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Abstract. In spite of the success of evolutionary algorithms for dealing
with multi-objective optimization problems (the so-called multi-objective
evolutionary algorithms (MOEAs)), their main drawback is the fine-
tuning of their parameters, which is normally done in an empirical way
(using a trial-and-error process for each problem at hand), and usually
has a significant impact on their performance. In this paper, we present a
self-adaptation methodology that can be incorporated into any MOEA,
in order to allow an automatic fine-tuning of parameters, without any
human intervention. In order to validate the proposed mechanism, we
incorporate it into the NSGA-II, which is a well-known elitist MOEA
and we analyze the performance of the resulting approach. The results
reported here indicate that the proposed approach is a viable alternative
to self-adapt the parameters of a MOEA.

1 Introduction

The design of mechanisms that allow to automate the fine-tuning of the parame-
ters of an evolutionary algorithm (EA) has been subject of a considerable amount
of research throughout the years [1, 2]. When dealing with optimization problems
having several (often conflicting) objectives (the so-called multi-objective opti-
mization problems), the fine-tuning of parameters gets even more complicated,
since we aim to converge to a set of solutions (the so-called Pareto optimal set).
Because of such complexity, the design of online and self-adaptation mechanisms
have been scarce within the multi-objective evolutionary algorithms (MOEAs)
literature (see for example [3–5]).

The main goal of this work is to define a multi-objective evolutionary al-
gorithm that does not require any user-defined parameters. In order to achieve
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such a goal, we define different techniques to self-adapt the main parameters
of a well-known MOEA (the NSGA-II [6]). The resulting approach is then val-
idated using 12 test problems taken from the specialized literature. Results are
compared with respect to those obtained with the original NSGA-II. As will be
seen, the obtained results are very competitive and indicate that the proposed
approach can be a viable alternative to automate the fine-tuning of parameters
of a MOEA.

The remainder of this paper is organized as follows. In Section 2, we present
the previous related work reported in the specialized literature. In Section 3,
we describe in detail our proposed self-adaptation approach. In Section 4, we
validate our proposed approach using standard test problems and performance
measures reported in the specialized literature. Finally, in Section 5 we present
our conclusions and provide some possible paths for future research.

2 Previous Related Work

The interest in reducing the number of parameters of a MOEA, has been studied
by relatively few researchers. Apparently, the first attempt to self-adapt the
parameters of a MOEA was the one reported by Kursawe [7]. His proposal was
to provide individuals in the population of a MOEA with a set of step lengths
for each objective function. The aim of Kursawe’s work, however, was to be able
to deal with dynamic environments rather than automating the fine-tuning of
parameters of a MOEA.

Other authors have only focused on the self-adaptation of a single operator.
For example, Büche et al. [8] proposed to use Kohonen’s self-organizing maps to
adapt the step length of a MOEA’s mutation operator.

Tan et al. [9] proposed the incrementing multi-objective evolutionary algo-
rithm (IMOEA) with adopts an adaptive population size whose value is com-
puted based on the online discovered trade-off surface and the desired popula-
tion distribution density. IMOEA relies on a convergence metric that is based
on Pareto dominance and a performance measure called “progress ratio”, which
was proposed by Van Veldhuizen [10]. Additionally, IMOEA also incorporates
dynamic niching (i.e., the user does not need to define a niche radius for per-
forming fitness sharing).

Kumar and Rockett [11] proposed the Pareto converging genetic algorithm
(PCGA). This MOEA uses a systematic approach based on Pareto rank his-
tograms for assessing convergence towards the Pareto front.

Abbass [3] proposed the self-adaptive Pareto differential evolution (SPDE)
which extends a MOEA called Pareto differential evolution (PDE) [12] with self-
adaptive crossover and mutation operators. In SPDE, both the crossover and the
mutation rates are treated as additional decision variables which are added to
the chromosomic string and are affected by the evolutionary process.

Zhu and Leung [13] proposed a parallel multi-objective genetic algorithm
which is implemented in an island model and has an asynchronous self-adjustable
mechanism. This mechanism adopts certain information about the current status



of each island and uses it to focus the search effort towards non-overlapping
regions of the search space.

Toscano and Coello [4] proposed the micro genetic algorithm 2 (µGA2) which
is a parameterless version of the micro genetic algorithm (µGA) for multi-
objective optimization previously introduced by the same authors [14]. The new
approach adopts several self-adaptation mechanisms to select the type of encod-
ing (binary or real-numbers), and the type of crossover operator (from several
available). For this sake, it executes several µGAs in parallel and performs a
comparison of their results. The µGA2 also incorporates a mechanism based on
a performance measure in order to decide when to stop iterating.

Mart́ı et al. [15] proposed a mechanism that gathers information about the
solutions obtained so far. This information is accumulated and updated using a
discrete Kalman filter and is used to decide when to stop a MOEA.

Zielinski and Laur [16] proposed a mechanism for self-adapting three im-
portant parameters in a multi-objective particle swarm optimization: inertia,
the cognitive component and the social component. The proposed mechanism
is based on a design of experiments technique called evolutionary operation
(EVOP). The authors adopt analysis of variance in a two-level factorial design
[17] (i.e., two values are considered for each parameter being self-adapted) to de-
termine the effect of each combination of parameters. The information obtained
from the analysis of variance allows to determine how should the parameters be
modified. The approach defines a measure of “success” based on Pareto domi-
nance, which is used to guide the search.

Trautmann et al. [5] proposed a new convergence criteria for MOEAs. This
mechanism consists of analyzing the performance of a MOEA through its iter-
ative process with respect to three well-known performance measures: genera-
tional distance [10], hypervolume [18] and spread [6]. In this way, if there is not
a significant variance of these performance measures, it is possible to conclude
that the MOEA has converged to the real Pareto front and the evolutionary
process is consequently stopped.

None of these previous approaches, however, constitutes a full proposal of
a self-adaptation framework for MOEAs, which is precisely what we introduce
here, with certain specific mechanisms specifically tailored for the NSGA-II.

3 Our Proposed Approach

Our approach consists of two phases. In the first of them, an analysis of variance
(ANOVA) [19] of a MOEA, using a certain set of test problems and performance
measures is undertaken. This analysis is meant to provide us with the set of
parameters to which the MOEA under study is most sensitive. In our study,
we adopted the NSGA-II as our baseline MOEA, but any other state-of-the-art
MOEA could be used as well (e.g., SPEA2 [18]).

In the second phase of our proposed approach (called here NSGA-IIself adap),
we introduce some specific self-adaptation techniques that are used to automat-



ically tune the values of the most sensitive parameters identified in the first
phase.

Next, we will provide a summary of the results obtained from our ANOVA
and will also describe the self-adaptation mechanisms that we propose to use.

3.1 Phase 1: Sensitivity Analysis

As indicated before, in order to define the parameters to which the NSGA-II
is most sensitive, we performed an analysis of variance. For this analysis, we
adopted five problems taken from the Zitzler-Deb-Thiele (ZDT) [20] and from
the Deb-Thiele-Laumanns-Zitzler (DTLZ) test suites [21]. The problems were
selected in such a way that different features were covered (e.g., non-convexity,
disconnected Pareto fronts, etc.) using two and three objectives. The problems
chosen for the study are presented next.

– ZDT3: The true Pareto front of this problem is disconnected (in two di-
mensions), consisting of several noncontiguous convex parts.

– ZDT4: This problem contains 219 false Pareto fronts and, therefore, tests
the ability of a MOEA to deal with multifrontality.

– DTLZ5: The true Pareto front of this problem is a curve formed by a set
of well-distributed solutions.

– DTLZ6: The true Pareto front of this problem is unimodal, biased, with a
many-to-one mapping and is hard to converge to it.

– DTLZ7: The true Pareto front of this problem is disconnected (in three
dimensions).

Table 1. Analyzed parameters

Parameter Values

Population size 100, 200 and 500
Number of generations 100, 200 and 500
Crossover rate 0.5, 0.7 and 1.0
Mutation rate 0.001, 0.1 and 0.3
Encoding Real and binary
Crossover type Two-point and uniform crossover for binary encoding

SBX and uniform crossover for real numbers encoding
Mutation type Uniform mutation for binary encoding

Parameter-based and boundary mutation for real numbers encoding

In Table 1, we show the parameters and the values that we used for the
ANOVA. For each test problem, we performed 20 independent runs using each
of the possible combinations of parameters from those indicated in Table 1.

For evaluating the performance of each set of parameters, we used two perfor-
mance measures: inverted generational distance (IGD) [10] and the multiplica-
tive unary ǫ-indicator (Iǫ) [22] (using the true Pareto front of each problem).

The analysis of results led us to conclude that both the crossover rate and the
crossover type (for binary encoding) could take a fixed value, since no variation



of these parameters had significant effect on the performance of the NSGA-II.
Thus, we decided to adopt a crossover rate Pc = 0.7 and two-points crossover
for binary encoding. Our study indicated that these values produced the best
overall performance for the NSGA-II.

3.2 Self-Adaptation of Parameters

The analysis indicated that the variation of the other parameters of the NSGA-II
had a greater impact on performance and, therefore, we incorporated them into
our proposed self-adaptation scheme. In Fig. 1, we show the general scheme of
our self-adaptive MOEA and the corresponding details are presented next.

1. t=0
2. Initialize the population;
3. Encode the individuals;
4. Evaluate the population;
5. Rank the Population;
6. while (there are no improvements according to the hypervolume) do

7. Select the parents // using the same encoding between the individuals;
8. Perform crossover;
9. Encode the offspring population;
10. Evaluate the offspring population;
11. Join the parent and offspring population;
12. Perform the elitism procedure;
13. Performed the Inheritance-Fertilization procedure;
14. if (t ≥ 100) then

15. Perform a hypervolume analysis
16. Add/remove individuals
17. end if

18. t = t + 1;
19. end while

Fig. 1. Our proposed self-adaptation techniques coupled to the NSGA-II.

Initially, a population of 100 individual is randomly generated. For each in-
dividual of the population, the type of encoding to be adopted (real or binary)
is randomly assigned. The mutation rate and the individual’s chromosome are
also randomly initialized using the corresponding encoding. For the individuals
with real numbers encoding, it is necessary to define, in a random way, the type
of mutation and crossover to be used. This is unnecessary when using binary en-
coding, as was indicated before (see Section 3.1), since fixed values and operators
are adopted in that case.

In this work, we assume that all the test problems use real numbers for their
decision variables. When using binary encoding, a decoding is evidently needed
to transform the binary numbers of each chromosome into real numbers (an
accuracy of eight decimal places is adopted in that case). After doing this, the
ranking mechanism of the original NSGA-II is applied.

The tournament selection adopted in our case is different from that of the
original NSGA-II, because parents are only selected from individuals that have



the same encoding. This way, appropriate crossover and mutation operators are
applied to individuals having the same encoding. The specific type of crossover
and mutation to be applied are chosen from those available (see Sections 3.4
and 3.5) for each type of encoding. The details about the use of these genetic
operators are provided in Sections 3.4 and 3.5, respectively.

Once the offspring population is obtained, both the parents and the offspring
populations are merged with the purpose of selecting from them to the best indi-
viduals for the next generation. For this task, the crowding comparison operator
of the original NSGA-II is adopted to generate a total ordering of the individuals,
so that the best half is selected [6].

Our approach introduces an additional step called the inheritance-fertilization
procedure. This is a mechanism that we propose for diversifying the population.
This procedure is applied at each generation and its details are discussed in
Section 3.6.

Finally, the stopping criterion is defined using the hypervolume performance
measure [23]. Specifically, what we do is to check if there is a change in the
hypervolume value of the individuals in the population. If no significant change
is detected after several iterations, then the MOEA is stopped. The details of
this mechanism are discussed in Section 3.7.

Type of encoding
Decision variables

Mutation rate
Type of crossover
Type of mutation

Parents
Fertility

Crowding distance
Rank

Fig. 2. Definition of each individual in our proposed approach.

3.3 The individual

In evolutionary algorithms, the individual is commonly represented by a sin-
gle chromosomic string (i.e., haploids are normally adopted). However, in our
proposed approach, we adopt diploids, since we simultaneously encode the indi-
vidual in binary and real-numbers representation. This is a pragmatic solution
to deal with the encoding of each individual, since in our approach, the type of
representation could change during the self-adaptation process.

In our case, an individual includes the following elements: the type of encod-
ing (real numbers or binary), the decision variables of the problem, the mutation
rate, the type of crossover, the type of mutation, the parents and the fertility.



Additionally, each individual also has the parameters from the original NSGA-II
(the rank, which relates to Pareto dominance and the crowding distance value,
which relates to diversity). Fig. 2 shows the parameters contained in each indi-
vidual. Since each individual has two possible representations (real numbers or
binary), the decision variables and the rates of the operators will be encoded
and initialized using the corresponding representation. The type of crossover in-
dicates the crossover operator that was used to generate that individual. This
operator will also be used to decide which type of crossover will be used in case
the individual is selected for breeding. Similarly, the type of mutation refers to
the specific mutation operator that will be applied on the individual that con-
tains it. Since the type of crossover and the type of mutation are already fixed
for binary encoding, these parameters are not included in an individual. The
parameters called parents and fertility are used in the inheritance-fertilization
procedure which will be explained below.

3.4 Crossover operator

Since the tournament takes place only among individuals with the same type
of encoding, the parents selected for breeding will also have the same encoding
among themselves.

As indicated before, when using binary encoding, two-points crossover is al-
ways adopted in the traditional way [24]. When using real numbers encoding, we
have five types of crossover operators available: (1) Simulated Binary Crossover
(SBX) [25], (2) simple crossover [26], (3) uniform crossover [27], (4) intermediate
crossover [28] and (5) two-points crossover [24].

In order to choose the type of operator to be applied to each pair of individ-
uals, we employ a probabilistic event using a probability p = 0.9. If this event
returns true, we use the crossover type of the best parent (in terms of its rank).
If this event returns false, then we employ another probabilistic event, but using
a probability p = 0.5. If this second event returns true again, we choose the
type of crossover that was adopted to generate the best parent (in terms of its
rank). Otherwise, we choose the type of crossover of the other parent. If both
parents have the same rank, we choose the type of crossover in a random manner
between them.

The mutation rate is encoded (in binary or as a real number) in the chromo-
somic string. Thus, the mutation rate can be affected by the crossover operator.
When using real numbers encoding, the crossover operator is applied using a
probability p = 0.5 for two-points, simple and uniform crossover. For intermedi-
ate recombination, we adopt k = 0. SBX is applied as suggested in [6].

Finally, each child generated by the crossover operator inherits the type of
encoding and the type of crossover from its best parent (in terms of rank).

3.5 Mutation operator

For binary encoding, the mutation rate is defined within the interval (0.001, 0.3)
and is also encoded in the chromosome. Mutation is applied to the decision



variables first, and then to the mutation rate as well. Then, the type of encoding
is mutated (or not) using a probability p = 0.5. If the type of encoding changes
(binary 7→ real) then the decision variables and the mutation rate are represented
using real numbers.

Since there are different types of crossover and mutation operators available
(for real-numbers representation), if an individual changes its encoding from bi-
nary to real numbers, then we need to define new values for the type of operators
to be adopted. In our case, we define such values in a random way.

Since the range of the mutation rate is different for each encoding (in real
numbers encoding, the mutation rate is in the range (1/L, 0.5), where L is the
number of decision variables), we use a linear mapping to transform the mutation
rate from one encoding to the other (i.e., (0.001, 0.3) 7→ (1/L, 0.5)). The muta-
tion rate defined for real numbers encoding ensures that at least one decision
variable will get mutated. It also guarantees that more than 50% of the decision
variables will be mutated. For perturbing the type of crossover and mutation to
be adopted, we perform a similar mapping. Here, we use a mapping defined by
(0.001, 0.3) 7→ (1/8, 0.8).

If the type of crossover or mutation has to be changed then the new types
are defined in a random way. Finally, as in the binary case, an individual can
change its type of encoding (real7→binary). In this case, the decision variables and
mutation rate would be transformed to their equivalent binary representation.
The type of crossover and mutation are removed because they are both fixed for
binary encoding.

3.6 Inheritance-Fertilization Operator

When the NSGA-II selects the population for the next generation, the parent and
offspring populations are merged. The inheritance-fertilization operator identifies
the parents and offspring that have been selected to constitute the following
generation. Thus, each child has information about who were his parents and
viceversa. Once the parents and children have been identified, the mechanism
detects parents which have not produced children that had been selected during
a certain number of generations (in this work we used a gap of five generations).
If this is the case, the parameters of this individual are perturbed.

The mutation of the parameters of each parent is performed according to its
encoding, as was indicated before. The same applies to the perturbation of the
type of encoding, crossover and mutation (see Section 3.5).

When using the inheritance-fertilization operator, the decision variables are
not perturbed. However, the type of encoding can be modified. The aim of this
operator is to maintain diversity in the population. The underlying assumption of
this operator is that if the children generated by the parents selected in previous
generations are not good (in terms of their ranking), is because the genetic
operators are not working properly. Thus, they must be modified so that better
results can be achieved and that is precisely what the operator does.



3.7 Stopping Criterion and a Varying Population Size

We adopted the hypervolume performance measure [29] to detect when the al-
gorithm has converged (i.e., when no further improvement is found) and we use
that as the stopping criterion of our approach. The hypervolume (also known as
the S metric or the Lebesgue Measure) of a set of solutions measures the size of
the portion of objective space that is dominated by those solutions collectively.

The number of generations and the size of the population play an impor-
tant role in MOEAs. However, it is well-known that it is unnecessary to have
an extremely large population to perform a better search. It is possible to use
a modest population size, as long as we have a good mechanism to maintain
diversity and we run the MOEA during a sufficiently large number of genera-
tions [3]. These aspects were taken into account for the design of the strategy
that is explained next.

Initially, the population size is set to 100 individuals. After 100 generations,
we start applying hypervolume at each generation. If after 30 generations, there
is no improvement in the hypervolume, then 100 new individuals (randomly
generated) are added to the population. If some improvement is detected, then
the counter is reset so that we start counting again 30 more generations, and
repeat this process until no improvement is detected.

Once the 100 new individuals have been added, we continue with the second
phase at which we run our MOEA during 20 more generations and check again
for improvements in the hypervolume. If no improvement is detected, then we
generate 300 new (random) individuals. On the contrary, if some improvement is
detected, then, we reduce the population size from 200 to 100. We keep the best
half, using Pareto ranking and the crowding comparison operator of the original
NSGA-II. Then, the counter is reset again and the search continues, aiming to
find 30 consecutive generations without any improvement, before adding 100
new individuals.

Once the population reaches 500 individuals, we enter the third stage. At
that point, we run the MOEA for 40 generations. If no improvement in the
hypervolume is detected, we consider that the algorithm has converged and we
stop the execution of our MOEA. However, if there is an improvement in the
hypervolume during these 40 generations, we remove 300 individuals from the
population using the same procedure indicated before. In this case, the counter
is reset to 30 generations, so that we try to obtain 60 consecutive generations
without any improvements in the hypervolume before stopping the execution
of the MOEA. Since the hypervolume requires a reference vector, we use the
same in all cases, to avoid any errors in its calculation. The complete process is
graphically depicted in Fig. 3.

4 Experimental results

In order to validate the performance of our proposed approach, we compared
its results with respect to those obtained by the original NSGA-II using twelve



Fig. 3. Graphical illustration of the stopping criterion and the adaptive population
size mechanisms

problems taken form ZDT [20] (ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6) and the
DTLZ [21] (DTLZ1, DTLZ2, DTLZ3,DTLZ4, DTLZ5, DTLZ6 and DTLZ7) test
suites. We adopted three performance measures to assess our results: Inverted
Generational Distance (IGD) [10], the multiplicative unary ǫ-indicator (Iǫ) [22]
and Spread (S) [6].

4.1 Experimental Setup

We performed 20 independent runs per problem per approach. Since our ap-
proach does not require any extra parameters, we define only the parameters for
the NSGA-II: crossover probability Pc = 0.7, mutation probability Pmr = 0.1.
For the genetic operators (SBX and PBM) we used a crossover index ηc = 1 and
a mutation index ηm = 50. The parameters presented above, were used because
the ANOVA of the NSGA-II showed a better performance when adopting them.
Additionally, we established a populations size N = 500 which is precisely the
number of solutions that our proposed approach reports at the end of each run.

Since the stopping criteria used for our approach does not have a fixed number
of generations, in order to define the number of generations to be performed by
the original NSGA-II we experimented with two different criteria:

1. Average number of evaluations: In this case, we used the average (over
all runs) number of objective function evaluations performed by our self-
adaptive approach to set the number of generations1 of the NSGA-II.

2. Average number of generations: In this case, we used instead the average
number of generations (over all runs) performed.

In Tables 2 and 3, we show the average of number of objective function
evaluations and the average of the number of generations in which our proposed
approach was stopped.

Thus, in order to obtain the number of generations during which the original
NSGA-II would run, we used either the average of the number of fitness function
evaluations (this variant was called NSGA-IIeval) or the average of the number
of generations (this variant was called NSGA-IIgen).

1 Knowing the total number of objective function of evaluations and the population
size, it is straightforward to obtain the total number of generations.



Table 2. Number of generations for the ZDT test suite.

Problem ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

Evaluations
238 241 353 611 858

Average

Generations
630 643 960 1676 2016

Average

Table 3. Number of generations for the DTLZ test suite.

Problem DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7

Evaluations
138 115 170 106 90 99 117

Average

Generations
379 324 497 289 248 250 306

Average

4.2 Discussion of Results

The results obtained by NSGA-IIeval, NSGA-IIgen and NSGA-IIself adap (our
self-adaptive approach) are summarized in Tables 4 to 9. Each table displays
both, the mean and the standard deviation (σ) of each performance measure,
for each test problem. The best results are shown in boldface.

IGD performance measure In Tables 4 and 7, we can see that our proposed
approach outperforms the NSGA-II in most of the test problems adopted with
respect to IGD. However, in five of the twelve adopted problems (ZDT4, DTLZ1,
DTLZ2, DTLZ4 and DTLZ5), our algorithm was outperformed by the original
NSGA-II. Evidently, the original NSGA-II is not significantly better than our
proposed approach (the NSGA-IIself adap), for these specific test problems.

Iǫ performance measure In Tables 5 and 8, we can see that our proposed
approach outperforms the NSGA-II in seven of the twelve test problems adopted
with respect to Iǫ. Although for ZDT1, ZDT3, ZDT4, DTLZ1 and DTLZ5 the
original NSGA-II is better, our algorithm is not significantly worse.

S performance measure Tables 6 and 9 show that our proposed approach
was outperformed by the NSGA-II in most of the test problems adopted (seven
out of twelve) with respect to spread. However, we do not consider this to be
a major drawback, since our self-adaptation mechanisms were focused on con-
vergence rather than on spreading solutions along the Pareto front and in terms
of convergence, we found better results in most cases. We believe that the use
of additional individuals in the population, in order to maintain diversity, is
the main reason why our proposed approach does not reach the same quality of
results with respect to spread as the original NSGA-II.



5 Conclusions and Future Research

In this paper, we have presented self-adaptation mechanisms for a MOEA, aim-
ing to have an approach that does not require any manual fine-tuning of its
parameters. It is important to emphasize, however, that the parameters are not
removed. Instead, we use mechanisms that automatically define them using in-
formation gathered during the search, so that no user intervention is required.

Our results indicate that our proposed approach is able to outperform the
original NSGA-II in several test problems, with respect to convergence, with the
advantage of not requiring any empirical fine-tuning of parameters. Thus, we
believe that our proposal can be a viable alternative for end-users who want to
apply an out-of-the-box NSGA-II in a certain application, without having much
knowledge about evolutionary computation techniques.

Since self-adaptation mechanisms are, in general, hard to define (particularly
in the context of MOEAs), in order to simplify things, we tailored most of the
mechanisms described here to the specific selection scheme and density estimator
adopted by the NSGA-II. However, as part of our future work, we are interested
in defining more general versions of some of the self-adaptation mechanisms in-
troduced here, so that they are applicable to more than one MOEA. We are
interested in strengthening our algorithm through a finer tuning of its param-
eters. We aim to achieve this by using more complicated functions such as the
Walking-Fish-Group (WFG) [30] and CEC’2009 [31] test problems. Addition-
ally, we are also interested in adding self-adaptation mechanisms that improve
the spread of solutions produced by our approach. In that regard, the use of
archiving techniques may be useful.

Table 4. Results of IGD for the ZDT test suite.

NSGA − IIeval NSGA − IIgen NSGA − IIself adap

average (σ) average (σ) average (σ)

ZDT1 0.000058 (0.000002) 0.000058 (0.000002) 0.000056 (0.000001)
ZDT2 0.000059 (0.000002) 0.000059 (0.000002) 0.000058 (0.000003)
ZDT3 0.000132 (0.000007) 0.000132 (0.000006) 0.000127 (0.000007)
ZDT4 0.000083 (0.000004) 0.000084 (0.000004) 0.000093 (0.000004)
ZDT6 0.002230 (0.000191) 0.002230 (0.000191) 0.000018 (0.000002)

Table 5. Results of Iǫ for the ZDT test suite.

NSGA − IIeval NSGA − IIgen NSGA − IIself adp

average (σ) average (σ) average (σ)

ZDT1 1.002235 (0.000322) 1.002152 (0.000225) 1.002214 (0.000373)
ZDT2 1.001938 (0.000440) 1.001967 (0.000317) 1.001792 (0.000346)
ZDT3 1.001863 (0.000393) 1.001830 (0.000226) 1.002024 (0.000609)
ZDT4 1.001709 (0.000316) 1.001674 (0.000324) 1.001916 (0.000420)
ZDT6 1.140147 (0.011069) 1.140147 (0.011069) 1.001409 (0.000171)



Table 6. Results of S for the ZDT test suite.

NSGA − IIeval NSGA − IIgen NSGA − IIself adp

average (σ) average (σ) average (σ)

ZDT1 0.65008 (0.040356) 0.663761 (0.034663) 0.542132 (0.029852)
ZDT2 0.666593 (0.037943) 0.662773 (0.035102) 0.539112 (0.025966)
ZDT3 0.746819 (0.036011) 0.732614 (0.030007) 0.612249 (0.021919)
ZDT4 0.556536 (0.019120) 0.578010 (0.041313) 0.801464 (0.044060)
ZDT6 0.788426 (0.024690) 0.796272 (0.024848) 0.856744 (0.046337)

Table 7. Results of IGD for the DTLZ test suite.

NSGA − IIeval NSGA − IIgen NSGA − IIself adp

average (σ) average (σ) average (σ)

DTLZ1 0.005666 (0.006462) 0.001938 (0.003133) 0.002161 (0.003941)
DTLZ2 0.000172 (0.000004) 0.000168 (0.000004) 0.000174 (0.000005)
DTLZ3 0.250904 (0.098975) 0.055570 (0.032845) 0.012097 (0.013000)
DTLZ4 0.000547 (0.000009) 0.000542 (0.000008) 0.000558 (0.000030)
DTLZ5 0.000015 (0.000002) 0.000023 (0.000002) 0.000037 (0.000013)
DTLZ6 0.015200 (0.002084) 0.002186 (0.000930) 0.000094 (0.000034)
DTLZ7 0.000817 (0.000125) 0.000579 (0.000062) 0.000389 (0.000016)

Table 8. Results of Iǫ for the DTLZ test suite.

NSGA − IIeval NSGA − IIgen NSGA − IIself adp

average (σ) average (σ) average (σ)

DTLZ1 1.1904444 (0.181980) 1.066070 (0.082606) 1.079437 (0.123285)
DTLZ2 1.049461 (0.006330) 1.047081 (0.006184) 1.046300 (0.005485)
DTLZ3 10.176407 (3.861924) 2.667639 (0.900274) 1.396945 (0.380866)
DTLZ4 1.042668 (0.004336) 1.040609 (0.004801) 1.039888 (0.004084)
DTLZ5 1.001418 (0.000338) 1.001947 (0.000312) 1.002976 (0.001318)
DTLZ6 1.732627 (0.082842) 1.103957 (0.040262) 1.008537 (0.004132)
DTLZ7 1.081822 (0.021139) 1.057326 (0.011657) 1.026261 (0.003132)

Table 9. Results of S for the DTLZ test suite.

NSGA − IIeval NSGA − IIgen NSGA − IIself adp

average (σ) average (σ) average (σ)

DTLZ1 0.974938 (0.190992) 0.576810 (0.087172) 0.546923 (0.160001)
DTLZ2 0.429743 (0.022495) 0.429741 (0.017543) 0.490002 (0.034583)
DTLZ3 1.188861 (0.085993) 0.955311 (0.117838) 0.931206 (0.336853)
DTLZ4 0.412915 (0.019106) 0.424239 (0.018287) 0.453508 (0.036211)
DTLZ5 0.523047 (0.092002) 0.717033 (0.018537) 0.746702 (0.018931)
DTLZ6 0.972776 (0.067786) 0.782302 (0.025047) 0.804278 (0.013795)
DTLZ7 0.478671 (0.038158) 0.440922 (0.030344) 0.531645 (0.021466)
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