
An Evolutionary Algorithm for Tuning
a Chess Evaluation Function

Eduardo Vázquez-Fernández
CINVESTAV-IPN

(Evolutionary Computation Group)
Departamento de Computación

Av. IPN No. 2508
Col. San Pedro Zacatenco

México D.F. 07300, ḾEXICO
eduardovf@hotmail.com

Carlos A. Coello Coello
CINVESTAV-IPN

(Evolutionary Computation Group)
andUMI LAFMIA 3175
CNRS at CINVESTAV-IPN

Departamento de Computación
Av. IPN No. 2508

Col. San Pedro Zacatenco
México D.F. 07300, ḾEXICO

ccoello@cs.cinvestav.mx

Feliú D. Sagols Troncoso
CINVESTAV-IPN

Departamento de Matemáticas
Av. IPN No. 2508

Col. San Pedro Zacatenco
México, D.F. 07360, ḾEXICO

fsagols@math.cinvestav.edu.mx

Abstract—This paper proposes a method for tuning the weights
of the evaluation function of a chess program whose search
engine is based on evolutionary programming. In our proposed
approach, each individual in the population of the evolutionary
algorithm represents a virtual player with specific weights of
its evaluation function. This differs from most of the previous
approaches reported in the literature, in which normally a
tournament between virtual players is held, and the final result
(win, loss or draw) is used to decide which players will pass to the
following generation. The selection mechanism of our proposed
algorithm uses games from chess grandmasters to decide which
virtual player will pass to the following generation. Our results
indicate that the weight values obtained by our approach are
similar to the values known from chess theory. Additionally, the
standard deviation from the different runs performed, are lower
than those reported by authors of previous related approaches.

Index terms:evolutionary algorithms, chess, computational
intelligence in games.

I. I NTRODUCTION

For the past61 years, chess has been a very active
area of research in artificial intelligence. In1950, Claude
Shannon [20] published the first paper on a computer chess
problem. In that paper, Shannon distinguished two strategies:
the first that looks at all continuations, and the second, that
cuts off certain continuations. In1953, Alan Turing [23]
provided the first description of how to design a computer
program capable of playing a full game of chess. In1975,
Donald Knuth [17] provided a detailed analysis of the alpha-
beta pruning algorithm, which uses a tree to represent the
movements of a game with two adversaries. This is the most
commonly adopted algorithm within chess-playing programs,
and it has the advantage of refraining from evaluating some
nodes when unnecessary (i.e., it uses a pruning technique).
The development of these traditional, but computationally
expensive algorithms for playing chess reached a high point
with the defeat of Garry Kasparov, who was then the World
Chess Champion, by IBM’s chess computer Deep Blue in
1997 [7]. This computer had a processing speed of about200
million positions per second.

The main components of a chess engine are: the move
generator, the search function and the evaluation function. As
its name indicates, themove generatorgenerates all possible
movements from a certain (given) position, thesearch function
(mainly when using the alpha-beta pruning algorithm) finds
the best variants from a certain (given) position on the board,
and theevaluation functionis used to heuristically determine
the relative value of a position which is then employed in
the search algorithm. Additionally, the chess engine can be
supplemented with quiescent search and hash tables.Quiescent
search[1] allows us to stabilize the positions, andhash tables
[6] allow us to store positions so that they don’t have to be
looked for again.

The evaluation function is the most important part of a
chess engine. The evaluation function contains arithmetic
expressions and weights which encode specific knowledge
that constitutes a very valuable source of information for the
search engine. If the weights used in the evaluation function
are improved, then the chess engine will be better (i.e., it
will play better). Developers of commercial chess programs
must fine-tune the weights of their evaluation functions using
exhaustive test procedures, so that they can be improved as
much as possible. However, a manual fine-tuning of weights
is a difficult and time consuming process, and therefore the
need to automate this task.

Most of the previous related work that has been reported
in the specialized literature [9], [10], [11], [4], [5], [16], [19]
adopts tournaments between virtual players from which the
final result of each game (win, loss or draw) is used for
deciding which players will pass to the following generation.

In the work reported in this paper, we carried out the
automatic tuning of the weights of our evaluation function
using an evolutionary algorithm. The selection mechanism of
the proposal presented here uses games from chess grandmas-
ters to decide which virtual player will pass to the following
generation. Our results indicate that the weight values obtained
by our proposed approach match the values that are known
from chess theory.

The remainder of this paper is organized as follows. In
Section II, we briefly review the previous related work. The
chess engine adopted for our experiments is described in
Section III. Our proposed approach is described in Section IV.
In Section V, we present our experimental results. Finally,our
conclusions and some possible paths for future research are
provided in Section VI.

II. PREVIOUS RELATED WORK

The first program which learned to play chess from final
outcomes was NeuroChess [22] and its evaluation function
was represented by neural networks. This work also included
both temporal difference learning [21] and explanation-based
learning [8]. The Deep Thought (later called Deep Blue)
team tuned the weights of their evaluation function using a
database of grandmaster-level games [14]. In this case, the
authors did not incorporate any sort of evolutionary algorithm
into their chess engine. Instead, they adopted two approaches:
the first, was based on a standard hillclimbing algorithm and
simulated annealing to avoid getting stuck at local optima,
and the second was based on the system of equalities for-
mulation [14]. Beal and Smith [2] used temporal-difference
learning to determine the piece values of a chess program.
In a further paper, they incorporated piece-square values into
their work [3]. Gomboc [13] proposed an empirical gradient
method to optimize the weights of a chess evaluation function.
The resulting weights turned out to be very similar to a set of
hand-tuned weights.

Evolutionary algorithms have also been used before for
tuning the weights of the evaluation function of a chess engine.
Kendall and Whitwell [16] showed how the outcome of the
game (win, loss or draw) can be used to adjust the weights
of a chess engine evaluation function. Nasreddine et al. [19]
proposed a new strategy called “dynamic boundary strategy”
in which the boundaries of the interval of each parameter are
dynamic. Fogel et al. [9] presented an evolutionary algorithm
in a computer chess program to learn chess by playing games
against itself. They improved the rating of its program in400
rating points and tuned the material values of the pieces, their
positional values, and the weights of three neural networks.
In a second work, Fogel et al. [10] evolved their program
during 7462 generations, reaching a rating of2650. The
resultant program was calledBlondie25. In a third work Fogel
et al. [11], incorporated toBlondie25 a heuristic for time
management, achieved a rating of2635 points against the
programFritz8.0 who was rated#5 in the world.Blondie25
was also the first machine learning based chess program
able to defeat a human chess master. Bošković et al. [4]
presented a differential evolution algorithm for tuning the
chess material values and the mobility factor of a chess engine.
The weights obtained with this method, matched the values
known from chess theory. In a further work, Bošković et
al. [5] also used differential evolution to adjust the weights
of the evaluation function of a chess program. In this work,
they employed adaptation and opposition-based optimization

mechanisms. This work presented a better convergence than
previous related work.

It is important to emphasize that in all of the previous work
reviewed in this section, in which evolutionary algorithms
were adopted in some way, the proposed approaches use the
final results of a game (win, loss or draw) to decide which
individuals will pass to the following generation. None of
them uses information from chessmaster’s games to make this
decision, as we do in this paper.

III. O UR CHESSENGINE

In order to conduct our experiments, we created a chess
program that could incorporate a variety of learning strategies
to improve the rating of our search engine. In our program, in
order to select a movement at each player’s turn, a minimax
tree is generated and the alpha-beta algorithm with pruning
[17] is applied to a fixed depth of1 (as recommended
in [14]). Quiescence is used to extend the search tree to
steady positions in which material exchanges cannot influence
the resulting evaluation of the position. The program also
adopts hash tables and iterative deepening [6]. During the
evolutionary process, our chess program uses the same type
of evaluation function adopted by Bošković et al. in [4]:

eval = Xm(Mwhite −Mblack)+

5
∑

y=0

Xi(Ny,white −Ny,black)

(1)
In this equation,Xi represents the weights for all pieces

except for the king. The king’s weight was not taken into
account because in eq. (1), its associated term is zero (there is
always a king for each side on the board).Mwhite represents
the number of available moves (mobility) for the white pieces,
andMblack represents the mobility for the black pieces.Xm

is the mobility weight.Ny,white andNy,black are the number
of y pieces for the white or the black pieces, respectively.y
can denote a queen, rook, bishop or knight. The weight for
the pawn is always100.

The main aim of the work reported here is to show that
the weights of the evaluation function from eq. (1) can be
tuned using an evolutionary algorithm (in our case, we adopted
evolutionary programming [12]), so that they closely match
the values derived from chess theory. This sort of evaluation
function is relatively simple, but still provides a reasonably
good search strategy for our chess engine. It is worth adding
that the training of our search engine was conducted using a
database of games from chess grandmasters.

IV. OUR PROPOSEDAPPROACH

As indicated before, our proposed approach is based on
an evolutionary algorithm which has a selection mechanism
based on a database of chess grandmasters games. The idea is
that the weights adopted in our evaluation function are such
that the movement performed is equal to the one that was
performed by a human chess master in a particular game from
the database. This similarity is used to decide which virtual

player (individuals in the population) will pass to the following
generation.

Fig. 1 shows the flow chart of our proposed evolutionary
algorithm for tuning the weights of the evaluation function
given in eq. (1).

At first, the weights ofN virtual players are initialized with
random values within their corresponding boundaries. In our
experiments,N is equal to ten. Subsequently, a virtual player’s
score is incremented in one for each movement of theP games
on the database for which the virtual player did the same action
as the human chess master.

The value of the parameterP is provided by the user and
refers to the number of games that will be (randomly) chosen
from the database to calculate the score of a virtual player for
a generation. The selection procedure chooses theN/2 virtual
players that achieved the highest score. These virtual players
are allowed to pass to the next generation and, consequently,
will be allowed to generate offspring using mutation, in order
to give rise to the new population ofN virtual players. In our
experiments, this procedure is repeated during50 generations.

The procedure for computing the score of each virtual
player is described in Algorithm IV.1. Line1 gets the set
S which consists ofP games chosen at random from the
database. ParameterP ranges from1 to the number of games
available in the database (in our case312). In lines 2 to 4,
we establish the score counter to zero for each virtual player.
Line 5 choosesd training games fromS. Line 6 sets the
starting position of the gamed. Line 7 chooses the next
movementm from the gamed. Finally, each virtual player
calculates his next moven, and if this movement matches the
movementm, this virtual player increases his score in1.

Algorithm IV.1 : scoreCalculation()
S = chooseGames(P);1
for each virtual playeri do2

score[i] = 0;3
end4
for each gamed in S do5

setPosition(d);6
for each movementm in gamed do7

for each virtual playeri do8
n = nextMovement(i);9
if m == n then10

score[i]++;11
end12

end13
end14

end15

A. Initialization

The population of our evolutionary algorithm was initialized
with 10 virtual players (5 parents and5 offspring in subsequent
generations). The weight values for these virtual players were
random values generated with a uniform distribution withinthe
allowable bounds. The allowable bound for each piece and for
mobility weight are described in Section V.

n
2 best virtual players +
n
2 offspring mutated

End

Begin

Initialize population

Calculate score

Selection

n
2 best virtual players

n virtual players

Optimal values of weights

Initial values of weights

Mutation

Tuning weights

Fig. 1. Flowchart of our proposed evolutionary algorithm.

B. Mutation

One offspring was created by mutating all weights from
each surviving parent with a probability of 90% (we carried
out several runs using mutation rates of80%, 85%, 90%, 95%
and100%, and found that90% produced the best convergence
and standard deviation values). The values that were mutated
were the following:

• The material values of the knight, bishop, rook and queen.
The pawn’s weight was fixed at100 points.

• The mobility of the position.

Our implementation adopted Michalewicz’s non-uniform
mutation operator [18]. In this operator, the mutated weight
V

′

k (obtained from the previous weightVk) is obtained with
the following expression:

V
′

k =

{

Vk + ∆(t, UB − Vk) if R=TRUE
Vk − ∆(t, Vk − LB) if R=FALSE

(2)

where the weightVk is within the range[LB, UB] andR =
flip(0.5). The functionflip(p) simulates the tossing of a coin
and returns TRUE with a probabilityp. Michalewicz suggests
using:

∆(t, y) = y ∗ (1 − r(1−t/T)b

) (3)

wherer is a random real number between0 and 1. T is
the maximum number of generations andb is a user-defined
parameter. In our case,b = 2.

Since we adopted evolutionary programming, no crossover
operator is employed in our case.

C. Database of Games

The database that we adopted consists of312 games taken
from the Linares super tournament in its editions1999, 2001,
2002, 2003, 2004, 2005, 2008 and 2010. These games can

be downloaded from:http://www.chessbase.com/. Clearly, the
database can be expanded so that a more robust tuning of
weights can be performed, but this is not particularly relevant
at this point, since our main aim here is to present some proof-
of-principle results of our proposed methodology.

V. EXPERIMENTAL RESULTS

A. Tuning weights

In our experiments, we tuned the weights of the pieces and
their mobility as shown in eq. (1).N (our population size)
was set to10, and the number of training gamesP was set to
6. Initialization took place using randomly generated values
within the vicinity of their “theoretical” values (±200 points).
The “theoretical” values of the pieces are:300, 330, 500 and
900 for the knight, bishop, rook and queen, respectively. The
“theoretical” value of the mobility weight is10, and its bounds
are [0, 300]. The “theoretical” values are obtained from [20].
If any of the parameters fell outside its allowable bounds after
mutation, it was set to its maximum or minimum allowable
value, depending on the boundary exceeded.30 runs were
carried out under these conditions, and in all of them, the
“theoretical” values were reached for all pieces.

In order to visualize better the convergence process, we
carried out an additional run (number31) in which the material
values were generated within the range[400, 500] and the
mobility weight was set in the interval[0, 300]. For this run,
the average weight values and their standard deviations are
shown in Table I.

TABLE I
AVERAGE WEIGHT VALUES AND THEIR STANDARD DEVIATIONS FOR RUN

NUMBER 31 (GENERATION0)

Weight Value Standard deviation

Xpawn 100.00 0.00

Xknight 499.42 34.98

Xbishop 464.60 88.67

Xrook 469.85 122.75

Xqueen 437.57 85.90

Xmobility 97.19 173.67

At the end of run31, and after50 generations, the average
weight values and their standard deviations are shown in
Table II.

TABLE II
AVERAGE WEIGHT VALUES AND THEIR STANDARD DEVIATIONS FOR RUN

NUMBER 31 (GENERATION50)

Weight Value Standard deviation

Xpawn 100.00 0.00

Xknight 310.89 0.22

Xbishop 325.32 0.45

Xrook 514.92 1.26

Xqueen 841.61 2.62

Xmobility 5.62 1.34

The average weight values and their standard deviations for
50 generations are shown in Figs. 2 and 3, respectively.

From the obtained results, we can see that the tuning process
after 50 generations resulted in standard deviation values
which are lower than those reported by [4] and [19]. This
indicates that our proposed approach is more robust.

The computational time required by our proposed approach
to run during50 generations was3 minutes with34 seconds
under the operating system openSuse, using a PC with a
64 bits architecture, having two cores running at2.8 Ghz.
Unfortunately, most of the references that we consulted do
not report any CPU times to have an idea of the efficiency
of our approach. The only reference in which we found such
information is [9], in which Fogel reported using a 2.2-Ghz
Celeron PC with 128 MB of RAM. His program required36
hours for executing50 generations. However, it is important
to indicate that he optimized many more weights that our
approach (namely, the weights of three neural networks, the
weights of the positional values, etc.) and adopted a search
depth of4 ply. Thus, this execution time is not comparable
with ours and is provided here just as a reference.

It is also worth indicating that the CPU time required by
our proposed approach depends on the number of games that
are randomly chosen from the database to compute the score
of a virtual player during a generation of our evolutionary
algorithm. In our case, we adoptedP = 6.

B. Additional Games

We also performed an additional experiment. We carried out
100 games in which the first virtual player adopted the average
weights from generation0 of our evolutionary algorithm and
the second adopted the average weights from generation50.
The scores achieved by them were84 of the second player
(who used the weights from generation50) versus16 from
the first player. In Appendix A, we show one of the games in
which the second virtual player defeated the first (which used
the average weights from generation0).

We also carried out100 games between the best virtual
player in generation0 versus the best virtual player in genera-
tion 50, with a score of85 to 15 in favor of the second virtual
player. In Appendix B, we show one of the games in which
the second virtual player defeated the first virtual player.

Additionally, we carried out10 games between a virtual
player which adopted the average weights from generation
50 and a (human) player ranked at1600 points. The result
was 9 to 1 in favor of the human player. Based on these
played games, we used the Bayeselo tool1 to estimate the
ratings for both the human player and the chess engine using
a minorization-maximization algorithm [15]. The obtained
ratings are shown in Table III. In this table we can see that
the rating obtained for the human player was1737 and for the
chess engine was1463. In Appendix C, we can see the game
that was won by the virtual player.

1http://remi.coulom.free.fr/Bayesian-Elo/

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 w
ei

gh
t v

al
ue

Generation

Knight
Bishop

Rook
Queen

Mobility

Fig. 2. Average weight values of the population during50 generations.

It is worth indicating that in these games both virtual players
used a database for openings and the depth of the search was
set to4 ply.

TABLE III
RATINGS FOR THE HUMAN PLAYER AND THE CHESS ENGINE IN A SIX

GAMES MATCH. THE FINAL RESULT WAS9 TO 1 FOR THE HUMAN PLAYER.

Rank Name Elo + - Games Score Oppo. Draws

(%) (%)

1 Human player 1737 132 92 10 90% 1463 0%

2 Chess engine 1463 92 132 10 10% 1737 0%

VI. CONCLUSIONS ANDFUTURE WORK

We have reported here an evolutionary algorithm which
incorporates a selection mechanism that favors virtual players
that are able to “visualize” (or match) more movements from
those registered in a database of chessmaster games. This
information is used to tune the weights of our evaluation
function, which is relatively simple to implement.

Our results indicate that the weight values obtained by our
proposed approach closely match the known values from chess
theory. Additionally, the standard deviations obtained from our
runs were lower than those reported by other authors. Although
similar weight values had been reported by other researchers,
all of them had adopted tournaments between several players,

contrasting with our approach, which is based on a database
of grandmaster games.

As part of our future work, and aiming to create a chess
program that will be able to play at the level of master or a
ches master level, we plan to tune more weights (e.g., king
security, doubled pawns, isolated pawns, past pawns, rooks
in open columns, rooks in seventh row, control center of the
board, and so on) using our proposed evolutionary algorithm.
We plan to carry out more experiments varying the population
size and increasing the number of games in the database.
Additionally, we plan to use better strategies to explore the
search space. Our aim is to increase the rating of our chess
engine as much as we can, adopting relatively inexpensive
approaches (computationally speaking).

ACKNOWLEDGEMENTS

The first author acknowledges support from CINVESTAV-
IPN, CONACyT and the National Polytechnical Institute (IPN)
to pursue graduate studies at the Computer Science Depart-
ment of CINVESTAV-IPN. The second author acknowledges
support from CONACyT project no. 103570.

APPENDIX A

In this Appendix, we show a game between the “average
weights in generation0” (with white pieces) versus the
“average weights in generation50” (with black pieces). The
second virtual player won the game.

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40 45 50

S
ta

nd
ar

d
de

vi
at

io
n

Generation

Knight
Bishop

Rook
Queen

Mobility

Fig. 3. Standard deviation of weights in the population during 50 generations.

[White: ”Average weights in generation 0”]
[Black: ”Average weights in generation 50”]
[Result: ”0-1”]

1 d4 d5
2 c4 c5
3 Nc3 Nf6
4 dXc5 d4
5 Nb1 Nc6
6 e3 e5
7 eXd4 eXd4
8 Nf3 BXc5
9 Bd3 O-O
10 Bg5 Re8+
11 Be2 Qe7
12 BXf6 gXf6
13 a3 a5
14 a4 Bf5
15 Na3 d3
16 Nh4 QXe2+
17 QXe2 RXe2+
18 Kd1 Bg6
19 NXg6 fXg6
20 Rf1 Rae8
21 Nb5 BXf2
22 Nc3 Re1+

23 RXe1 RXe1+
24 Kd2 RXa1
25 KXd3 Ne5+
26 Ke2 Bd4
27 Nd5 NXc4
28 NXf6+ BXf6
29 Kd3 NXb2+
30 Kc2 RXa4
31 g3 Rc4+
32 Kb3 Kf7
33 h4 b5
34 h5 gXh5
35 g4 hXg4
36 Ka3 g3
37 Kb3 g2
38 Ka3 g1Q
39 Ka2 Nd3
40 Kb3 Qb1+
41 Ka3 Qb2

++

APPENDIX B

In this Appendix, we show a game between “the best
virtual player in generation0” (with white pieces) versus “the
best virtual player in generation50” (with black pieces). The
second virtual player won the game.

[White: ”The best virtual player in generation 0”]
[Black: ”The best virtual player in generation 50”]
[Result: ”0-1”]

1 Nf3 d5
2 d4 Nf6
3 c4 c6
4 Nc3 e6
5 c5 Ne4
6 Nb1 Be7
7 b4 Qc7
8 g3 g5
9 Qd3 Nd7
10 Bh3 h5
11 QXe4 dXe4
12 Ng1 a5
13 Bg2 f5
14 bXa5 QXa5+
15 Bd2 Qa4
16 Bc3 Bd8
17 Bb2 Qc2
18 Ba3 Ba5+
19 Nc3 QXc3+
20 Kf1 QXa1+
21 Bc1 QXc1

++

APPENDIX C

In this Appendix, we show a game between a human
player ranked at 1600 points (with white pieces) versus the
“average weights in generation50” (with black pieces). The
virtual player won the game.

[White: ”Human player”]
[Black: ”Average weights in generation 50”]
[Result: ”0-1”]

1 c4 e5
2 Nc3 Nf6
3 e4 Bb4
4 Nge2 O-O
5 h3 c6
6 a3 BXc3
7 NXc3 d5
8 cXd5 cXd5
9 eXd5 e4
10 g3 Bf5
11 Bg2 Qc8
12 f3 eXf3
13 QXf3 Re8+
14 Ne2 Be4
15 Qf2 BXg2
16 QXg2 Nbd7
17 O-O Nc5

80 Z 0 Z 0 Z 0 Z
7Z 0 Z 0 Z 0 Z 0
60 Z 0 Z 0 Z p Z
5Z 0 Z 0 Z p Z k
4p Z 0 Z 0 Z 0 O
3M r Z 0 Z 0 J 0
20 Z 0 Z 0 Z 0 Z
1Z 0 Z 0 Z 0 Z 0

a b c d e f g h

Fig. 4. Final position for the Appendix C game between human player ranked
at 1600 points (with white pieces) versus “average weights in generation50”
(with black pieces).

18 d4 Ncd7
19 Bg5 h6
20 BXf6 NXf6
21 Rac1 Qd7
22 Nf4 b6
23 Rf2 Rad8
24 Rcf1 Re7
25 b4 NXd5
26 Nh5 Ne3
27 Qf3 NXf1
28 RXf1 QXd4+
29 Kh2 Qe3
30 h4 Rd2+
31 Kh3 QXf3
32 RXf3 g6
33 Nf6+ Kg7
34 Ng4 h5
35 Nh2 Ree2
36 Nf1 Ra2
37 g4 Rf2
38 RXf2 RXf2
39 Nh2 hXg4+
40 NXg4 Rf3+
41 Kg2 RXa3
42 Ne5 Ra4
43 Nc6 Kh6
44 Kg3 Kh5
45 b5 f5
46 Ne5 a5
47 Nd7 Rb4
48 NXb6 RXb5
49 Nc4 a4
50 Na3 Rb3+

White resigns (see the final position in Figure 4).

REFERENCES

[1] D. F. Beal. A generalised quiescence search algorithm.Artificial
Intelligence, 43(1):85–98, April 1990.

[2] D. F. Beal and M. C. Smith. Learning piece values using temporal
differences.Journal of The International Computer Chess Association,
20(3):147–151, September 1997.

[3] D. F. Beal and M. C. Smith. Learning piece-square values using temporal
differences.Journal of The International Computer Chess Association,
22(4):223–235, December 1999.

[4] B. Bošković, S. Greiner, J. Brest, and V.Žumer. A differential evolution
for the tuning of a chess evaluation function. In2006 IEEE Congress on
Evolutionary Computation, pages 1851–1856, Vancouver, BC, Canada,
July 16-21 2006. IEEE Press.

[5] B. Bošković, S. Greiner, J. Brest, A. Zamuda, and V.Žumer. An Adap-
tive Differential Evolution Algorithm with Opposition-Based Mecha-
nisms, Applied to the Tuning of a Chess Program. In U. Chakraborty,
editor, Advances in Differential Evolution, pages 287–298. Springer,
Studies in Computational Intelligence, Vol. 143, Heidelberg, Germany,
2008.

[6] D. Breuker, J. W. H. M. Uiterwijk, and H. J. V. D. Herik. Information
in transposition tables.Advances in Computer Chess 8, pages 199–211,
1997.

[7] M. Campbell, A. J. Hoane, Jr., and F.-h. Hsu. Deep blue.Artif. Intell.,
134:57–83, January 2002.

[8] T. Ellman. Explanation-based learning: a survey of programs and
perspectives.ACM Computing Surveys, 21(2):163–221, June 1989.

[9] D. B. Fogel, T. J. Hays, S. L. Hahn, and J. Quon. A self-learning
evolutionary chess program.Proceedings of the IEEE, 92(12):1947–
1954, 2004.

[10] D. B. Fogel, T. J. Hays, S. L. Hahn, and J. Quon. Further evolution
of a self-learning chess program. InProceedings of the 2005 IEEE
Symposium on Computational Intelligence and Games (CIG05), pages
73–77, Essex, UK, April 4-6 2005. IEEE Press.

[11] D. B. Fogel, T. J. Hays, S. L. Hahn, and J. Quon. The blondie25
chess program competes against fritz 8.0 and a human chess master.
In S. J. Louis and G. Kendall, editors,Proceedings of the 2006 IEEE
Symposium on Computational Intelligence and Games (CIG06), pages
230–235, Reno, Nevada, USA, May 22-24 2006. IEEE Press.

[12] L. J. Fogel. Artificial Intelligence through Simulated Evolution. John
Wiley, New York, 1966.

[13] D. Gomboc, M. Buro, and T. Marsland. Tuning evaluation functions by
maximizing concordance.Theoretical Computer Science, 349(2):202–
229, 2005.

[14] F. Hsu, T. Anantharaman, M. Campbell, and A. Nowatzyk. Deep
thought. InComputers, chess and cognition, chapter 5, pages 55–78.
Springer, Berlin, 1990.

[15] R. Hunter. Mm algorithms for generalized bradley-terry models. The
Annals of Statistics, 32:2004, 2004.

[16] G. Kendall and G. Whitwell. An evolutionary approach for the tuning of
a chess evaluation function using population dynamics. InProceedings
of the 2001 Congress on Evolutionary Computation CEC2001, volume 2,
pages 995–1002. IEEE Press, May 2001.

[17] D. E. Knuth and R. W. Moore. An analysis of alpha-beta pruning.
Artificial Intelligence, 6(4):293–326, 1975.

[18] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution
Programs. Springer-Verlag, second edition, 1996.

[19] H. Nasreddine, H. Poh, and G. Kendall. Using an Evolutionary
Algorithm for the Tuning of a Chess Evaluation Function Based on a
Dynamic Boundary Strategy. InProceedings of 2006 IEEE international
Conference on Cybernetics and Intelligent Systems (CIS’2006), pages 1–
6. IEEE Press, 2006.

[20] C. Shannon. Programming a computer for playing chess.Philosophical
Magazine, 7(41):256–275, 1950.

[21] R. S. Sutton and A. G. Barto. A temporal-difference model of
classical conditioning. InNinth Annual Conference of the Cognitive
Science Society, pages 355–378, Hillsdale, New Jersey, USA, July 1987.
Lawrence Erlbaum Associates, Inc.

[22] S. Thrun. Learning to play the game of chess. In G. Tesauro,
D. Touretzky, and T. Leen, editors,Advances in Neural Information
Processing Systems (NIPS) 7, pages 1069–1076, Cambridge, MA, 1995.
MIT Press.

[23] A. Turing. Digital Computers Applied to Games, of Faster than Thought,
chapter 25, pages 286–310. Pitman, 1953.

