
Enhanced Multi-operator Differential Evolution for
Constrained Optimization

Saber Elsayed∗, Ruhul Sarker∗ and Carlos Coello Coello†
∗School of Engineering and Information Technology

University of New South Wales at Canberra
Canberra 2600, Australia

Email: {s.elsayed, r.sarker}@adfa.edu.au
†Depto. de Computación, CINVESTAV-IPN

Mexico
Email: ccoello@cs.cinvestav.mx

Abstract—Over the last two decades, many differential evo-
lution algorithms have been introduced to solve constrained
optimization problems. Due to the variability of characteristics
of such problems, no single algorithm performs consistently well
over all of them. In this paper, for a better coverage of the prob-
lem characteristics, we introduce an enhanced multi-operator
differential evolution algorithm, which utilizes the strengths of
multiple search operators at each generation, and places more
emphasis on the best-performing ones during the optimization
process based on three measures: (1) the quality of solutions; (2)
the feasibility rate; and (3) diversity. In addition, an improved
self-adaptive mechanism for automatically controlling the scaling
factor and crossover rate is proposed. The performance of the
algorithm is assessed using a well-known set of constrained
problems, with the experimental results demonstrating that it
is superior to state-of-the-art algorithms.

I. INTRODUCTION

Many real-world decision processes involve solving opti-
mization problems, that is, finding the best solutions in their
feasible search spaces which, as they are bounded by constraint
functions, are recognized as constrained optimization problems
(COPs). A COP may contain different types of variables, and
may have equality and/or inequality constraints with different
mathematical properties. The feasible region of such a problem
can be either a tiny or a significant portion of the search
space and, moreover, either one single bounded region or a
collection of multiple disjoint regions or, in some practical
problems, even unbounded. Also, a large number of variables
and constraints may add further complexity to the solution
of COPs [1]. These different characteristics have made COPs
a challenging research area in the optimization domain. In
this paper, single-objective COPs are considered, with a COP
formally expressed as:

minimize f(−→x)

subject to: gk(−→x) ≤ 0, k = 1, 2, . . . ,K

he(
−→x) = 0, e = 1, 2, . . . , E

xj≤xj≤xj , j = 1, 2, . . . , D (1)

where −→x = [x0, x2, ..., xD] is a vector with D decision vari-
ables, f(−→x) the objective function, gk(−→x) the kth inequality
constraint, he(−→x) the eth equality constraint and each xj has
a lower limit (xj) and an upper limit (xj).

Over the years, evolutionary algorithms (EAs) have been
used by researchers and practitioners to solve COPs. From the
several EAs currently available, differential evolution (DE) [2]
has become very popular, due to its good performance [3].
However, like any other EA, one DE operator and/or a set
of parameters well suited for a certain set of problems may
not work well for another one [1]. In addition, even if a set
of parameters or operators works well during the early stages
of the evolutionary process, it may not perform well in later
ones and vice versa. Due to its importance for improving the
performance of DE, many research studies have proposed dif-
ferent ways of self-adaptively managing the control parameters
and/or a mix of operators[4, 3, 1]. However, proposing such
techniques in the context of constrained optimization needs
careful designs, and further research is then required.

For instance, Elsayed et al. [1] recently proposed a self-
adaptive multi-operator DE (SAMO-DE) algorithm that dy-
namically places emphasis on the best-performing DE variants
based on the quality of the fitness values and/or constraint vio-
lations. This approach was found to outperform state-of-the-art
algorithms. However, incorporating further components, such
as diversity, into this algorithm could enhance its performance.
Also, considering the recent proposals in adapting DE control
parameters, Tanabe and Fukunaga [5] proposed a mechanism
that generates new control parameter settings based on some
distributions around a single pair of parameters using histor-
ical memories. However, it directly used the raw values of
the fitness improvements of successful individuals generated,
which could affect the robustness of it, as such improvements
may vary from one individual to another considering how
close it is to the optimal solutions (in reality, the optimal
solutions are not known in advance). In addition, extending
the algorithm for solving COPs is not straight froward, as a
careful improvement measure should be utilized by considering
improvements in the feasible and infeasible regions. It is worth
mentioning that, in the literature, there are other self-adaptive
mechanisms which use a counter to record the number of
successful individuals generated by a specific combination of
parameters, and then the ones with higher probabilities are

highly likely to be selected. However, such mechanisms do
not quantify the number of improvements in the quality of
solutions.

Motivated by these gaps, the main objective of this paper
is to enhance the performance of SAMO-DE in solving COPs,
by incorporating (1) an improved self-adaptive mechanism for
managing DE control parameters; (2) a new improvement mea-
sure, which uses the diversity plus the quality of solutions and
feasibility rates, to place emphasis on the best-performing DE
operators. To avoid deteriorating the algorithm’s performance,
this method avoids using the raw improvement values; (3)
a simple information sharing mechanism, which removes the
window size parameter introduced in the original SA-MODE;
(4) more powerful DE operators; and (5) a linear reduction of
the population size.

Considering the above mentioned points, the proposed
algorithm starts by dividing the initial population into several
sub-populations, each of which evolves using its own DE
variant. Based on the improvement index of each operator,
the sub-population size varies adaptively. At the end of ev-
ery generation, all sub-populations are gathered and then re-
divided based on the new sub-population sizes. In addition,
a linear reduction of the population size is carried out, in
which the population size is set to a large value at the start of
the evolutionary process, and then linearly reduced to a small
value.

The performance of the proposed algorithm was tested
on a well-known set of 36 constrained test problems [6] (18
with 10 dimensions (10D) and 18 with 30D) with different
mathematical properties. The quality of solutions and statistical
test results proved the superiority of the algorithm to several
state-of-the-art algorithms. It must be mentioned here that
existing algorithms are able to solve the 10D problems with
a reasonable accuracy, but many of them are not performing
well for the 30D problems.

The rest of this paper is organized as follows: an overview
of DE and its operators and parameters is provided in Section
II; the proposed algorithm is illustrated in Section III; and the
experimental results and conclusions are discussed in Sections
IV and V, respectively.

II. DIFFERENTIAL EVOLUTION

DE is a population-based stochastic algorithm [7]. Its
algorithmic steps start with a set of random vectors
(X = {−→x 1,

−→x 2, ...
−→x PS}) , where PS is the population size,

each of which should be within the search domain. Then,
a mutant population (V = {−→v 1,

−→v 2, ...
−→v PS}) is generated.

Subsequently, every −→x z is recombined with its corresponding−→v z to generate a trial vector −→u z , where z = {1, 2, ..., PS}.
A pairwise comparison between −→x z and −→u z , with the win-
ning vectors is performed, based on the fitness values and/or
constraints violation, and this generates the population at the
next generation Xt+1, (t is the generation number) [8]. Next,
we provide a brief description of each of the above steps.

• Initialization: Each individual in the population is
represented as a D-dimensional vector in which each
variable is generated within its boundaries:

xz,j = xj + randj(0, 1)× (xj − xj) ∀ j = 1, 2, ...D
(2)

where randj(0, 1) is a uniform random number within
[0, 1] [8].

• Mutation: In this step new solutions that are pertur-
bations of the current ones in which, in its simplest
form (DE/rand/1), −→v z is generated by adding a scaled
difference between two random vectors to a third one
(equation 3).

−→v z = −→x r1 + F × (−→x r2 −−→x r3) (3)

where −→x r1 , −→x r2 and −→x r3 are distinct solution vectors
in the current population and none similar to −→x z , F a
positive real number that controls the rate at which the
population evolves [8]. Also, −→x r1 is called the base
vector.
Over the last two decades many variations of this op-
erator have been introduced. For more details, readers
are referred to [9].

• Crossover: Two well-known crossover schemes (bi-
nomial and exponential), exist in the literature. The
former, which sometimes is called uniform or discrete
[8], is conducted on every j ∈ [1, D] with a prede-
fined crossover probability. In particular, for each j,
a uniform random number (randj(0, 1)) is generated.
If its value is less than Cr, the value of −→u z,j will
be copied from the corresponding value from −→v z,j ;
otherwise, it will be equal to −→x z,j :

uz,j =

{
vz,j if (randj(0, 1) ≤ cr or j = jrand)
xz,j otherwise

(4)
where jrand ∈ 1, 2, ..., D is a random integer index
which ensures that −→uz obtains at least one component
from −→vz .
On the other hand, exponential crossover is similar to
a two-point crossover in which the first cut point (l) is
randomly selected from a range [1, D] and the second
is determined such that L components are copied from−→v z [10] as:

uz,j =

{
vz,j ∀j = 〈l〉D, 〈l + 1〉D, ..., 〈l + L− 1〉D
xz,j otherwise

(5)
where 〈l〉D denotes a modulo function with a modulus
of D and L ∈ [1, D].

• Selection: DE uses a simple one-to-one survivor selec-
tion in which, at generation (t), −→u z,t competes against−→x z,t, and the better, in terms of the fitness value
and/or constraint violation, is considered a vector in
the new population at the next generation (t+ 1).

A. Operators and parameters: a brief review

In this subsection, a brief review of recent studies on the
adaptation of DE operators and parameters is provided.

1) Multi-operator DE: Over the last two decades, a great
deal of work has been undertaken on dealing with DE search
operators and parameters. However, a general conclusion ac-
cepted among researchers is that no single DE operator and/or
parameter is suitable for all optimization problems. Thus,
researchers have been motivated to propose multi-operator DE
and multi-method frameworks, and some of these methods are
described below.

Tasgetiren and Suganthan [11] proposed a multi-population
DE algorithm for solving real-parameter COPs in which each
sub-population conducted its search in parallel with a re-
grouping schedule after certain predefined number of gener-
ations. They applied two mutation operators (DE/rand/1 and
DE/best/1) with a fixed probability of 0.5 to each. Although the
algorithm produced encouraging results, it was not competitive
with respect to some other DE variants. Also, no adaptive
learning mechanism was used to update the probability of
selecting each operator. Mallipeddi et al. [12, 13] proposed a
framework that used a mix of mutation strategies and discrete
control parameters in DE to solve unconstrained problems.
In it, a pool of different mutation strategies, along with a
pool of values for each control parameter, coexisted during
the entire evolutionary process and competed to produce new
individuals. The authors then extended this work to use a mix
of four CHTs based on a DE algorithm (ECHT-DE) [14, 13]
to solve COPs in which four populations were initialized, each
using a different CHT. The algorithm [15] ranked second in
the CEC2010 competition for solving COPs. However, using
discrete values of F and Cr implies that many values could be
ignored, which could improve the algorithm’s performance. In
addition, no adaptation mechanism was used to select F and
Cr.

As an extension of [1], Elsayed et al. [16] proposed two
novel DE variants, each of which utilized the strengths of mul-
tiple mutation and crossover operators to solve 60 constrained
problems, producing results superior to those from state-of-the-
art algorithms. In those algorithms, F and Cr were calculated
by some DE mutation strategies. However, the multi-operator
algorithms could be improved by considering (1) the diversity
issue in the selection process; and (2) a more powerful self-
adaptive mechanism for managing F and Cr, which will be
described in detail later on.

In the unconstrained domain, several DE algorithms have
been introduced, a few of which are discussed here. Qin et
al. [4] proposed a self-adaptive DE algorithm (SaDE) where
F and Cr did not have to be pre-specified. In addition,
four mutation strategies were used and each individual in the
population were assigned to one of them based on a given
probability. Then, the selection probability of each operator
was updated based on its success and failure rates during pre-
vious generations (a learning period). Although this algorithm
showed a good performance for solving a set of unconstrained
problems, the diversity issue was not incorporated within the
framework. In addition, the self-adaptive mechanism to control
F and Cr was not efficient enough. Zamuda and Brest [17]
introduced an algorithm that employed two mutation strategies
in jDE [18], with the population size adaptively reduced
during the evolutionary process based on their earlier technique
proposed in [19]. The algorithm was tested on 22 real-world
applications and performed better than two other algorithms. It

was then extended by embedding a self-adaptation mechanism
for parameter control [20], whereby the three DE strategies
were used, each of which was applied to a specific group
of individuals based on predefined parameters. In addition,
if an individual did not improve for a predefined number
iterations, then it would be re-initialized with a probability
of 0.1. The algorithm was tested on a set of unconstrained
problems, but it was outperformed by other algorithms. In
addition, no adaptive learning method was considered. An
improved adaptive DE (ACDE) algorithm [21], in which four
mutation strategies were used in a sequential manner, i.e., one
mutation at every predefined number of generations, while F
and Cr were updated using a Cauchy distribution, and with
mean values based on previously found successful values. In
addition, a mechanism was used to reduce the population size.
The concern here is that such a sequential ordering of the
mutation operators may not perform consistently over a wide
range of problems. In addition, the weight of every successful
F and Cr should be considered in the adaptation mechanism.

2) DE parameters: As previously mentioned, because the
selection of DE parameters plays a pivotal role in its success,
many researchers have proposed techniques for adapting them.
In [2], it was suggested that PS be within [5D,20D] and F
be set to a value of 0.5 . In another research study [22],
setting F ∈ [0.4, 0.95] was recommended. Self-adapting F
using DE operators was introduced in [23] and then modified
in [1]. In [4], F was generated using a normal distribution,
(N(0.5, 0.3)) was randomly generated using an independent
normal distribution, with its mean initially set to a value of
0.5 and its standard deviation was fixed at 0.1. Then, Cr was
re-generated after a predefined number of generations.

Tvrdíkand and Poláková [24] introduced a DE algorithm
for solving a set of COPs. In it, with a predefined probability,
one set of control parameters was selected from 12 available
sets and, during the evolutionary process, the probability of
selecting each set was updated based on its success rate in
the previous steps. The algorithm was evaluated using a set
of unconstrained problems and showed to have competitive
performance [25]. However, using the success rate of each
set, might be insufficient, and the improvement in the fitness
function and/or constraint violation should be taken into
consideration.

Liu and Lampinen [26] proposed to self-adaptively control
F and Cr using the concept of fuzzy logic. Brest et al. [18]
introduced a self-adaptation method for F and Cr in which
each individual in the population was assigned a different
combination of their values. Zhang et al. [27] proposed an
adaptive DE (JADE) in which, at each generation, Crz was
independently generated, N(Cr,Crσ = 0.1) with Cr initially
set to a value of 0.5 and then dynamically updated. Similarly,
Fz was generated according to a Cauchy distribution with a
location parameter (F), the initial value of which was 0.5.
They adopted a scaling parameter of 1 and, at the end of each
generation, F was updated. As an improved version of JADE,
Tanabe and Fukunaga [5, 28] proposed a success-history-
based adaptive DE (SHADE) in which, instead of generating
new control parameter settings based on some distribution
around a single pair of parameters (Cr, F), historical memo-
ries (MCr,MF) which stored sets of values of Cr and F ,
respectively, were adopted. As it performed well at earlier

generations, it generated new pairs of Cr and F by directly
sampling the parameter space close to one of the stored pairs.
This algorithm was tested on the CEC2013 unconstrained
problems and performed better than state-of-the-art algorithms.
However, it has some concerns, as discussed in Section I.

III. ENHANCED MULTI-OPERATOR DE

In this section, details of the proposed enhanced multi-
operator DE algorithm (E-MODE) are discussed.

A. E-MODE

As previously discussed, it has been proved that the relative
performance of a DE operator may vary during the evolu-
tionary process, that is, one operator may work well in the
early (or some early) stages of the search process and perform
poorly in later ones, or vice versa [1]. Also, a DE operator
may work well for a specific problem but badly for another.
This encourages the use of multi-operator DE, bearing in mind
that more emphasis should be placed on the better-performing
ones at each stage of the evolutionary process. The main steps
in E-MODE are presented in Algorithm 1.

E-MODE starts with a random initial population of size
PS, i.e., X = {−→x 1,

−→x 2, ...,
−→x z, ...,−→x PS}. Then, each indi-

vidual is evaluated, and the number of current fitness evalua-
tions (cfe) is increased by 2, as evaluating the constraints is
counted as one fitness evaluation1. Then, the entire population
is randomly divided into nps sub-populations of equal size,
i.e., Xi = {

−→
xi1,
−→
xi2, ...,

−→
xipsi}, where

∑nps
i=1 psi = PS. For

every sub-population, new trial individuals, ui, are generated
using the assigned DE operators. It is worth mentioning that,
to reduce the number of fitness evaluations, if

−→
uiz is infeasible,

the objective value is not calculated and, as it takes the
fitness value of its parent, cfe is only increased by 1. On the
other hand, if

−→
uiz is feasible, as its fitness value is calculated,

cfe is increased by 2. A pairwise comparison between every
individual in Xi and its corresponding one in ui is then
carried out, and the winner survives to the next generation
(see Section III-B). Subsequently, the improvement in each
DE is calculated, as discussed in Section III-C. Based on
the improvement index, the sub-population sizes are either
increased or decreased or kept unchanged. As this process
may abandon certain operators, which may be useful at the
later stages of the optimization process, we set a minimum
sub-population size to each operator.

To share information among the nps operators, at the end
of every generation, all sub-populations are gathered in X .
Then, at generation t + 1, they are re-divided into nps sub-
populations based on the new ps values, ensuring that the best
nps individuals in X are not within the same Xi. Note that
this information exchanging procedure removes the window
size parameter introduced in [1].

In order to maintain diversity at early generations, while
enhancing the exploitation ability in later ones [29], a linear
reduction of PS is carried out at the end of each generation
by removing one from the worst 5% individuals, such that

1This was a condition in the CEC2010 competition [6], which is used in
this paper to assess E-MODE.

Algorithm 1 General framework of E-MODE
1: At t = 1, generate initial PS random individuals (X).

The variables of each individual (−→xz) must be within their
boundaries;

2: Calculate the fitness value and constraint violations of (−→xz)
∀z = 1, 2, ..., PS;

3: cfe← 2× PS, as evaluating the constraints is counted;
4: Divide X into nps sub-populations, i.e.,

∑nps
i=1 psi = PS;

5: while cfe < FFEmax do
6: Randomly distribute X over Xi,∀i = 1, 2, ..., nps,

where every Xi is of size psi; and make sure that
there is no more than one individual, from the best nps
solutions, in the same sub-population.

7: for i = 1 to nps do
8: Generate new offspring using the ith DE variant;
9: Update cfe;

10: Calculate the improvement index (Ii,t) (Sec-
tion III-C);

11: Self-adaptively manage F and Cr (Section III-D);
12: end for
13: Calculate new psi,t+1,∀i = 1, 2, ..., nps (equa-

tion (12));
14: Update PSt+1 (equation (6));
15: t← t+ 1; and go to step 5;
16: end while

PSt+1 = round
(((

PSmin − PSmax
FFEmax

)
× cfe

)
+ PSmax

)
(6)

where PSmax and PSmin are the maximum and minimum
values of PS, respectively, and FFEmax is the maximum
number of fitness evaluations.

The algorithm continues until the stopping criterion is
satisfied.

B. Selection process

The selection process between any offspring and its parent
follows one of three scenarios [30]: (1) for two feasible
solutions, the fittest one (according to the fitness value) is
selected; (2) a feasible point is always better than an infeasible
one; and (3) for two infeasible solutions, the one with a smaller
sum of constraint violations (ψ) is chosen, where ψ of an
individual (−→xz) is calculated based on equation (7).

ψz =

K∑
k=1

max (0, gk(−→xz)) +
E∑
e=1

max (0, |he(−→xz)| − εe) (7)

where gk(
−→xz) and he(

−→xz) are the kth inequality and eth

equality constraints, respectively. Every equality constraint
(he), εe is initialized with a large value and then reduced to
0.0001. Setting the initial value of ε is problem dependent, as
indicated in [31, 32].

C. Improvements measure

At any given generation, for measuring the improvement
in each operator, the feasibility rate, quality of solutions and

diversity criteria are considered. Generally, for any generation
(t > 1), one of the following three scenarios arises:

1) Infeasible to infeasible: the best solution in sub-
population (Xi) is infeasible in both generations t−1
and t.

2) Infeasible to feasible: the best solution in sub-
population (Xi) is infeasible at generation t− 1 and
becomes feasible at generation t.

3) Feasible to feasible: the best solution in sub-
population (Xi) is feasible at both generations, t− 1
and t.

In the first scenario, the improvement index of operator i(Ii,t)
at generation t is

Ii,t = max

0,
ψ
(−→
xi best,t−1

)
− ψ

(−→
xi best,t

)
ψ
(−→
xi best,t−1

)

+ max

0,
f
(−→
xi best,t−1

)
− f

(−→
xi best,t

)
∣∣∣f (−→xi best,t−1)∣∣∣

 (8)

As the main objective of any COP is to find a feasible
(nearly) optimal solution, any improvement in feasibility is
always considered better than that producing an infeasible
solution, i.e., variants that fall in scenarios 2 or 3 are ranked
on top of those in the first one.

Ii,t = max(Ii,t) +

(
ψ
(−→
xi best,t−1

)
− ψ

(−→
xi best,t

)
ψ
(−→
xi best,t−1

) +

max

0,
f
(−→
xi best,t−1

)
− f

(−→
xi best,t

)
∣∣∣f (−→xi best,t−1)∣∣∣

)× FRi,t (9)

where FRi,t is the feasibility rate (the fraction of feasible solu-
tions in Xi) of the ith operator at t. In case that ψ (−→x best,t−1)
or f (−→x best,t−1) is zero, the corresponding denominator com-
ponent is removed. Note that equations (8) and (9) use the
improvement rates in fitness values and violation, instead of
raw values, as in [1]. Also, in cases 2 and 3, ψ (−→x best,t) is
always 0.

The average diversity rate of every Xi is calculated by

divi =

∑psi
z=1 d

(−→
xiz,t,

−→
xi best,t

)
psi,t

∀ i = 1, 2, .., nps (10)

where d
(−→
xiz,
−→
xi best

)
is the Euclidean distance between the

zth individual and the best individual in the ith sub-population.

Then, the improvement index is updated such that

Ii,t = (1− c)× Ii,t∑nps
i=1 Ii,t

+ c× divi,t∑nps
i=1 divi,t

(11)

where c is a parameter that controls the contribution of the di-
versity component in the selection process. It is set to a value of
0.5 at the beginning of the evolutionary process (exploration)
and then linearly reduced to 0 at the end (exploitation).

Finally, psi at generation t+ 1 is calculated as

psi,t+1 = MSS +
Ii,t∑nps
i=1 Ii,t

×(PS −MSS×nps)(12)

where MSS is the minimum sub-population size assigned to
every operator.

D. Adaptation of F and Cr

As previously mentioned, Tanabe et al. [5] proposed a
mechanism for self-adaptively controlling F and Cr. In this
paper, an enhanced version is proposed to deal with COPs.
To do this, we have to consider all of the three scenarios
mentioned above, assigning higher ranks to those individuals
which fall in cases 2 and 3 than those in case 1. Additionally,
to avoid deteriorating the algorithm’s robustness by using the
raw fitness and/or total constraint violations improvements, the
fitness and/or total constraint violations improvements rates
are considered, which adds another difference between the
proposed method with that in [5]. The proposed self-adaptive
method is as follows:

1) A historical memory with H entries for both param-
eters (MCr, MF) is initialized, where all values are
set to a value of 0.5.

2) Each individual −→x z is associated with its own Crz
and Fz

Crz = randni(MCr,rz , σcr) (13)

Fz = randci(MF,rz , σF) (14)

where rz is randomly selected from [1, H].
randni(µ, σ) and randci(µ, σ) are values randomly
selected from the normal and Cauchy distributions
with mean µ and variance σ, σF = σcr = 0.1.

3) At the end of each generation, Crz and Fz used by
the successful individuals are recorded in SCr and
SF and then the contents of memory are updated as
follows:

MCr,d = meanWA (SCr) if SCr 6= null (15)

MF,d = meanWL (SF) if SF 6= null (16)

where 1 ≤ d ≤ H is the position in the memory
to be updated. It is initialized to 1, and then incre-
mented whenever a new element is inserted into the
history, and if it is greater than H , it is set to 1.
meanWA(SCr) and meanWL(SF) are computed as
follows:

meanWA(SCr) =

|SCr|∑
γ=1

wγ .Scr,γ (17)

meanWL(SF) =

∑|SF |
γ=1 wγ .S

2
F,γ∑|SF |

γ=1 wγ .SF,γ
(18)

where

wγ =
βγ∑|SCr|

γ=1 βγ
(19)

and βγ is calculated as follows:
• Firstly, for every successful individual

(γ ∈ 1, 2, ... |SCr|)2which falls in scenario 1,
its improvement Iγ is

βγ = Iγ = max
(
0,
ψγ,t−1 − ψγ,t

ψγ,t−1

)
+ max

(
0,
fγ,t−1 − fγ,t
|fγ,t−1|

)
(20)

• Then, for every successful individuals
(γ ∈ 1, 2, ... |SCr|) which falls in scenario 2
or 3, its improvement Iγ is

βγ = max (0, Iγ) +
ψγ,t−1 − ψγ,t

ψγ,t−1

+ max
(
0,
fγ,t−1 − fγ,t
|fγ,t−1|

)
(21)

Note that to avoid dividing a value by zero, the corresponding
denominator component is removed. Also, the above men-
tioned steps are carried out to every sub-population separately.

IV. EXPERIMENTAL RESULTS

In this section, the computational results obtained by E-
MODE for the set of CEC2010 constrained problems [6]
are presented and analyzed. The algorithm was run 25 times
for each test problem for up to FFEmax = 200, 000 and
FFEmax = 600, 000 FEs for the 10D and 30D problems,
respectively.

Regarding the parameter values used in this study:
nps = 2. The first sub-population used DE/rand-to-pbest
with archive/1/bin (equation 22), and the second one used
DE/current-to-pbest with archive/1/bin (equation 23), such that

u1z,j =

x1r1,j + Fz.(x

i
φ,j − x1r1,j + x1r2,j − x̃r3,j)
if(rand ≤ crz or j = jrand)

x2z,j otherwise
(22)

u2z,j =

x2z,j + Fz.(x

i
φ,j − x2z,j + x2r1,j − x̃r3,j)

if(rand ≤ crz or j = jrand)

x2z,j otherwise
(23)

where r1 6= r2 6= r3 6= z are random integer numbers, with−→x r1 and −→x r2 randomly selected from xi, xiφ,j was selected
from the best 10% individuals in xi [27], while x̃r3,j was
chosen from the union of the entire X and archive AR.
Initially, the archive was empty. Then, parent vectors which
failed in the selection process were added to it and, once its
size exceeded a threshold, 1.4PS, randomly selected elements
were deleted to make space for the newly inserted ones [27].

PSmax had 150 individuals and PSmin had 40, which was
equal to the minimum value that could be used, as MSS =
0.1×PS [1] and at least 4 individuals were required to carry

2|SCr| is the number of successful Cr recorded in SCr , and |SCr|=|SF |

out the mutation operator (equation 22). H = 30, Fz was set
within [0.4− 1.0] and Crz ∈ [0.2− 1.0], as recommended in
[3].

A. Results and comparison with state-of-the-art algorithms

Firstly, from the results obtained, as shown in Appendix A,
E-MODE was able to attain a 100% feasibility rate (FR) for all
the problems with both 10D and 30D. Considering the quality
of solutions obtained, for the 10D problems, it was found
that E-MODE was successfully able to obtain the best-known
solutions [1] for all test problems, except for C12. Although
the algorithm got stuck in local solutions several times for C02,
C08 and C12, its performance was robust for all the other test
problems.

Considering the 30D problems, E-MODE performed well,
as it was able to obtain the best known solutions. Also,
its performance was remarkably improved in solving C08.
However, its performance for C02 was not as expected. After
an investigation, we found that the reason was related to the
boundary limits set for F and Cr. By changing both of them
to [0− 1] in that particular problem, E-MODE was able to
obtain much better results. However, for two multi-modal
problems (C01 and C13), the algorithm got stuck in local
optima. Nevertheless, the quality of such local optima was not
far from the best-known solutions.

Considering the number of FFEs taken to attain∣∣∣f (−→x best)− f (−→x∗)∣∣∣ ≤ 0.0001, where
−→
x∗ is the best known

solutions (Table I), it was noted that E-MODE had the ability to
converge quickly to the best-known solutions. A few plots are
also depicted in Fig. 1. These plots show that the E-MODE is
able to converge near-optimal solutions very quickly, i.e., after
20% and 30% of the maximum number of fitness evaluations
for the 10D and 30D problems, respectively, then gradually
fine-tune the solution until it reaches the optimality.

Table I. AVERAGE NUMBER OF cfe TO

ATTAIN
∣∣∣f (−→x best

)
− f

(−→
x∗

)∣∣∣ ≤ 0.0001

Problem cfe Problem cfe
10D 30D 10D 30D

C01 5.688E+04 3.740E+05 C10 9.000E+04 2.561E+05
C02 9.401E+04 5.242E+05 C11 1.083E+05 3.111E+05
C03 8.327E+04 2.618E+05 C12 2.000E+05 6.000E+05
C04 8.179E+04 2.452E+05 C13 1.620E+05 6.000E+05
C05 1.200E+05 3.672E+05 C14 9.720E+04 2.563E+05
C06 1.265E+05 3.751E+05 C15 9.270E+04 2.632E+05
C07 8.299E+04 2.497E+05 C16 7.389E+04 5.831E+04
C08 1.901E+05 2.616E+05 C17 7.168E+04 2.500E+05
C09 8.869E+04 2.557E+05 C18 8.054E+04 3.469E+05

E-MODE was also compared with four state-of-the-art al-
gorithms: (1) SAMO-DE [1]; (2) DE with dynamic parameters
selection (DE-DPS) [3]; (3) εDEag [33] (the winner of the
CEC2010 competition); and (4) an adaptive ranking mutation
operator-based DE (ECHT-ARMOR-DE) [34], which used an
ensemble of CHTs as well as operators and parameters. Note
that, as previously mentioned, many of the existing approaches
are able to produce good results for the 10D problems.
However, their performance deteriorates when solving the 30D
ones.

Firstly, E-MODE was able to reach 100% FRs for both the
10D and 30D problems. εDEag attained 100% and 95.1%FRs

fitness evaluations ×105
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

f(x
be

st
)

10-30

10-20

10-10

100

1010

1020

C03
C07
C10
C15

(a) 10D

fitness evaluations ×105
0 1 2 3 4 5 6

f(x
be

st
)

10-30

10-20

10-10

100

1010

1020

C03
C07
C10
C15

(b) 30D

Figure 1. Convergence plots of E-MODE for C03, C07, C10 and C15 with 10D and 30D and seed/run = 1

for the 10D and 30D problems, respectively, while the FRs of
ECHT-DE and ECHT-ARMOR-DE were less than 100% for
the 10D and 30D problems, with no exact percentages reported
in their papers.

Regarding the quality of solutions achieved, a comparison
summary is provided in Table II. For the 10D problems, it
was noticed that all algorithms were almost the same, as they
obtained the best-known solutions, but for the average results,
E-MODE was able to obtain better results for more problems
than all the other algorithms. Considering the 30D problems,
E-MODE was found to be superior to all the other algorithms.

The Wilcoxon test was carried out and its results are
reported in Table II. From this table, no significant difference
was noticed in the 10D problems. However, for the 30D
problems, it was clear that E-MODE statistically outperformed
all the other algorithms. Furthermore, the Friedman test was
used to rank all algorithms based on the average fitness values
obtained, as shown in Table III. The results revealed that E-
MODE ranked 1st, followed by DE-DPS. Although SAMO-
DE was ranked last based on the 10D average results, it ranked
3rd in the 30D problems.

V. CONCLUSIONS

Due to the importance of COPs in real-world applications,
over the last two decades, many DE algorithms have been
introduced to solve them. However, no single operator and/or
a combination of parameters was able to solve a wide range
of COPs consistently. This motivated researchers to propose
new algorithms which used an ensemble of multi-operator DE
and/or with self-adaptive mechanisms for managing the control
parameters, but many of them were mainly proposed to solve
unconstrained problems, and adapting them to solve COPs
needs careful designs. On the other hand, the performance of
existing multi-operator DE algorithms, which solved COPs,
could be improved by incorporating extra components, such
as diversity.

Therefore, in this paper, an enhanced multi-operator DE has
been proposed. In its process, the initial population was divided

into a number of sub-populations, each of which was allocated
to a different operator. Then, the sub-population sizes were
either increased or decreased or kept unchanged, adaptively,
depending on the quality of solutions, feasibility rate and
diversity, bearing in mind using a simple information sharing
scheme. In addition, an improved self-adaptive mechanism for
controlling F and Cr has been presented. The algorithm also
used a linear reduction mechanism to reduce the population
size.

The proposed algorithm has tested on the CEC2010 prob-
lems and showed superior performance to our earlier proposed
algorithm in terms of the quality of its solutions. In addition,
the algorithm had the ability to converge quickly to the best-
known solutions. However, its performance may need further
improvements for some multi-modal problems. Nevertheless,
its performance was much better than state-of-the-art algo-
rithms.

REFERENCES

[1] S. M. Elsayed, R. A. Sarker, and D. L. Essam, “Multi-operator based
evolutionary algorithms for solving constrained optimization problems,”
Computers & operations research, vol. 38, no. 12, pp. 1877–1896, 2011.

[2] R. Storn and K. Price, “Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
global optimization, vol. 11, no. 4, pp. 341–359, 1997.

[3] R. Sarker, S. Elsayed, and T. Ray, “Differential evolution with dynamic
parameters selection for optimization problems,” IEEE Transactions on
Evolutionary Computation, vol. 18, no. 5, pp. 689–707, Oct 2014.

[4] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evolution
algorithm with strategy adaptation for global numerical optimization,”
IEEE Transactions on Evolutionary Computation, vol. 13, no. 2, pp.
398–417, 2009.

[5] R. Tanabe and A. Fukunaga, “Success-history based parameter adap-
tation for differential evolution,” in IEEE Congress on Evolutionary
Computation. IEEE, 2013, pp. 71–78.

[6] R. Mallipeddi and P. N. Suganthan, “Problem definitions and evaluation
criteria for the cec 2010 competition on constrained real-parameter
optimization,” Technical Report, Nanyang Technological University,
Singapore, 2010.

[7] R. Storn and K. Price, Differential evolution-a simple and efficient
adaptive scheme for global optimization over continuous spaces. ICSI
Berkeley, 1995, vol. 3.

Table II. COMPARISON SUMMARY OF E-MODE AGAINST DE-DPS,εDEAG, ECHT-DE, ECHT-ARMOR-DE (VALUES IN ROWS 1 AND 2 REFER TO
NUMBERS OF TEST PROBLEMS FOR WHICH E-MODE WAS BETTER, SIMILAR AND WORSE THAN THE ALGORITHM IN THE 1st COLUMN, BASED ON BEST AND

AVERAGE FITNESS VALUES OBTAINED, RESPECTIVELY AND p A PROBABILITY USED TO MAKE DECISIONS BASED ON WILCOXON TEST)

Algorithms Criteria 10D 30D
Better Similar Worse p Decision Better Similar Worse p Decision

E-MODE vs. SAMO-DE Best fitness values 2 15 1 1.0 ≈ 15 1 2 0.005 +
Average fitness values 13 2 3 0.121 ≈ 14 0 4 0.002 +

E-MODE vs. DE-DPS Best fitness values 1 16 1 0.655 ≈ 11 6 1 0.034 +
Average fitness values 7 9 2 0.26 ≈ 14 2 2 0.039 +

E-MODE vs. εDEag Best fitness values 5 12 1 0.345 ≈ 17 0 1 0.0002 +
Average fitness values 9 6 3 0.347 ≈ 16 0 2 0.002 +

E-MODE vs. ECHT-ARMOR-DE Best fitness values 2 16 0 0.180 ≈ 13 4 1 0.001 +
Average fitness values 8 7 3 0.05 + 16 1 1 0.0004 +

Table III. RANKS OF 5 ALGORITHMS BASED ON FRIEDMAN TEST

E-MODE SAMO-DE DE-DPS εDEag ECHT-ARMOR-DE
10D 2.28 3.53 2.47 3.47 3.25
30D 1.44 3.03 2.47 3.94 4.11

[8] K. Price, R. M. Storn, and J. A. Lampinen, Differential evolution:
a practical approach to global optimization. Springer Science &
Business Media, 2006.

[9] S. Das, S. S. Mullick, and P. Suganthan, “Recent advances in differential
evolution - an updated survey,” Swarm and Evolutionary Computation,
vol. 27, pp. 1 – 30, 2016.

[10] D. Zaharie, “A comparative analysis of crossover variants in differential
evolution,” Proceedings of IMCSIT, pp. 171–181, 2007.

[11] M. Tasgetiren and P. Suganthan, “A multi-populated differential evolu-
tion algorithm for solving constrained optimization problem,” in IEEE
Congress on Evolutionary Computation, 2006, pp. 33–40.

[12] R. Mallipeddi, P. N. Suganthan, Q.-K. Pan, and M. F. Tasgetiren,
“Differential evolution algorithm with ensemble of parameters and
mutation strategies,” Applied Soft Computing, vol. 11, no. 2, pp. 1679–
1696, 2011.

[13] R. Mallipeddi and P. N. Suganthan, “Differential evolution algorithm
with ensemble of parameters and mutation and crossover strategies,” in
Swarm, Evolutionary, and Memetic Computing. Springer, 2010, pp.
71–78.

[14] R. Mallipeddi and P. N. Suganthan, “Ensemble of constraint handling
techniques,” IEEE Transactions on Evolutionary Computation, vol. 14,
no. 4, pp. 561–579, 2010.

[15] R. Mallipeddi and P. N. Suganthan, “Differential evolution with ensem-
ble of constraint handling techniques for solving cec 2010 benchmark
problems,” in IEEE Congress on Evolutionary Computation. IEEE,
2010, pp. 1–8.

[16] S. M. Elsayed, R. A. Sarker, and D. L. Essam, “Self-adaptive differential
evolution incorporating a heuristic mixing of operators,” Computational
Optimization and Applications, vol. 54, no. 3, pp. 771–790, 2013.

[17] A. Zamuda and J. Brest, “Population reduction differential evolution
with multiple mutation strategies in real world industry challenges,” in
Swarm and Evolutionary Computation, L. Rutkowski, M. Korytkowski,
R. Scherer, R. Tadeusiewicz, L. Zadeh, and J. Zurada, Eds. Springer,
2012, pp. 154–161.

[18] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, “Self-
adapting control parameters in differential evolution: A comparative
study on numerical benchmark problems,” IEEE Transactions on Evo-
lutionary Computation, vol. 10, no. 6, pp. 646–657, 2006.

[19] J. Brest and M. S. Maučec, “Population size reduction for the differ-
ential evolution algorithm,” Applied Intelligence, vol. 29, no. 3, pp.
228–247, 2008.

[20] J. Brest, B. Boskovic, A. Zamuda, I. Fister, and E. Mezura-Montes,
“Real parameter single objective optimization using self-adaptive dif-
ferential evolution algorithm with more strategies,” in IEEE Congress
on Evolutionary Computation. IEEE, 2013, pp. 377–383.

[21] T. J. Choi and C. W. Ahn, “An adaptive cauchy differential evolution
algorithm with population size reduction and modified multiple muta-
tion strategies,” in Proceedings of the 18th Asia Pacific Symposium on

Intelligent and Evolutionary Systems-Volume 2. Springer, 2015, pp.
13–26.

[22] J. Rönkkönen et al., Continuous Multimodal Global Optimization with
Differential Evolution-Based Methods. Lappeenranta University of
Technology, 2009.

[23] H. A. Abbass, “The self-adaptive pareto differential evolution algo-
rithm,” in IEEE Congress on Evolutionary Computation, vol. 1. IEEE,
2002, pp. 831–836.

[24] J. Tvrdík and R. Polakova, “Competitive differential evolution for
constrained problems,” in IEEE Congress on Evolutionary Computation.
IEEE, 2010, pp. 1–8.

[25] J. Tvrdík and R. Polakova, “Competitive differential evolution applied
to cec 2013 problems,” in IEEE Congress on Evolutionary Computation.
IEEE, 2013, pp. 1651–1657.

[26] J. Liu and J. Lampinen, “A fuzzy adaptive differential evolution
algorithm,” Soft Computing, vol. 9, no. 6, pp. 448–462, 2005.

[27] J. Zhang and A. C. Sanderson, “Jade: adaptive differential evolution
with optional external archive,” IEEE Transactions on Evolutionary
Computation, vol. 13, no. 5, pp. 945–958, 2009.

[28] R. Tanabe and A. Fukunaga, “Evaluating the performance of shade on
cec 2013 benchmark problems,” in IEEE Congress on Evolutionary
Computation. IEEE, 2013, pp. 1952–1959.

[29] R. Tanabe and A. Fukunaga, “Improving the search performance of
shade using linear population size reduction,” in IEEE Congress on
Evolutionary Computation, July 2014, pp. 1658–1665.

[30] K. Deb, “An efficient constraint handling method for genetic algo-
rithms,” Computer methods in applied mechanics and engineering, vol.
186, no. 2, pp. 311–338, 2000.

[31] E. Mezura Montes and C. A. Coello Coello, “Adding a diversity mech-
anism to a simple evolution strategy to solve constrained optimization
problems,” in IEEE Congress on Evolutionary Computation, vol. 1.
IEEE, 2003, pp. 6–13.

[32] C. Si, J. An, T. Lan, T. Ußmüller, L. Wang, and Q. Wu, “On the equality
constraints tolerance of constrained optimization problems,” Theoretical
Computer Science, vol. 551, pp. 55–65, 2014.

[33] T. Takahama and S. Sakai, “Constrained optimization by the ε con-
strained differential evolution with an archive and gradient-based mu-
tation,” in IEEE Congress on Evolutionary Computation. IEEE, 2010,
pp. 1–9.

[34] W. Gong, Z. Cai, and D. Liang, “Adaptive ranking mutation operator
based differential evolution for constrained optimization,” IEEE Trans-
actions on Cybernetics, vol. 45, no. 4, pp. 716–727, April 2015.

APPENDIX

Due to the number of pages limitation, detailed results can
be found in supplementary material (HERE).

https://sites.google.com/site/saberelsayed3/sup.Mat.CEC2016.pdf?attredirects=0&d=1

