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Abstract. In this paper, we propose and analyze two schemes to inte-
grate an objective reduction technique into a multi-objective evolution-
ary algorithm (moea) in order to cope with many-objective problems.
One scheme reduces periodically the number objectives during the search
until the required objective subset size has been reached and, towards
the end of the search, the original objective set is used again. The second
approach is a more conservative scheme that alternately uses the reduced
and the entire set of objectives to carry out the search. Besides improving
computational efficiency by removing some objectives, the experimental
results showed that both objective reduction schemes also considerably
improve the convergence of a moea in many-objective problems.


Key words: Many-objective optimization, dimensionality reduction, ob-
jective reduction.


1 Introduction


Since the first implementation of a Multi-objective Evolutionary Algorithm
(moea) in the mid 1980s [1], a wide variety of new moeas have been proposed,
gradually improving in both their effectiveness and efficiency to solve multi-
objective problems (mops) [2]. However, most of these algorithms have been
evaluated and applied to problems with only two or three objectives, in spite of
the fact that many real-world problems have more than three objectives [3, 4].


Recent experimental [5–7] and analytical [8, 9] studies have shown that moeas
based on Pareto optimality [10] scale poorly in mops with a high number of
objectives (4 or more). Although this limitation seems to affect only to Pareto-
based moeas, optimization problems with a large number of objectives (also
known as many-objective problems) introduce some difficulties common to any
other multi-objective optimizer. Three of the most serious difficulties due to high
dimensionality are the following:
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1. Deterioration of the Search Ability. One of the reasons for this problem is that
the proportion of nondominated solutions (i.e., equally good solutions) in a
population increases rapidly with the number of objectives [11]. According
to Bentley et al. [12] the number of nondominated k-dimensional vectors
on a set of size n is O(lnk−1 n). As a consequence, in a many-objective
problem, the selection of solutions is carried out almost at random or guided
by diversity criteria. In fact, Mostaghim and Schmeck [13] have shown that
a random search optimizer achieves better results than the nsga-ii [14] in a
problem with 10 objectives.


2. Dimensionality of the Pareto front. Due to the ‘curse of dimensionality’, the
number of points required to represent accurately a Pareto front increases
exponentially with the number of objectives. Formally, the number of points
necessary to represent a Pareto front with k objectives and resolution r is
given by krk−1 (e.g., see [15]). This poses a challenge both to the data struc-
tures to efficiently manage that number of points and to the density estima-
tors to achieve an even distribution of the solutions along the Pareto front.


3. Visualization of the Pareto front. Clearly, with more than three objectives is
not possible to plot the Pareto front as usual. This is a serious problem since
visualization plays a key role for a proper decision making. Parallel coordi-
nates [16] and self-organizing maps [17] are some of the methods proposed
to ease the decision making in high dimensional problems. However, more
research in this field is required.


Currently, there are mainly two approaches to solve many-objective problems,
namely:


1. Adopt or propose an optimality relation that yields a solution ordering finer
than that yielded by Pareto optimality. Among these alternative relations
we can find k-optimality [11], preference order ranking [18], and a method
that controls the dominance area [19].


2. Reduce the number of objectives of the problem during the search process
or, a posteriori, during the decision making process [20–22]. The main goal of
this kind of reduction techniques is to identify the redundant objectives (or
redundant to some degree) in order to discard them. A redundant objective is
one that can be removed without changing the dominance relation1 induced
by the original objective set.


In the current paper we propose to incorporate an objective reduction method
into a Pareto-based moea in order to cope with many-objective problems. By
selecting a computationally efficient objective reduction method we can expect
that the resulting moea improves its efficiency, since a smaller number of ob-
jective functions are evaluated. While this may be true, the omission of some
objective implies some loss of information that could be important to converge to
the real Pareto front. On the other hand, this omission can be useful to cope with


1 The dominance relation induced by a given set F of objectives is defined by
¹F = {(x, y)|∀fi ∈ F : fi(x) ≤ fi(y)}.







the deterioration of the search ability of Pareto-based moeas in many-objective
problems. With this in mind we propose two schemes to integrate an efficient re-
duction method into a moea in such a way that the resulting moea can be useful
even in problems with inexpensive objective functions. Additionally, one of the
goals of this work is to investigate if an objective reduction method represents
a benefit or a damage to the search ability. The results show that the proposed
schemes improve the computational efficiency of a common moea even in prob-
lems with low computational-cost functions. More important, the experiments
show that the reduction techniques employed also improve the search ability of
the moea. Therefore, the benefit of reducing the objective set is greater than the
negative effect caused by the loss of information. In [23] is also incorporated an
objective reduction method into a moea, however the objective in that work is
to improve the efficiency of hypervolume-based moeas which have exponential
complexity in the number of objectives.


The remainder of this paper has the following structure. Section 2 presents
the objective reduction technique selected to be incorporated into a moea. In
Section 3 we describe two schemes to incorporate the reduction method during
the search. The assessment of the proposed reduction schemes is presented in
Section 4. Finally, in Section 5 we draw some conclusions about the proposed
reduction schemes, as well as some possible paths for future research.


2 An Objective Reduction Technique Based On


Correlation


The success of an objective reduction method during the search mainly depends
on the balance between the overhead incurred by the reduction method itself,
and the time saved by omitting some objective function evaluations. For this
reason, an efficient reduction method is more likely beneficial in a wide variety of
problems. In the following, we shortly describe three objective reduction methods
recently proposed in the specialized literature.


Saxena and Deb [20] proposed a method for reducing the number of objectives
based on principal component analysis. This method consists of an iterative
scheme where the nondominated set obtained by the nsga-ii [14] is analyzed in
order to gradually obtain a smaller objective set. The time complexity of each
iteration2 of this algorithm is O(ms2 + s3) + O(gm2s), where the second term
corresponds to nsga-ii’s complexity, s is the number of objectives, m is the size of
the nondominated set, and g the number of generations for each run of nsga-ii.


Brockhoff and Zitzler [21] proposed two greedy algorithms to reduce the
number of objectives. One of them finds a minimum objective subset that yields
a given error δ (degree of change of the dominance relation). The other algo-
rithm finds a k-sized objective subset with the minimum possible error. Both
algorithms use the ǫ-dominance relation to measure the change of the domi-


2 The total number of iterations depends on a threshold cut parameter and on the
particular nondominated sets generated by the nsga-ii.







nance relation when objectives are discarded. The time complexity for these
algorithms is O(min{m2s3,m4s2}) and O(m2s3), respectively.


Similar to Brockhoff and Zitzler, López Jaimes et al. [22] proposed two
schemes to reduce the number of objectives. The first algorithm is intended
to determine a minimum subset of objectives that yields the minimum possible
error, while the second one finds a subset of objectives of a given size that yields
the minimum error. These algorithms are based on a feature selection technique
which uses correlation between nondominated vectors to estimate the conflict
between each pair of objectives. The complexity of both algorithms is O(ms2).


Since López Jaimes et al.’s algorithms have a lower time complexity, they are
suitable to be integrated into a moea since the chances that their computational
time savings overcome their overhead are larger than those of the other methods
described here. However, in this study we have only chosen the algorithm that
finds a subset of objectives of a given size.


2.1 Details of the Selected Objective Reductions Method


The algorithm that finds a k-sized objective subset (kossa) uses a correlation
matrix to estimate the conflict between each pair of objectives. This matrix is
computed using the nondominated set generated by some moea. A negative
correlation between a pair of objectives means that one objective increases while
the other decreases and vice versa. This way, we could interpret that the more
negative the correlation between two objectives, the more conflict between them.


Since the interest is in the negative correlation, we use 1 − ρ(f1, f2) ∈ [0, 2]
to measure the degree of negative correlation (where ρ(f1, f2) is the correlation
between objectives f1 and f2). Thus, a value of 2 indicates that objectives f1


and f2 are completely negatively correlated (totally in conflict) and a result of
zero indicates that the objectives are completely positively correlated (without
any conflict).


The central part of the objective reduction algorithm is divided in three steps:


1. Divide the objective set into homogeneous neighborhoods of size q around
each objective. The conflict between objectives takes the role of the distance.
That is, the more conflict between two objectives, the more distant they
are in the “conflict” space. Figure 1(a) shows only two neighborhoods of a
hypothetical situation with eight objectives and q = 2.


2. Select the most compact neighborhood. That is, the neighborhood with the
minimum distance to its q-th nearest-neighbor. Figure 1(b) shows the far-
thest neighbor for each of the two neighborhoods. In the example, the neigh-
borhood on the left is the most compact one.


3. Retain the center of that neighborhood and discard its q neighbors. In this
process, the distance to the q-th neighbor can be thought of as the error
committed by removing the q objectives (see Figure 1(c)).


The pseudocode of the reduction algorithm, kossa, is presented in Figure 2.
In this pseudocode each entry, ri,j , of the correlation matrix represents the con-
flict between objective fi and fj . In particular, ri,q denotes the conflict between
objective fi and its q-th nearest-neighbor.







(a) Divide the objective
set into neighbor-
hoods around each
objective.


(b) Select the most com-
pact neighborhood.


(c) Retain the center
and remove the
neighbors.


Fig. 1. Basic strategy of the objective reduction method employed.


3 Integration Schemes of the Objective Reduction


Method into a MOEA


When some objectives are discarded from the original problem some information
is being lost. The magnitude of this loss depends on the degree of redundancy
among the objectives.


In any case, we have to balance the benefit of discarding some objectives along
with the computational cost of the reduction algorithm. Two benefits are clear
from removing some objectives, namely: i) the avoidance of the computation of
some possible computational expensive objective functions, and ii) the speedup


Input: Nondominated set A.
Initial objective set F = {fi, i = 1, ..., s}.
Number of neighbors q ≤ |F | − k.
Size of the desired objective subset, k.


Step 0: Compute the correlation matrix using A.
Step 1: F ′ ← F .
Step 2: Find objective fmin


i which corresponds to
rmin


i,q ← minfi∈F ′ {ri,q}.
Step 3: Retain fmin


i and discard its q neighbors from F ′.
Let error ← rmin


i,q .
Step 4: If q > |F ′| − k then q ← |F ′| − k.
Step 5: If |F ′| = k then go to Step 8 to stop.


Compute again rmin
i,q ← minfi∈F ′ {ri,q}.


Step 6: While rmin
i,q > error and q > 1 do:


q ← q − 1.
rmin


i,q ← minfi∈F ′ {ri,q}.
Step 7: Go to Step 2.
Step 8: Return set F ′ as the reduced objective set.


Fig. 2. Pseudocode of the objective reduction algorithm kossa.







in execution of the moea, specially if its complexity time largely depends on the
number of objectives.


Next, we will describe two schmes to incorporate the kossa method into
a moea. First, we propose a simple scheme where the objective set is reduced
successively during most of the search and only towards the end of the search
all the objectives are integrated. This scheme is divided in three stages:


1. In the first stage the moea is executed for a number of generations using
all the objectives. The moea obtains an initial approximation of the Pareto
front which will be the first input of the objective reduction method, kossa.


2. The second stage is the main stage of the scheme where the objective set is
gradually reduced through several generations. In this stage, every certain
number of generations kossa is executed to reduce the objective set and
then the execution of the moea is resumed. This process is repeated until
the desired objective set size has been reached.


3. In the last stage all the objectives are taken up again to obtain the final
approximation of the Pareto front.


The detailed scheme with successive reductions is described in Algorithm 1,
where P denotes the best population obtained so far by the moea.


Algorithm 1 Pseudocode of the successive reduction scheme.


Input:


R: Number of reductions during the search.
k: Size of the minimum objective set allowed.
Gmax: Total number of generations.
Gpre: Generations before the reduction stage.
Gpost: Generations after the reduction stage.


1: G ← Gpre; F ′ ← F
2: k′ ← ⌈(|F | − k)/R⌉ ⊲ Number of objectives discarded per reduction.
3: for r ← 1 until R + 2 do


4: for g ← 1 until G do


5: moea(P , F ′)


6: if r 6= R + 2 then


⊲ Reduce the current objective set F ′.
7: if r ≤ R then


8: F ′ ← kossa(P, F ′, |F ′| − k′)
9: G ← (Gmax − Gpre − Gpost)/R


10: else


⊲ Integrate all the objectives at the end of the search.
11: F ′ ← F
12: G ← Gpost


In the current implementation of this scheme we decided to schedule the re-
duction phases equally distributed during the reduction stage. However, other







schedules are possible, for instance the number of generations for the next re-
duction can be shortened each time, since the population converges faster after
each reduction. A similar decision can be made with regard to the number of
objectives discarded on each reduction. Currently, the same number of objec-
tives is removed at each reduction as it can be seen in the third statement of
Algorithm 1.


Although this scheme has the advantage (computationally speaking) of omit-
ting the evaluation of many objectives during most of the search, it is possible
that the loss of information diminishes the moea’s convergence ability. There-
fore, we also proposed a less aggressive scheme which integrates the entire objec-
tive set periodically during the search to counterbalance the loss of information.
As in the scheme described previously, this mixed scheme starts the search using
the whole objective set for some generations. However, it alternates the reduc-
tion process with the integration of the original objectives during the remainder
of the search. Algorithm 2 presents the details of the mixed scheme.


Algorithm 2 Pseudocode of the mixed reduction scheme.


Input:


R: Number of reductions during the search.
k: Size of the minimum objective set allowed.
Gmax: Total number of generations.
Gpre: Generations before the reduction stage.
pred: Percentage of generations using the reduced objective set.


pint ← 1 − pred.
Gred ← pred × (Gmax − Gpre)/R
Gint ← pint × (Gmax − Gpre)/R
G ← Gpre


F ′ ← F
k′ ← ⌈(|F | − k)/R⌉ ⊲ Number of objectives discarded per reduction.


for r ← 1 until 2R + 1 do


for g ← 1 until G do


moea(P , F ′)


if r 6= 2R + 1 then


⊲ Reduce the current objective set F ′.
if r mod 2 = 1 then


F ′ ← kossa(P, F ′, |F ′| − k′)
G ← Gred


else


⊲ Integrate all the objectives for the next generations.
F ′ ← F
G ← Gint







4 Assessment of the Objective Reduction Schemes


Coupled with a MOEA


In order to evaluate the performance of the schemes presented in the previous
section we chose the nsga-ii as a testbed. As we mention in previous sections,
the worth of using an objective reduction method depends on its computational
cost, the time complexity of the moea (specially if it depends on the number of
objectives), the computational cost of the objective functions, and on the effect
caused by the removal of objectives.


In order to investigate the effect of these factors, we carried out two types
of experiments. The first group of experiments attempts to provide an overall
assessment of all those factors in order to determine if the reduction method is
advantageous. To do so, instead of using the number of evaluations as a stop-
ping criterion, we use the real computational time instead. By doing so, we can
decide if the overall benefits of the reduction method are greater than its pos-
sible damages. In the second group of experiments we want to investigate if a
reduction method increases or decreases the number of generations required to
reach a certain quality of the approximation set produced.


In both types of experiments we compare the nsga-ii equipped with the
reduction method (redga) against the original nsga-ii. The following problems
were adopted in all the experiments: the 0/1 multi-objective knapsack problem
with 200 items, and a variation, proposed in [24], of the well-known problem
dtlz2 (denoted here by dtlz2BZ) with 30 variables. All the runs were executed
in a single-core computer with a 2.13 ghz cpu.


In the first group of experiments the results were evaluated using the additive
ǫ-Indicator [25], which is defined as


Iǫ+(A,B) = inf
ǫ∈R


{∀z
2 ∈ B ∃z


1 ∈ A : z
1 ºǫ+ z


2}


for two nondominated sets A and B, where z
1 ºǫ+ z


2 iff ∀i : z1
i ≤ ǫ + z2


i , for
a given ǫ. In other words, Iǫ+(A,B) is the minimum value such that aggregated
to any objective vector in B, then A º B. In general, Iǫ+(A,B) 6= Iǫ+(B,A) so
we have to compute both values. The smaller Iǫ+(A,B) and larger Iǫ+(B,A),
the better A over B.


4.1 Overall Assessment of the Reduction Schemes


In these experiments we used four instances for each of the two test problems
employed with 4, 6, 8 and 10 objectives. For each number of objectives we fixed
the following time windows: 2, 4, 6 and 10 seconds. For all the 30 runs and
problems we used a population of 300 individuals. For nsga-ii we employed a
crossover probability of 0.9 and a mutation probability of 1/N (N is the number
of variables). In the knapsack problem we used a binary representation with a
mutation probability of 1/n (n is the length of the chromosome).


In order to study the successive reduction scheme we reduced in all cases
the objective set until a size of k = 3 and the percentage of generations before







and after the reduction stage was fixed to 20% and 5%, respectively. Here, we
studied two scenarios: one that reduces all the required objectives in one re-
duction (redga-s-1), while the other one uses, among all possible number of
reductions, an intermediate number of reductions considering a final set of size
k = 3 (redga-s-m). That is, for 6, 8 and 10 objectives were used 2, 3, and 4
reductions, respectively. In the mixed reduction scheme we only used an inter-
mediate number of reductions for every number of objectives (redga-x-m), and
the other parameters were k = 3, pred = 0.85 and 20% of the total generations
were accomplished before the reduction stage. The results of the ǫ-Indicator for
these scenarios on problem dtlz2BZ are presented in Table 1. Since for four ob-
jectives redga-s-m and redga-x-m are equivalent to the redga-s-1 scheme,
we only show the results of this scheme against nsga-ii.


Table 1. Results of the reduction schemes with respect to the ǫ-Indicator in the
dtlz2BZ problem using a fixed-time stopping criterion.


DTLZ2BZ with 4 objectives


Iǫ+(A, B) REDGA-S-1 REDGA-S-m REDGA-X-m NSGA-II Average


REDGA-S-1 - - - 0.04450 0.04450


REDGA-S-m - - - -


REDGA-X-m - - - -


NSGA-II 0.06469 - - - 0.06469


Average 0.06469 0.04450


DTLZ2BZ with 6 objectives


Iǫ+(A, B) REDGA-S-1 REDGA-S-m REDGA-X-m NSGA-II Average


REDGA-S-1 - 0.05961 0.05723 0.06019 0.05901


REDGA-S-m 0.05259 - 0.05085 0.05849 0.05398


REDGA-X-m 0.05850 0.05614 - 0.05421 0.05628


NSGA-II 0.07447 0.07711 0.07972 - 0.07710


Average 0.06185 0.06429 0.06260 0.05763


DTLZ2BZ with 8 objectives


Iǫ+(A, B) REDGA-S-1 REDGA-S-m REDGA-X-m NSGA-II Average


REDGA-S-1 - 0.08583 0.07711 0.07179 0.07824


REDGA-S-m 0.06905 - 0.08195 0.06341 0.07147


REDGA-X-m 0.07386 0.08171 - 0.06944 0.07500


NSGA-II 0.09882 0.10616 0.11782 - 0.10760


Average 0.08058 0.09123 0.09229 0.06821


DTLZ2BZ with 10 objectives


Iǫ+(A, B) REDGA-S-1 REDGA-S-m REDGA-X-m NSGA-II Average


REDGA-S-1 - 0.09108 0.09182 0.08316 0.08869


REDGA-S-m 0.06916 - 0.07072 0.07926 0.07305


REDGA-X-m 0.07998 0.08554 - 0.06840 0.07797


NSGA-II 0.11608 0.12159 0.11480 - 0.11749


Average 0.08841 0.09940 0.09245 0.07694







As we can clearly see in Table 1, all the reduction schemes perform better than
nsga-ii for every number of objectives. Besides, the advantage of the reduction
schemes over the nsga-ii increases with the number of objectives. On the other
hand, except for 8 objectives, the scheme redga-s-m achieved better results
than the redga-x-m which is the second best in this comparison. This means
that the strategy of integrating all the objectives periodically did not improve
the performance of the reduction scheme. As somewhat expected, the redga-


s-1 scheme did not obtain results as good as the other reduction schemes. A
possible explanation is that, in spite of the fact that redga-s-1 carries out
more evaluations than the other schemes in the given time, this advantage is not
enough to counteract the negative effect caused by the loss of information. In this
sense, the redga-s-m scenario represents a better tradeoff between these factors.


Table 2. Results of the reduction schemes with respect to the ǫ-indicator in the 0/1
Knapsack problem using a fixed-time stopping criterion.


Knapsack with 4 objectives


Iǫ+(A, B) REDGA-S-1 REDGA-S-m REDGA-X-m NSGA-II Average


REDGA-S-1 - - - 205 205


REDGA-S-m - - - -


REDGA-X-m - - - -


NSGA-II 241 - - - 241


Average 241 205


Knapsack with 6 objectives


Iǫ+(A, B) REDGA-S-1 REDGA-S-m REDGA-X-m NSGA-II Average


REDGA-S-1 - 408 264 318 330.0


REDGA-S-m 371 - 269 352 330.7


REDGA-X-m 372 403 - 306 360.3


NSGA-II 448 414 378 - 413.3


Average 397.0 408.3 303.7 325.3


Knapsack with 8 objectives


Iǫ+(A, B) REDGA-S-1 REDGA-S-m REDGA-X-m NSGA-II Average


REDGA-S-1 - 646 478 505 543.0


REDGA-S-m 457 - 323 290 356.7


REDGA-X-m 441 465 - 345 417.0


NSGA-II 564 472 438 - 491.3


Average 487.3 527.7 413.0 380.0


Knapsack with 10 objectives


Iǫ+(A, B) REDGA-S-1 REDGA-S-m REDGA-X-m NSGA-II Average


REDGA-S-1 - 455 424 423 434.0


REDGA-S-m 503 - 411 376 430.0


REDGA-X-m 760 667 - 493 640.0


NSGA-II 533 455 522 - 503.3


Average 598.7 525.7 452.3 430.7







As in the previous problem, nsga-ii was the worst algorithm in the 0/1 knap-
sack problem regarding the ǫ-Indicator (see Table 2). Nonetheless, the redga-s-1
scheme presented a better performance than in dtlz2BZ , i.e., with 4 objectives
it was the second best and with 10 it was the best scheme. The reason is that
knapsack’s objective functions are more computationally expensive than those of
the problem dtlz2BZ . This allowed that redga-s-1 could perform many more
generations than any other scheme. This is a clear example that the balance
between the computational cost of the objective functions and the overhead of
the reduction scheme plays an important role on the success of the reduction
scheme. Furthermore, it acts as a guide to decide what type of reduction scheme
to choose. If the objective functions are expensive then it may be convenient to
use an aggressive scheme such as redga-s-1; otherwise, the redga-s-m could
be more appropriate.


4.2 Effect of the Reduction Schemes on MOEA’s Search Ability


In order to investigate how a reduction scheme affects the moea’s convergence
ability we compare the reduction schemes using the number of generations as the
stopping criterion. In these experiments we used a population of 300 individuals
for every number of objectives, and all the algorithms were executed for 200
generations (60 000 evaluations). In this experiment we adopt only dtlz2BZ


since convergence can be easily measured given that the nondominated vectors of
its true Pareto front have the property D =


∑s


i=1 f2
i = 1, where s is the number


of objectives. The distribution of the values of D for each algorithm are shown in
Figure 3. The horizontal axis represents the D values obtained by each algorithm
and the vertical axis denotes the frequency of a given D value. As well as in other
studies [13, 6], Figure 3 shows that the performance of nsga-ii decays as the
number of objectives increases. In addition, all the reduction schemes perform
better than nsga-ii in all cases. This means that the reduction schemes, besides
reducing execution time also help Pareto-based moeas to recover the search
ability deteriorated by the inability of Pareto optimality to discriminate solutions
in many-objective problems. In concordance with the fixed-time experiments, the
redga-s-m achieves the best convergence with respect to the average D value
presented in Table 3. Like all the algorithms, its convergence decreases with the
number of objectives. However redga-s-m is the scheme less affected by the
number of objectives.


5 Conclusions and Future Work


In this paper, we have presented two schemes to integrate an objective reduction
method into a moea. One of these schemes reduces successively the number of
objectives until the required size has been reached and only at the final gener-
ations the original objective set is used again (redga-s). The second scheme
is intended to counterbalance the negative effect of the loss of information by
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Fig. 3. D distribution on the problem dtlz2BZ for different number of objectives.
D = 1 corresponds to the true Pareto front.


Table 3. Results of the reduction schemes with respect to the value D in the dtlz2BZ


problem using a fixed-generations stopping criterion.


Obj REDGA-S-1 REDGA-S-m REDGA-X-m NSGA-II


4
Average 1.0305 - - 1.0488
Std. Dev. 0.0289 - - 0.0266


6
Average 1.0672 1.0358 1.0649 1.1445
Std. Dev. 0.0609 0.0334 0.0496 0.0799


8
Average 1.1276 1.0607 1.1040 1.2863
Std. Dev. 0.1113 0.0561 0.0805 0.1559


10
Average 1.1402 1.0501 1.0786 1.3787
Std. Dev. 0.1234 0.0487 0.0690 0.2218


omitting some objectives (redga-x). This scheme uses alternately the reduced
and the entire set of objectives to carry out the search.







The first group of experiments based on a fixed-time stopping criterion
showed that the reduction of objectives during the search is beneficial in spite of
the loss of information since it also saves computational time. This means that
the overhead introduced by the objective reduction method was small enough to
speed up the execution of the moea even with the inexpensive objective func-
tions used in the study. Although in all the cases studied in the first group of
experiments the moea coupled with the reduction scheme achieved better re-
sults than the moea alone, we have to carefully select the parameters of the
reduction scheme. There is an equilibrium point in the number of objectives
that need to be removed in order to achieve the best tradeoff possible between
the benefits and damages obtained by the reduction scheme. To illustrate this,
it is sufficient to consider that, although the redga-s scheme with only one
reduction is the one that saves more time per generation, it did not present as
good performance as a less aggressive configuration such as the redga-s-m. On
the other hand, the periodic incorporation of the entire objective set did not
improve the performance of the successive reduction scheme, which is simpler.


One important finding is that a reduction scheme besides reducing the execu-
tion time of a moea also helps to remedy the limitation of Pareto optimality for
dealing with problems having a large number of objectives. The results showed
that all the reduction schemes studied outperformed the original moea even
when a stopping criterion based on a fixed number of generations was used. This
shreds light into the usefulness of objective reduction schemes since they bring
advantages both in efficiency and effectiveness.


As part of our future work, we want to study the performance of the objective
reduction methods in problems with less conflict among their objectives. We
would expect that in those problems the benefit of using a reduction method
would be greater since the loss of information is smaller than in many-objective
conflicting problems. Given their encouraging results, it would be interesting to
compare the reduction schemes proposed against methods that have shown good
performance in many-objective problems.
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