the multi-objective metaheuristics tested and describe
the parameter settings used in the experiments, the benchmark problems, and
the methodology we have followed in the tests.

2.1 Multi-objective Metaheuristics

To carry out our study, we have selected the two most widely known and used
metaheuristics in the field: NSGA-II [2] and SPEA2 [20], and we have compared
them to other classical algorithms: PAES [12, 13], and to three other modern
algorithm: OMOPSO [16], AbYSS [15], and MOCell [5]. We do not describe
them here due to space restrictions. Authors unfamiliar with them should revise
the indicated references.

We have used the implementation of these algorithms provided by jMetal [5],
a Java-based framework for developing metaheuristics for solving multi-objective
optimization problems3.

3 jMetal is available for download (free of charge) at the following website:
http://neo.lcc.uma.es/metal/.



2.2 Parameterization

We have chosen a set of parameter settings that aims at guaranteeing a fair
comparison among the algorithms. All the evolutionary algorithms (NSGA-II,
SPEA2, PESA-II, and MOCell) use an internal population of size equal to 100;
OMOPSO is configured with 100 particles and with a maximum number of 100
leaders also. The size of the archive in PAES is 100 as well. AbYSS uses a
population size of 20, which is also the size of the RefSet; the size of the external
archive is 100. In MOCell a toroidal grid of 100 individuals (10 × 10) has been
chosen for structuring the population, and an archive of 100 individual is used.

For the GAs, we have used SBX and polynomial mutation [4] as operators for
crossover and mutation, respectively. The distribution indexes for both operators
are ηc = 20 and ηm = 20, respectively. The crossover probability is pc = 0.9
and the mutation probability is pm = 1/n, where n is the number of decision
variables. In PAES, we have also used the polynomial mutation operator, with
the same distribution index. OMOPSO makes use of two types of mutation
operators: uniform and non-uniform. AbYSS uses polynomial mutation in the
local search procedure and SBX as its solution recombination method.

2.3 Test Problems

The benchmarking MOPs used to evaluate the six metaheuristic algorithms have
been proposed in the especialized literature of the area. They are the ZDT [19],
DTLZ [3], and WFG [9] test suites. The two latter families of MOPs have been
used with their bi-objective formulation.

2.4 Methodology

Since our main interest is to analyze the convergence speed of the metaheuristics
studied, it is important to define first what we mean by convergence in this case,
and to ensure that such definition allows us to measure it in a quantitative and
meaningful way. Our proposal is to establish a stopping condition based on the
high quality of the approximation of the Pareto front found, and we have used
the hypervolume [21] quality indicator for that purpose.

In our experiments, each algorithm is executed until a maximum of 1,000,000
function evaluations have been performed. At every 100 evaluations (that is,
at each iteration in the population-based metaheuristics), we measure the hy-
pervolume of the nondominated solutions found so far. Therefore, in NSGA-II
and SPEA2 we have considered the nondominated solutions at each generation,
whereas in PAES, AbYSS, and MOCell, we have used the external population
and, in OMOPSO, the leaders archive. We consider as stopping condition either
reaching a hypervolume value of 98% of the hypervolume of the true Pareto front
or computing the 1,000,000 evaluations previously indicated.

Using the hypervolume as the stopping condition allows us to obtain a hit rate

for the algorithms, i.e., the percentage of successful executions. An execution is
successful if the algorithm stops before reaching 1,000,000 function evaluations.



This way, we can measure the robustness of the techniques when solving the test
problems adopted.

We have performed 100 independent runs of each algorithm for each problem
instance. Since we are dealing with stochastic algorithms, we need to perform
a statistical analysis of the obtained results in order to compare them with a
certain level of confidence. Next, we describe the statistical tests that we have
carried out for ensuring such statistical confidence. First, a Kolmogorov-Smirnov
test is performed in order to check whether the values of the results follow a
normal (Gaussian) distribution or not. If they follow a normal distribution, the
Levene test checks for the homogeneity of the variances. If the samples have equal
variance (positive Levene test), an ANOVA test is done; otherwise, we perform a
Welch test. For non-Gaussian distributions, the non-parametric Kruskal-Wallis
test is used in order to compare the medians of the algorithms. We always
consider in this work a confidence level of 95% (i.e., a significance level of 5%
or p-value under 0.05) in the statistical tests, which means that the differences
are unlikely to have occurred by chance with a probability of 95%. Successful
tests are marked with the ‘+’ symbol in the last column in the tables containing
the results; conversely, a ‘−’ symbol means that no statistical confidence was
found (p-value > 0.05). Looking for homogeneity in the presentation of the
results, all the tables include the median, x̃, and interquartile range, IQR, as
measures of location (or central tendency) and statistical dispersion, respectively,
since some samples are normal and others are not. We have also performed a
post-hoc testing phase (but not included because of space constrains) using
the multcompare function provided by Matlab c©, which allows for a multiple
comparison of samples. In general, it can be said that the differences of the best
algorithms with respect of the others for each MOP are statistically significant
at 95% of confidence level.

3 Analysis of results

In this section, we analyze the obtained results. Table 1 shows the median, ñ,
and the interquartile range, IQR, of the number of evaluations needed by the
different optimizers when solving all the problems. When an optimizer is not
able to reach acceptable fronts upon performing 1,000,000 function evaluations
after the 100 independent runs, its result appears as ‘−’, and it is not taken into
account in the statistical tests. Concretely, the ‘−’ symbol means that the median
of the number of function evaluations is 1,000,000 and the IQR is 0. However,
it it worth mentioning that the IQR only considers the values between the 25th

and the 75th percentiles, so it is possible that the algorithm was successful only
in a few executions (less than 25% of the independent runs executed). To ease
the analysis of the results in Table 1, the cells containing the lowest number of
function evaluations have a grey colored background. There are two grey levels:
the darker grey indicates the best (lowest) value, while the lighter grey points
out the second best value. The hit rate is reported in Table 2. A ‘

√
’ in a cell

means a 100% hit rate, while a ‘−’ indicates that the problem could not be
solved in none of the 100 independent runs.



Table 1. Median and IQR of the number of evaluations computed by the algorithms.

NSGA-II SPEA2 PAES OMOPSO AbYSS MOCell

Problem x̄IQR x̄IQR x̄IQR x̄IQR x̄IQR x̄IQR

ZDT1 1.43e+4 8.0e+2 2.12e+4 1.6e+3 1.32e+4 1.1e+4 6.80e+3 2.0e+3 1.37e+4 1.6e+3 1.30e+4 1.2e+3 +

ZDT2 2.43e+4 1.8e+3 − 1.71e+5 2.0e+5 8.90e+3 3.6e+3 1.71e+4 2.8e+3 1.17e+4 4.0e+3 +

ZDT3 1.27e+4 9.0e+2 1.72e+4 1.5e+3 2.56e+4 2.3e+4 9.85e+3 2.7e+3 1.27e+4 2.0e+3 1.30e+4 1.3e+3 +

ZDT4 2.13e+4 5.0e+3 2.46e+5 2.6e+5 4.41e+4 1.8e+4 − 2.28e+4 1.1e+4 1.63e+4 5.0e+3 +

ZDT6 2.88e+4 1.2e+3 5.27e+4 5.5e+3 9.95e+3 1.2e+4 2.80e+3 1.5e+3 1.56e+4 1.2e+3 2.09e+4 1.3e+3 +

DTLZ1 2.51e+4 9.4e+3 − 8.73e+4 1.3e+5 1.00e+6 4.7e+4 2.37e+4 1.2e+4 2.01e+4 7.7e+3 +

DTLZ2 8.10e+3 1.2e+3 − 3.07e+4 2.0e+4 8.20e+3 3.1e+3 4.70e+3 9.0e+2 5.60e+3 9.0e+2 +

DTLZ3 1.18e+5 5.7e+4 − 1.00e+6 2.7e+5 − 1.19e+5 7.5e+4 6.73e+4 2.3e+4 +

DTLZ4 8.50e+3 1.4e+3 − − 1.25e+4 3.8e+3 4.80e+3 7.5e+2 1.00e+6 9.9e+5 +

DTLZ5 7.95e+3 1.1e+3 − 3.14e+4 2.9e+4 8.45e+3 2.9e+3 4.65e+3 8.0e+2 5.80e+3 8.5e+2 +

DTLZ6 1.00e+6 9.7e+5 − 7.89e+4 1.5e+5 4.10e+3 1.5e+3 − − +

DTLZ7 1.36e+4 1.0e+3 2.35e+4 2.6e+3 − 6.15e+3 2.6e+3 1.06e+4 1.7e+3 1.11e+4 1.6e+5 +

WFG1 4.38e+4 1.1e+5 2.27e+5 8.2e+5 − − − 4.16e+4 1.7e+4 +

WFG2 1.75e+3 4.5e+2 2.40e+3 8.0e+2 1.32e+5 1.6e+5 1.80e+3 4.0e+2 1.85e+3 2.4e+3 1.40e+3 8.0e+2 +

WFG3 − − − − − − -

WFG4 1.84e+4 6.2e+3 − − 2.23e+5 1.3e+5 6.75e+3 2.4e+3 1.05e+4 3.1e+3 +

WFG5 − − − − − − -

WFG6 1.00e+6 5.2e+5 9.05e+4 8.0e+4 − 7.30e+3 1.2e+3 − 1.00e+6 5.5e+5 +

WFG7 1.62e+5 2.7e+5 − − 1.49e+4 2.6e+3 9.60e+3 3.4e+3 1.21e+4 3.4e+3 +

WFG8 − − − − − − +

WFG9 − − − 8.93e+4 4.9e+4 − − +

3.1 ZDT Problems

We start by analyzing the results obtained when solving the ZDT test suite.
In this benchmark, OMOPSO is the most outstanding algorithm, because it is
the fastest optimizer in four out of the five MOPs of the family. Furthermore,
except for the ZDT4 problem, the differences are noticeable when compared
with the second best performer, particularly in ZDT1 (52%) and ZDT2 (76%).
Despite its good global results, OMOPSO is the only metaheuristic unable to
solve ZDT4, a multifrontal problem, in less than 1,000,000 function evaluations,
so it is not as robust as the other algorithms. This assessment is corroborated
if we examine the hit rate results (see Table 2). MOCell, the cellular GA, is the
fastest metaheuristic solving ZDT4. Both NSGA-II and MOCell are the second
fastest algorithms in two problems. It is remarkable that PAES, the simplest of
the compared algorithms, is the second fastest in ZDT6. Concerning SPEA2 and
AbYSS, they do not obtain the best or second best result in any problem.

3.2 DTLZ Test Problems

The DTLZ test suite is composed of seven MOPs, some of them including prop-
erties not found in any of the ZDT family. For example, DTLZ1 is a linear
problem, and both DTLZ5 and DTLZ6 have degenerate Pareto fronts.

If we focus on convergence speed, AbYSS is the fastest algorithm at reaching
98% the HV of the true Pareto fronts on three out of the seven MOPs from this
benchmark, and the second fastest in other two. The second fastest algorithm
is MOCell, which requires the lowest number of evaluations on DTLZ3, and
DTLZ1, and also is the second fastest solver in two out of the seven problems.
OMOPSO obtains the best results in two problems: DTLZ6 and DTLZ7. After
them, NSGA-II is the fastest one in two cases and PAES in one.



Table 2. Hit Rate.
Problem NSGA-II SPEA2 PAES OMOPSO AbYSS MOCell

ZDT1
√ √ √ √ √ √

ZDT2
√

– 0.99
√ √ √

ZDT3
√ √ √ √ √ √

ZDT4
√

0.99
√

–
√ √

ZDT6
√ √

0.96
√ √ √

DTLZ1
√

– 0.91 0.28
√ √

DTLZ2
√

–
√ √ √ √

DTLZ3
√

– 0.30 0.01
√ √

DTLZ4 0.89 – –
√ √

0.38

DTLZ5
√

–
√ √ √ √

DTLZ6 0.40 – 0.97
√

0.19 0.10

DTLZ7 0.99
√

0.16
√

0.89 0.76

WFG1 0.83 0.73 – – 0.21
√

WFG2
√ √

0.99
√

0.98
√

WFG3 – – – – 0.17 –

WFG4
√

– –
√ √ √

WFG5 – – – – 0.11 –

WFG6 0.34 –
√ √

0.13 0.37

WFG7 0.99 – –
√ √ √

WFG8 – – – – 0.18 0.12

WFG9 – – – 0.99 0.24 0.24

We examine now the robustness of the metaheuristics. According to Table 1,
it is noticeable that SPEA2 is only able to solve the DTLZ7 problem in less
than 1,000,000 functions evaluations. The second less robust algorithm is PAES,
which is unable to solve the DTLZ4 problem satisfactorily. Also, it is remarkable
that OMOPSO only finds an accurate front in one of the 100 independent runs
performed on problem DTLZ3 (see Table 2). Conversely, according to the hit
rate obtained, AbYSS and NSGA-II seem to be the most robust algorithms on
this family, followed by MOCell.

3.3 WFG Test Problems

The WFG test suite is composed of nine MOPs having different properties. A
first look at the number of evaluations required by the six studied metaheuristics
shows that none of them is able to provide accurate Pareto fronts of three prob-
lems (WFG3, WFG5, and WFG8) in less than 1,000,000 function evaluations,
and many algorithms have difficulties when solving the others, too. This clearly
indicates that this benchmark is harder to be solved than both the ZDT and the
DTLZ problem families.

Proceeding as in the two previous benchmarks, we start by analyzing the con-
vergence speed. Clearly, the fastest algorithm is MOCell, which requires a lower
number of evaluations in two cases, and the second best in two of the problems
studied. OMOPSO and AbYSS are the fastest in two out of the nine MOPs.
NSGA-II obtains the second lowest number of evaluations in two problems and
PAES does the same in one.

If we do not consider the aforementioned unsolved problems, the most robust
algorithm is MOCell, which has a 100% hit rate on WFG1, WFG2, WFG4, and
WFG7, and hit rates of 0.37, 0.12 and 0.24 on WFG6, WFG8 and WFG9,
respectively. It is followed by AbYSS (100% on WFG4 and WFG7) which is the
only solver able of finding some accurate fronts in problems WFG3 and WFG5.
It is remarkable the behavior of OMOPSO, which obtains a 100% hit rate in



practically five problems, but fails when solving WFG1 and WFG8. The less
robust algorithms for this benchmark are SPEA2 and PAES. As commented
before, those results below a hit rate of 25% are reported in Table 1 as ‘−’, as it
happens with AbYSS and WFG1, WFG3, WFG5, WFG7, WFG8, and WFG9.

3.4 Discussion

If we merely make a global ranking of the fastest algorithms in our study, it
would be led by MOCell (five best results, six second best ones), OMOPSO
(eight best results, one second best), and AbYSS (five best results, two second
best ones). The robustness ranking would be headed by NSGA-II in the DTLZ
test suite, and by MOCell and AbYSS in the WFG family. In the case of the
ZDT problems, these three approaches perform equally well.

These conclusions are relevant, and, we believe that they are the most im-
portant contributions of our study. However, although from a practical point of
view, the hints of the type “if you want to solve a problem fast, try first MOCell
and OMOPSO” or “if you need a robust algorithm, try NSGA-II”, can be useful,
it would be more interesting to provide some hints (given the characteristics of a
given MOP) regarding the algorithm that is more suitable to solve it. The three
benchmarks we have used provide us with a range set of problems, having each
of them different features. Unfortunately, their analysis in [9] indicate that it is
far from simple to make a clear classification of the 21 problems according to
their properties (convex, concave, linear, disconnected, multifrontal, separable,
etc). In any case, we attempt to draw some (more general) conclusions based on
our study, subject to the evident limitations previously indicated.

If we focus on the modality feature, it is present in the following problems:
ZDT3, ZDT4, ZDT6, DTLZ1, DLTZ3, DTLZ7, WFG4, and WFG9 (this is also
deceptive) [9]. An analysis of the evaluations required to solve these problems,
shows that MOCell is the fastest algorithm in ZDT4, DTLZ3, WFG4, and WFG9
and the second fastest in DTLZ1 and DLZ7. On the other hand, OMOPSO fails
when solving ZDT4, DTLZ1, and DTLZ3. However, OMOPSO is the fastest
algorithm to solve problems ZDT3, ZDT6 and DTLZ7, and it is one of the only
two solvers able to achieve a hit rate of 100% on problem WFG9. According to
these results, it is not clear whether OMOPSO should be discarded or not when
dealing with this type of problems.

There are three problems having disconnected Pareto fronts: ZDT3, DTLZ7,
and WFG2. Our study reveals that OMOPSO is the fastest in the first two and
the third fastest in the last one. The second algorithm is MOCell, which requires
the lowest number of evaluations in problem WFG2, followed by NSGA-II which
is the second fastest in problems ZDT3 and WFG2.

4 Conclusions and Future Work

We have evaluated six metaheuristics over a set of 21 MOPs in order to study
the performance of the algorithms concerning their convergence speed, i.e., their



velocity to reach an accurate Pareto front using a stopping condition based on
the hypervolume of the true Pareto front. We have also evaluated the percentage
of successful executions or hit rate, which has allowed us to decide about the
robustness of the techniques.

In the context of the problems analyzed, the experimentation methodology,
and the parameter settings used, we can state that, regarding convergence speed,
MOCell, OMOPSO, and AbYSS are the most competitive algorithms. They are
the fastest in six and seven out the 21 analyzed problems, respectively, followed
by the NSGA-II (the second best in six problems) and PAES (the second best in
one). SPEA2 is the only metaheuristic which does not achieve a best or second
best result, so it can be considered as the slowest of the compared techniques.

As to the hit rate, NSGA-II is the most robust algorithm in the DTLZ test
suite, followed by AbYSS and MOCell. In the WFG family AbYSS and MOCell
are the most robust ones, followed by the NSGA-II. The least robust ones are
SPEA2 (fails in 14 problems) and PAES (fails in 8 problems).

Taking into account problem properties, we have found out that OMOPSO
and MOCell perform well in disconnected problems. Concerning multifrontality,
MOCell provides again good values, while OMOPSO has an “all or nothing”
behavior: it is either among the best when solving a problem, or it has a hit rate
of zero (i.e., it is the worst).

We have presented a first study of the behavior of multi-objective meta-
heuristics concerning their convergence speed as well as their robustness. A line
of future work is to deepen in the study of the features of the problems, to try
to determine more precisely which algorithms are more suited to solve a certain
type of MOP. Other interesting research line is to analyze the best parame-
ter settings of the algorithms in order to make them to converge faster while
maintaining a high degree of robustness.

Acknowledgements

The third author gratefully acknowledges support from CONACyT project no.
45683-Y.

References

1. C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview and
conceptual comparison. ACM Computing Surveys, 35(3):268–308, 2003.

2. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation,
6(2):182–197, 2002.

3. K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable Test Problems for
Evolutionary Multiobjective Optimization. In A. Abraham, L. Jain, and R. Gold-
berg, editors, Evolutionary Multiobjective Optimization. Theoretical Advances and
Applications, pages 105–145. Springer, 2005.

4. Kalyanmoy Deb. Multi-Objective Optimization using Evolutionary Algorithms.
John Wiley & Sons, 2001.



5. J. J. Durillo, A. J. Nebro, F.Luna, B. Dorronsoro, and E. Alba. jMetal: a java
framework for developing multi-objective optimization metaheuristics. Technical
Report ITI-2006-10, Dpto. de Lenguajes y Ciencias de la Computación, University
of Málaga, 2006.

6. H. Eskandari, C. D. Geiger, and G. B. Lamont. FastPGA: A dynamic population
sizing approach for solving expensive multiobjective optimization problems. In
Evolutionary Multi-Criterion Optimization (EMO 2007), LNCS 4403, pages 141–
155, 2006.

7. F. Glover and G. A. Kochenberger. Handbook of Metaheuristics. Kluwer Academic
Publishers, 2003.

8. A. G. Hernández-Dı́az, L. V. Santana-Quintero, C. Coello Coello, R. Caballero,
and J. Molina. A New Proposal for Multi-Objective Optimization using Differential
Evolution and Rough Sets Theory. In Maarten Keijzer et al., editor, Genetic and
Evolutionary Computation Conference (GECCO’2006), pages 675–682, 2006.

9. S. Huband, P. Hingston, L. Barone, and L. While. A Review of Multiobjective
Test Problems and a Scalable Test Problem Toolkit. IEEE Transactions on Evo-
lutionary Computation, 10(5):477–506, October 2006.

10. J. Knowles. ParEGO: A hybrid algorithm with on-line landscape approximation
for expensive multiobjective optimization problems. IEEE Transactions on Evo-
lutionary Computation, 10(1):50–66, 2006.

11. J. Knowles, L. Thiele, and E. Zitzler. A tutorial on the performance assessment of
stochastic multiobjective optimizers. TIK Report 214, Computer Engineering and
Networks Laboratory (TIK), ETH Zurich, 2006.

12. J. D. Knowles and D. W. Corne. The Pareto Archived Evolution Strategy: A
New Baseline Algorithm for Multiobjective Optimisation. In 1999 Congress on
Evolutionary Computation, pages 98–105, 1999.

13. Joshua D. Knowles and David W. Corne. Approximating the Nondominated
Front Using the Pareto Archived Evolution Strategy. Evolutionary Computation,
8(2):149–172, 2000.

14. A. J. Nebro, J. J. Durillo, F. Luna, B. Dorronsoro, and E. Alba. A cellular ge-
netic algorithm for multiobjective optimization. In Nature Inspired Cooperative
Strategies for Optimization (NICSO 2006), pages 25–36, 2006.

15. A. J. Nebro, F. Luna, E. Alba, B. Dorronsoro, J. J. Durillo, and A. Beham. AbYSS:
Adapting scatter search to multiobjective optimization. IEEE Transactions on
Evolutionary Computation (to appear), 2008.

16. M. Reyes Sierra and C. A. Coello Coello. Improving PSO-Based Multi-objective
Optimization Using Crowding, Mutation and ǫ-Dominance. In Evolutionary Multi-
Criterion Optimization (EMO 2005), LNCS 3410, pages 505–519, 2005.

17. L. V. Santana-Quintero, N Ramı́rez-Santiago, C. A. Coello Coello, J. Molina
Luque, and A Garćıa Hernández-Dı́az. A New Proposal for Multiobjective Opti-
mization Using Particle Swarm Optimization and Rough Sets Theory. In Parallel
Problem Solving from Nature (PPSN IX), LNCS 4193, pages 483–492. 2006.

18. G. Toscano-Pulido, C. A. Coello Coello, and L. V. Santana-Quintero. EMOPSO:
A Multi-Objective Particle Swarm Optimizer with Emphasis on Efficiency. In
Evolutionary Multi-Criterion Optimization (EMO 2007), LNCS 4403, pages 272–
285, 2007.

19. E. Zitzler, K. Deb, and L. Thiele. Comparison of Multiobjective Evolutionary
Algorithms: Empirical Results. Evolutionary Computation, 8(2):173–195, 2000.

20. E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the Strength Pareto
Evolutionary Algorithm. In EUROGEN 2001, pages 95–100, 2002.



21. E. Zitzler and L. Thiele. Multiobjective Evolutionary Algorithms: A Comparative
Case Study and the Strength Pareto Approach. IEEE Transactions on Evolution-
ary Computation, 3(4):257–271, 1999.


