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Avenida España 1680, Valparáıso, Chile

Abstract. Scalarizing functions play a crucial role in multi-objective
evolutionary algorithms (MOEAs) based on decomposition and the R2
indicator, since they guide the population towards nearly optimal solu-
tions, assigning a fitness value to an individual according to a predefined
target direction in objective space. This paper presents a general review
of weighted scalarizing functions without constraints, which have been
proposed not only within evolutionary multi-objective optimization but
also in the mathematical programming literature. We also investigate
their scalability up to 10 objectives, using the test problems of Lamé Su-
perspheres on the MOEA/D and MOMBI-II frameworks. For this pur-
pose, the best suited scalarizing functions and their model parameters
are determined through the evolutionary calibrator EVOCA. Our expe-
rimental results reveal that some of these scalarizing functions are quite
robust and suitable for handling many-objective optimization problems.

Keywords: scalarizing function, many-objective optimization, evolutio-
nary algorithms, tuning process.

1 Introduction

Multi-Objective Evolutionary Algorithms (MOEAs) mostly rely on three me-
thods for tackling Multi-objective Optimization Problems (MOPs): Pareto do-
minance4, aggregation, and performance indicators. MOEAs based on Pareto
dominance compare individuals preferring those that are less dominated by other
members in the population. When a tie occurs, a secondary selection criterion
is applied to improve diversity, i.e., the uniform distribution of solutions cove-
ring all regions in objective space. Aggregation-based MOEAs decompose MOPs
into several single-objective subproblems, each one associated with a different
target direction or weight vector. The best individuals for every subproblem have
a better chance to survive. Indicator-based MOEAs favor solutions that highly

4 A solution x ∈ S dominates a solution y ∈ S (x ≺ y), if and only if ∀i ∈ {1, . . . ,m},
fi(x) ≤ fi(y) and ∃j ∈ {1, . . . ,m}, fj(x) < fj(y).
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contribute to a performance indicator, which reflects a quality aspect regarding
convergence and diversity of the current population. In this case, convergence
measures how close the solutions are to the Pareto Optimal Front (POF)5. The
hypervolume [1] and the unary R2 [2] indicators are examples of quality measures
that incorporate both aspects, and they are also Pareto compliant.

One of the main concerns is that Pareto-based MOEAs are ineffective in
MOPs having four or more objective functions, the so-called many-objective op-
timization problems (MaOPs) [3]. Owing to the fact that at early generations,
most individuals will normally become non-dominated, and the search will then
be guided solely by the secondary selection criterion. In consequence, individuals
that enhance diversity are kept although they may deteriorate convergence [4].
The hypervolume indicator does not suffer from this selection pressure issue since
its maximization is equivalent to reaching the Pareto Optimal Set (POS) [5].
However, its computational cost increases exponentially with the number of ob-
jectives [6], making it unaffordable for MaOPs.

On the other hand, the methods based on aggregation and the R2 indicator
can scale to any number of objectives while having a low computational cost.
Nevertheless, two key points should be considered when using such approaches:
the setting of the scalarizing function and the weight vectors. A scalarizing func-
tion, also known as utility function or aggregation function, transforms the ori-
ginal MOP into a real value using a predefined weight vector in objective space.
Regarding the choice of the weight vectors, several attempts have been proposed
for adapting them in order to get a high-quality approximation of the Pareto
front (see for example [7, 8]). However, not much is known about the proper
selection of the scalarizing function and its effect on MOEAs. In fact, only three
aggregation functions have been exhaustively researched so far [9–11], neglecting
other approaches that may be able to handle MaOPs.

In this paper, we present a general review of fifteen weighted unconstrained
scalarizing functions. Even though there are excellent reviews on this topic [12–
15], the most comprehensive study dates from 1998 [13], while the most recent
ones only consider a small set of utility functions. Furthermore, none of these
studies analyzes their ability to scale to any number of objectives.

This paper is organized as follows. In Section 2 we present a review of uncon-
strained scalarizing functions. In Section 3, the best scalarizing functions and
their model parameters are determined through the Evolutionary Calibrator
(EVOCA) [16], using both the Multiobjective Evolutionary Algorithm Based on
Decomposition (MOEA/D) [17] and the Many-Objective Metaheuristic Based on
the R2 Indicator II (MOMBI-II) [18]. Finally, our conclusions and some possible
paths for future research are provided in Section 4.

2 Scalarizing Functions

We focus on unconstrained scalarizing functions that transform a multi-objective
optimization problem (MOP) into a single-objective problem, using a predefined

5 POF := {F (x) ∈ IRm : x ∈ S, 6 ∃y ∈ S,y ≺ x}.
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weight vector w := (w1, . . . , wm) of the following form:

minimize u(f ′(x); w) (1)

subject to x ∈ S, (2)

where x is the decision vector, S ∈ IRn is the feasible space, f ∈ IRm is the
vector of m(≥ 2) objective functions, f ′(x) := f(x) − z and z := (z1, . . . , zm)T

is a reference point. Unless otherwise stated we used as reference point the ideal
point, i.e., zi := min

{
fi(x) | x ∈ S

}
∀i ∈ {1, . . . ,m}. Each component of w

must satisfy wi ≥ 0. Although there is no particular reason beyond achieving
uniformity among solutions, we also assume that

∑
i wi = 1 [15].

In the remainder of this section, we present a review of fifteen aggregation
functions. They differ in that they minimize some sort of a distance metric to
the reference point, others combine two distance metrics, and a minority of them
also consider the deviation to the weight vector. In all cases, their computational
complexity is O(m). Several of these scalarizing functions can generate (weakly)
Pareto optimal solutions.6 Moreover, interactive methods have coupled some of
these scalarizing functions, where the reference point reflects the decision maker’s
preferences [13, p. 131], [19, 14, 20, 21]. Let p ∈ IN+, α ∈ IR+ and θ ∈ IR be the
model parameters. The dot product is symbolized as •, the absolute value of a
real number is denoted by |·|, and the magnitude of a vector is represented by ‖·‖.

The Weighted Compromise Programming (WCP) [22] is derived from
the Global Criterion Method [23, p. 32], which includes the weight vector for
modeling preferences as follows:

uwcp(f ′; w) :=
∑
i

(
wif

′
i

)p
. (3)

A high value of p ∈ (1,∞) is preferred to obtain the complete POS [24]. In [25],
the authors recommend using odd values for this parameter and coupled WCP
(p = 9) with a metaheuristic for solving convex and concave Pareto fronts with
2 and 3 objectives.

The Weighted Sum (WS) [26] is one of the most commonly used scalarizing
functions, which linearly combines the objectives as follows:

uws(f ′; w) :=
∑
i

wif
′
i . (4)

However, WS cannot generate solutions in concave regions of the Pareto front [25].
Some attempts have been proposed to alleviate this drawback, such as its com-
bination with other scalarizing functions [27–29], the use of dynamic weights
coupled with a secondary population [30], and the use of WS as a local search
engine [31, 32]. Additionally, some studies have reported that WS is an effective
method for solving MaOPs [9, 33]. This scalarizing function has been integrated
into several evolutionary algorithms (see e.g., [17, 34]).

6 Let be x,y ∈ S. It is said that x is Pareto optimal if there is no y such that y ≺ x.
x is weakly Pareto optimal if there is no y such that ∀i ∈ {1, . . . ,m}, fi(y) < fi(x).
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The Exponential Weighted Criteria (EWC) [24] can deal with any
Pareto-front shape, and is given by:

uewc(f ′; w) :=
∑
i

(epwi − 1) ep f
′
i . (5)

A large value of p is required to achieve Pareto optimality, but this can lead to
numerical overflow [12]. In [35], EWC was used to solve a problem related to
a voltage distribution network. To the best of our knowledge, this scalarizing
function has not been integrated into any MOEA until now.

The Weighted Power (WPO) [36] relies on the principle that the POF
can be convexified as follows:

uwpo(f ′; w) :=
∑
i

wi
(
f ′i
)p
. (6)

For a suitable value of p ∈ [1,∞), this scalarizing function can also find optimal
solutions in concave Pareto fronts [12, 37]. In [38], WPO was coupled with a
genetic algorithm, where the weight vectors and the exponent p were updated
during the evolution process according to predefined rules.

The Weighted Product(WPR) [39, p. 9], also called product of powers, is
defined as follows:

uwpr(f ′; w) :=
∏
i

(
f ′i
)wi

. (7)

This scalarizing function has been integrated with several ant colony optimiza-
tion algorithms [40] and it has also been applied to solve a network design pro-
blem [41]. However, this approach has not been widely used with MOEAs.

The Weighted Norm (WN) [22], or weighted Lp-metrics, is given by:

uwn(f ′; w) :=
(∑

i

wi
∣∣f ′i ∣∣p) 1

p

. (8)

WN can generate Pareto optimal solutions when p ∈ [1,∞) [13, p. 98]. Moreover,
other scalarizing functions can be derived from it, such as WS with p = 1 and
Least Squares [13, p. 97],[42] with p = 2. Moreover, concave Pareto fronts can
be covered with a larger value of p. In [43], the behavior of WN was studied on
MOEA/D, using continuous test problems having up to 7 objectives. The value
of p was adaptively fine-tuned based on a local estimation of the Pareto front
shape, taking different values from the set {1/2, 2/3, 1, 2, 3, . . . , 10, 1000}.

The Chebyshev or Tchebycheff function (TCH)7 [44], also known as
the weighted min-max [28, 12], is a particular case of WN with p =∞, given by:

utch(f ′; w) := max
i

{
wi
∣∣f ′i ∣∣} . (9)

This scalarizing function can find at least weakly Pareto optimal solutions re-
gardless of the Pareto-front shape (whenever w ∈ IRm

+ ) [13, p. 98]. By definition,

7 Although the French spelling Tchebycheff is the most preferred, the proper English
transliteration is Chebyshev.
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f ′i is guaranteed to be always positive. Thus, the absolute value could be dis-
carded. Even though it is possible to obtain all Pareto optimal solutions for
some weight vector [13, p. 99], a recent analysis has revealed that the search
ability of TCH is equivalent to Pareto-based methods [45]. Thus, in MaOPs, the
probability to obtain non-dominated solutions using TCH is lower than the WN
(0 < p <∞) and equivalent to Pareto-based methods. TCH has been applied to
different MOEAs (see, e.g., [17, 46]).

The Augmented Chebyshev (ATCH) [19] is a variant of TCH, where
an extra term is considered in order to avoid the generation of weakly Pareto
optimal solutions. It is given by:

uatch(f ′; w) := max
i

{
wi
∣∣f ′i ∣∣}+ α

∑
i

∣∣f ′i ∣∣ . (10)

A too small value of α may result in a loss of significance of the additional term,
still leading to the generation of weakly Pareto optimal solutions. However, a
too large value of this parameter may cause that some non-dominated points
become unreachable [47]. Although the recommendation is to use small values
of α, such as [0.001, 0.01] [19], some studies have shown a better performance
when using large values, revealing a high sensitivity of this parameter on discrete
MaOPs [27].

The Modified Chebyshev (MTCH) [48] is a variation of TCH, given by:

umtch(f ′; w) := max
i

{
wi

(∣∣f ′i ∣∣+ α
∑
i

∣∣f ′i ∣∣)} . (11)

α should be a small positive value. The features of this method are discussed
and illustrated in [13]. To the best of our knowledge, this scalarizing function
has not been exploited in any MOEA.

The Achievement Scalarizing Function (ASF) [49] can produce weakly
Pareto optimal solutions, expressed as:

uasf (f ; w) := max
{ f ′i
wi

}
. (12)

Although this scalarizing function is similar to TCH, ASF can find an objective
vector parallel to w, improving diversity in MaOPs [18]. ASF has been employed
in some MOEAs (e.g., [18, 50, 51]).

The Augmented Achievement Scalarizing Function (AASF) [13, p. 111]
is a variation of ASF, where an extra term is considered for discarding weakly
Pareto optimal solutions, and is defined as:

uaasf (f ′; w) := max
{ f ′i
wi

}
+ α

∑
i

f ′i
wi

. (13)

α should take small values. In [8], it was recommended to set α ≈ 10−4. There
are few MOEAs that adopt this scalarizing function [8, 20, 52].
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The Penalty Boundary Intersection (PBI) [17] draws ideas from the
Normal-Boundary Intersection (NBI) method [53], defined as follows:

upbi(f ′; w) := d1 + θd2 (14)

where d1 :=

∣∣∣∣f ′ • w

‖w‖

∣∣∣∣ and d2 :=

∥∥∥∥f ′ − d1 w

‖w‖

∥∥∥∥ .
θ is a penalty parameter that balances convergence (measured by d1) and di-
versity (measured by d2), both should be minimized [54]. d2 can be seen as the
distance between f ′ and its orthogonal projection on w. When θ = 0, the beha-
vior of PBI is similar to WS. The PBI function can produce uniformly distributed
solutions in objective space by setting an appropriate value for θ. Several options
for setting θ have been studied considering the geometry of the Pareto front and
the number of objectives [9, 54]. Recently, some attempts have been proposed
for the adaptation of this parameter in MOEA/D [54].

The Inverted Penalty Boundary Intersection (IPBI) [55] is an exten-
sion of PBI, given by:

uipbi(f ′; w) := θd2 − d1

where d1 :=

∣∣∣∣f ′′ • w

‖w‖

∣∣∣∣ and d2 :=

∥∥∥∥f ′′ − d1 w

‖w‖

∥∥∥∥ ,
where f ′′ is defined as:

f ′′(x) := z∗ − f(x), (15)

and z∗ := (z∗1 , . . . , z
∗
m)T is the nadir point, i.e., z∗i := max

{
fi(x) | x ∈ POS

}
.

The aim of IPBI is to enhance the spread of solutions in objective space and
to improve the performance in MaOPs [55]. As in PBI, θ handles the balance
between d1 and d2. However, a solution having a large d1 and a small d2 is
considered as a better solution. In [11, 55], a set of different values for θ were
tested in MOEA/D for solving MaOPs in discrete and continuous spaces.

The Conic Scalarization (CS) [56] is a variant of WS, where an extra term
is added for dealing with concave regions of the Pareto front. It is defined as:

ucs(f ′; w) :=
∑
i

wif
′
i + α

∑
i

∣∣f ′i ∣∣ . (16)

CS can generate weakly Pareto optimal solutions if α ∈ [0, wi], wi > 0 for all
i ∈ {1, . . . ,m} and there exists k ∈ {1, . . . ,m} such that wk > α. There are few
MOEAs that adopt CS (e.g., [57]).

The Vector Angle Distance Scaling (VADS) [28] can discover solutions
in concavities that may appear as discontinuities in the Pareto front, given by:

uvads(f ′; w) :=

∥∥f ′∥∥(
w
‖w‖

• f ′

‖f ′‖

)p . (17)

Here, the numerator measures convergence, whereas the denominator measures
the deviation of the objective vector from the weight vector. Thus, the final solu-
tion should be lying parallel to w. Orthogonal vectors require special care. Small
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values of p hinder the search of sharp concavities. Authors in [28] recommend to
use p = 100. This scalarizing function is not compatible with any form of Pareto
optimality. VADS has been implemented on a MOEA in combination with TCH
[28, 58].

3 Experimental Methodology

The goals of the experiments reported next are twofold: first, we want to de-
termine which are the most suitable scalarizing functions for MOEA/D and
MOMBI-II on different scenarios. These scenarios were built considering the
Pareto front geometry and the number of objective functions. Second, we want
to verify if this robust set of scalarizing functions can significantly improve the
performance of the baseline versions of these MOEAs. To achieve the first target,
we rely on a powerful tuning tool called Evolutionary Calibrator (EVOCA) [16],
which can find good values for numerical and categorical parameters without
requiring a strong knowledge of parameter tuning methods. The second goal is
tackled by performing a comparative study using Nonparametric statistics. In
the remainder of this section, we describe the test problems adopted for our ex-
perimental study, as well as the parameters settings of the MOEAs and further
details of these experiments.

3.1 Test Problems and Parameters Settings

We selected the Lamé Superspheres test problems [59] since they encompass the
three basic Pareto front geometries in which the scalarizing functions present
challenges. Moreover, this benchmark is scalable to any number of variables and
objective functions. Hence, we tested for 2, 3, 5, 7 and 10 objectives (m). The
number of decision variables was set to n = m + 4. We fixed the parameter
γ ∈ {0.5, 1.0, 2.0} to achieve Pareto fronts with convex, linear and concave geo-
metries, respectively. Only unimodal problems were considered, since our aim
was to determine if the scalarizing functions can handle different shapes of the
Pareto front for multi- and many-objective problems. Thus, adding difficulties
in the MOPs would introduces noise to the selection process of a MOEA.

The common parameters of MOEA/D and MOMBI-II adopted the same
values. The population size was set to {100, 120, 196, 210, 276} individuals for
{2, 3, 5, 7, 10} objectives, respectively. The probabilities of Polynomial-based mu-
tation and Simulated Binary Crossover (SBX) were set to 1

n and 0.9, respectively;
in both cases, the distribution index was set to 20. The weight vectors were ge-
nerated using the method described in [53], looking for a cardinality analogous
to the population size. The stopping criterion consisted of reaching a maximum
number of 50,000 evaluations of the MOP. The neighborhood size in MOEA/D
was equal to 20. The parameter values employed for MOMBI-II were: record 5,
tolerance threshold 1× 10−3 and 0.5 for the variance threshold.

Our performance indicator was the normalized hypervolume, which is the
hypervolume indicator [1] divided by the factor

∏
i ri, where r := (r1, . . . , rm)T

is a reference point, set to (2, . . . , 2)T in all our test problems.
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Table 1. EVOCA’s recommendation for each possible scenario. In every calibration,
it is shown the scalarization function and its model parameter value (in parentheses).

γ
MOEA/D MOMBI-II

Multi-objective Many-objective Multi-objective Many-objective

0.5 AASF (0.8001) EWC (7.6)
EWC (8.6)

TCH
AASF (1.0)

1.0
PBI (15.1)

AASF (0.3001) PBI (21.4123) AASF (0.3001)
PBI (20.5639)

2.0

PBI (2.6)

PBI (2.6) PBI (2.4026)

VADS (5.6)

PBI (7.6)

VADS (8.6) VADS (2.1)

Global
ASF AASF (0.2423) AASF (0.0501) ASF

TCH TCH

3.2 Tuning Process

EVOCA [16] is a genetic algorithm whose aim is to find the parameter values
of an optimizer that maximizes the profit for a given budget. In our case, the
profit was the normalized hypervolume indicator, and the budget was limited to
10,000 executions of the optimizer.

An individual represents a calibration that involves one of the 15 scalarizing
functions of Section 2, and the set of all the model parameters. To achieve
accurate results, we consider that all the model parameters are real values. Based
on our literature review, we selected the ranges: p ∈ [0.1, 10.0] for WCP, EWC,
WPO, WN and VADS; α ∈ [0.0001, 1.0] for ATCH, MTCH, AASF and CS;
θ ∈ [0.1, 50.0] for PBI and IPBI. Our main interest was to identify the scalarizing
function(s) that solve a wide variety of test instances, or at least to know in which
instances these scalarizing functions perform well. For this reason, we designed
the following scenarios:

– Six scenarios that considered all the combinations of the cartesian product
between the Pareto-front geometries, given by γ ∈ {0.5, 1.0, 2.0}, and the
{multi, many} cases. The “multi” case groups 2 and 3 objectives, whereas
the “many” considers 5, 7 and 10 objectives.

– A global scenario which includes all the previous combinations.

The tuning process was independent among scenarios and between MOEAs.
At the end of a tuning process, EVOCA returned 20 individuals, corresponding
to the best-found calibrations. We filtered these calibrations using Wilcoxon’s
test (with a confidence level of 99%), executing 30 times each algorithm. The
best-ranked calibrations are presented in Table 1.

In the multi-objective case, more than one calibration was obtained, but in
the many-objective case, we found only one recommended scalarizing function.
To summarize, EVOCA found that 6 out of 15 scalarizing functions (EWC, TCH,
ASF, AASF, PBI, and VADS) had an outstanding performance in the particular
scenarios that we studied. In the global scenario, EVOCA determined that TCH,
ASF, and AASF had the best results, remarking that ASF forms part of the
original version of MOMBI-II, while TCH is used by MOEA/D for 2 objectives.
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Table 2. Median (×10−1) and standard deviation of the normalized hypervolume
indicator on the multi-objective scenarios.

γ
MOEA/D MOMBI-II

Config.
m

Config.
m

2 3 2 3

0.5

Baseline 9.570400 5.0e-07 9.906204 3.4e-04 Baseline 9.570404 6.0e-07 9.917509 1.2e-04

AASF (0.8001)9.573699 4.5e-08 9.974616 1.2e-05 EWC (8.6) 9.575178 5.4e-08 9.902034 6.8e-04

AASF (1.0) 9.573940 9.4e-08 9.975483 1.3e-05

1.0

Baseline 8.737370 8.2e-08 9.744895 2.5e-07 Baseline 8.737369 8.0e-08 9.636011 6.3e-04

PBI (15.1) 8.737374 4.5e-08 9.744894 7.0e-07 PBI (21.4123)8.737374 4.5e-07 9.744881 1.8e-06

PBI (20.5639) 8.737374 3.0e-07 9.744894 1.0e-06

2.0

Baseline 8.025324 1.3e-07 9.277872 1.6e-06 Baseline 8.025323 9.6e-08 9.209490 1.0e-03

PBI (2.6) 8.025325 1.7e-07 9.277875 1.1e-06 PBI (2.4026) 8.025325 1.1e-07 9.277874 1.0e-06

PBI (7.6) 8.025326 5.1e-07 9.277867 1.4e-06

VADS (8.6) 8.025324 1.4e-06 9.277872 1.5e-06

Furthermore, the best options to solve problems with convex shape (γ = 0.5)
were AASF, EWC, and TCH. For linear shapes (γ = 1.0) PBI and AASF. For
convex shapes (γ = 2.0) the best choices were PBI and VADS. Finally, the tuning
process obtained a greater accuracy for the corresponding model parameters than
that provided by the values recommended in the literature.

3.3 Comparative Study

In this subsection, we examine the performance of the calibrated versions given
by EVOCA using the normalized hypervolume indicator (see Section 3.1). We
performed 30 independent runs for all scenarios. We applied the Wilcoxon rank
sum test (one-tailed) to the median of this indicator, to determine whether
the calibrated version performed better than the baseline algorithm at a confi-
dence interval of 99%. The baseline version adopted in MOEA/D was TCH for
2 objectives and PBI with θ = 5 for the remaining objectives [17, 60]. The base-
line of MOMBI-II was ASF [18]. Both MOEAs and scalarizing functions were
implemented in EMO Project,8 a framework for Evolutionary Multi-Objective
Optimization. This software is implemented in C language.

For all scenarios, our experimental results are shown in Tables 2, 3 and 4.
The best value between the calibrated versions and the baseline MOEA is shown
in gray. A line above the median ( · ) implies that the calibrated version outper-
formed in a significant way the baseline algorithm. Conversely, a line under the
median ( · ) means that the calibrated version was significantly outperformed.

In the multi-objective scenarios of Table 2, we can observe a clear perfor-
mance improvement over the calibrated versions for MOEA/D with 2 objectives
and MOMBI-II with 2 and 3 objectives. Only the version of MOMBI-II using
EWC (8.6) was outperformed by the baseline MOMBI-II. In the particular case
of MOEA/D, the major gains were achieved for the convex MOPs, and the best
suited scalarizing functions were AASF (0.8001) and PBI (15.1, 20.5639, 2.6,

8 Available at http://computacion.cs.cinvestav.mx/~rhernandez
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Table 3. Median (×10−1) and standard deviation of the normalized hypervolume
indicator on the many-objective scenarios.

γ Config.
m

5 7 10

MOEA/D

0.5
Baseline 9.961741 8.0e-04 9.908978 1.4e-03 9.831210 1.1e-03

EWC (7.6) 9.999756 6.1e-08 9.999988 1.8e-08 9.999985 1.1e-16

1.0
Baseline 9.989021 2.1e-07 9.999387 1.9e-06 9.999864 1.5e-05

AASF (0.3001)9.989041 5.7e-07 9.999427 3.8e-07 9.999990 5.9e-07

2.0
Baseline 9.904560 2.3e-06 9.986141 4.5e-06 9.999186 4.2e-06

PBI (2.6) 9.904578 1.8e-06 9.986145 5.4e-06 9.999160 3.8e-06

MOMBI-II

0.5
Baseline 9.970399 3.9e-04 9.987786 3.3e-04 9.991083 2.8e-04

TCH 9.999357 3.2e-06 9.999964 1.5e-06 9.999942 4.1e-06

1.0
Baseline 9.937457 9.2e-04 9.977353 8.9e-04 9.993752 4.5e-04

AASF (0.3001)9.989052 5.6e-07 9.999427 4.8e-08 9.999991 0.0e+0

2.0

Baseline 9.884399 3.9e-04 9.976128 2.2e-04 9.995263 1.5e-04

VADS (5.6) 9.904381 6.7e-06 9.985715 1.9e-05 9.998632 1.7e-05

VADS (2.1) 9.904350 8.6e-06 9.985683 2.4e-05 9.998591 2.0e-05

7.6). In MOMBI-II, the major gains were in the convex MOPs and the remai-
ning problems with 3 objectives. The best scalarizing functions for this optimizer
were EWC (8.6), AASF (1.0) and PBI (21.4123, 2.4026). As it can be noticed,
AASF worked very well for both MOEAs in the convex problems, while PBI
performed best in the linear and concave problems. However, this scalarizing
function is sensitive to its parameter value.

In the many-objective scenarios of Table 3, we can notice a clear performance
improvement over the calibrated versions of both optimizers. In MOEA/D, there
were only 2 ties for the concave problems, and the major gains were in the
convex MOPs. The best scalarizing functions for MOEA/D were: EWC (7.6),
AASF (0.3001) and PBI (2.6). In MOMBI-II, the major gains were in 5 and 7
objectives. The best scalarizing functions for this optimizer were TCH, AASF
(0.3001), VADS (5.6, 2.1). In both optimizers, AASF (0.3001) worked very well
on the linear problems.

In the global scenario of Table 4 a different pattern is observed. In the case of
MOEA/D, ASF and TCH worked very well in the convex problems from 3 up to
10 objectives. However, they worsened their behavior in the linear and concave
MOPs. Similarly, AASF (0.2423) performed well in the convex problems and the
linear problems for 5, 7 and 10 objectives. However, its performance deteriorated
in the concave MOPs. On the other hand, for MOMBI-II, the 2 scalarizing func-
tions were complementary to each other. For example, for 2 objectives, TCH was
competitive with respect to the baseline version, while in the concave problems
for 3 to 10 objectives AASF (0.0501) performed best.

These results suggest that no scalarizing function can solve effectively all
the problems. Instead, there is a subset of them that can tackle in an effective
manner some specific problems.
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Table 4. Median (×10−1) and standard deviation of the normalized hypervolume
indicator on the global scenario.

γ Config.
m

2 3 5 7 10

MOEA/D

0.5

Baseline 9.570400 5.0e-07 9.906204 3.4e-04 9.961741 8.0e-04 9.908978 1.4e-03 9.831210 1.1e-03

ASF 9.570399 3.2e-07 9.917019 1.5e-04 9.971177 5.7e-04 9.987843 2.6e-04 9.994325 2.8e-04

TCH 9.570400 5.0e-07 9.953880 2.6e-06 9.999339 1.6e-06 9.999972 5.5e-06 9.999967 6.3e-06

AASF (0.2423)9.571983 1.9e-07 9.966615 7.4e-05 9.995188 5.0e-05 9.997490 4.8e-05 9.998646 5.4e-05

1.0

Baseline 8.737370 8.2e-08 9.744895 2.5e-07 9.989021 2.1e-07 9.999387 1.9e-06 9.999864 1.5e-05

ASF 8.737369 7.2e-08 9.638966 6.2e-04 9.914455 7.2e-04 9.963243 8.9e-04 9.988689 4.1e-04

TCH 8.737370 8.2e-08 9.689283 1.8e-05 9.967928 2.4e-05 9.983080 4.6e-04 9.932911 2.2e-03

AASF (0.2423)8.668011 1.3e-06 9.720175 4.1e-05 9.989038 2.8e-07 9.999426 2.8e-07 9.999991 4.9e-07

2.0

Baseline 8.025324 1.3e-07 9.277872 1.6e-06 9.904560 2.3e-06 9.986141 4.5e-06 9.999186 4.2e-06

ASF 8.025323 1.0e-07 9.207519 7.9e-04 9.870073 6.6e-04 9.970228 5.6e-04 9.985247 1.6e-03

TCH 8.025324 1.3e-07 9.228448 5.7e-05 9.854362 1.3e-05 9.807065 2.3e-03 9.561658 6.5e-03

AASF (0.2423)7.876793 2.0e-06 9.152424 2.5e-03 9.847468 2.3e-03 9.969067 5.6e-04 9.996733 1.3e-04

MOMBI-II

0.5

Baseline 9.570404 6.0e-07 9.917509 1.2e-04 9.970399 3.9e-04 9.987786 3.3e-04 9.991083 2.8e-04

TCH 9.570404 6.2e-07 9.953905 3.6e-06 9.999357 3.2e-06 9.999964 1.5e-06 9.999942 4.1e-06

AASF (0.0501)9.570326 4.4e-07 9.924333 2.7e-04 9.979430 3.4e-04 9.989421 2.1e-04 9.993698 2.2e-04

1.0

Baseline 8.737369 8.0e-08 9.636011 6.3e-04 9.937457 9.2e-04 9.977353 8.9e-04 9.993752 4.5e-04

TCH 8.737369 7.2e-08 9.689161 1.2e-05 9.968534 1.1e-04 9.984665 6.2e-04 9.931828 2.4e-03

AASF (0.0501)8.732288 1.2e-05 9.744887 6.7e-07 9.989033 2.2e-07 9.999427 1.8e-08 9.999991 0.0e+0

2.0

Baseline 8.025323 9.6e-08 9.209490 1.0e-03 9.884399 3.9e-04 9.976128 2.2e-04 9.995263 1.5e-04

TCH 8.025323 9.6e-08 9.229191 1.5e-04 9.855497 7.7e-04 9.851832 2.2e-03 9.563050 6.3e-03

AASF (0.0501)8.003164 2.5e-05 9.269135 1.0e-04 9.898159 1.1e-04 9.985653 1.7e-05 9.999221 5.8e-06

4 Conclusions and Future Work

In this work, we presented an overview and a comparative study to determine the
weighted and unconstrained scalarizing functions that are the most suitable for
MOEA/D and MOMBI-II. For this purpose, we designed several test scenarios
considering different Pareto-front shapes and objectives. We used the tuning tool
EVOCA to determine the best calibration for each of these scenarios. In almost
all cases, EVOCA recommendations outperform the baseline version of these
MOEAs. Our most important conclusion is that no single scalarizing function
performs best in all the scenarios but a set of them, regarding the normalized
hypervolume indicator. In general, we obtained good results with AASF, PBI,
EWC, and VADS. These scalarizing functions deserve further study.

As part of our future work, we are interested in studying additional scenarios
that consider more difficult problems including other performance indicators.
We are interested in analyzing the effect of using the nadir point instead of the
ideal point (as in IPBI) and using vectors formed by the inverse components
of the weight vectors (as in ASF). From the obtained results, we would like to
design self-adaptive models and new MOEAs that combine several scalarizing
functions.



12 M. Pescador-Rojas et al.

5 Acknowledgments

The authors gratefully acknowledge support from PCCI140054 CONACYT/CONICYT
project and CONACyT project no. 221551.

References

1. Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and
Applications. PhD thesis, Swiss Federal Institute of Technology (ETH), Zurich,
Switzerland (November 1999)

2. Brockhoff, D., Wagner, T., Trautmann, H.: On the Properties of the R2 Indica-
tor. In: 2012 Genetic and Evolutionary Computation Conference (GECCO’2012),
Philadelphia, USA, ACM Press (July 2012) 465–472 ISBN: 978-1-4503-1177-9.

3. Li, B., Li, J., Tang, K., Yao, X.: Many-Objective Evolutionary Algorithms: A
Survey. ACM Computing Surveys 48(1) (September 2015)

4. Adra, S.F., Fleming, P.J.: Diversity Management in Evolutionary Many-Objective
Optimization. IEEE Trans. Evol. Comput. 15(2) (April 2011) 183–195

5. Fleischer, M.: The Measure of Pareto Optima. Applications to Multi-objective
Metaheuristics. In Fonseca et al., C.M., ed.: Evolutionary Multi-Criterion Opti-
mization. Second International Conference, EMO 2003. Volume 2632., Faro, Por-
tugal, Springer. LNCS (April 2003) 519–533

6. Bringmann, K., Friedrich, T.: Don’t be Greedy when Calculating Hypervolume
Contributions. In: FOGA ’09: Proceedings of the tenth ACM SIGEVO workshop
on Foundations of Genetic Algorithms, Orlando, Florida, USA, ACM (January
2009) 103–112

7. Eichfelder, G.: An adaptive scalarization method in multiobjective optimization.
SIAM J. on Optimization 19(4) (jan 2009) 1694–1718

8. Tutum, C.C., Deb, K.: A Multimodal Approach for Evolutionary Multi-objective
Optimization (MEMO): Proof-of-Principle Results. In Gaspar-Cunha, A., An-
tunes, C.H., Coello Coello, C., eds.: Evolutionary Multi-Criterion Optimiza-
tion, 8th International Conference, EMO 2015. Volume 9018. Springer. LNCS,
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31. Paquete, L., Stützle, T.: A Two-Phase Local Search for the Biobjective Traveling
Salesman Problem. In Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L.,
eds.: Evolutionary Multi-Criterion Optimization. Second International Conference,
EMO 2003. Volume 2632., Faro, Portugal, Springer. LNCS (April 2003) 479–493

32. Wang, R., Zhou, Z., Ishibuchi, H., Liao, T., Zhang, T.: Localized Weighted Sum
Method for Many-Objective Optimization. IEEE Trans. Evol. Comput. PP(99)
(2016) (to be published)

33. Murata, T., Taki, A.: Many-Objective Optimization for Knapsack Problems Using
Correlation-Based Weighted Sum Approach. In Ehrgott, M., Fonseca, C.M.,
Gandibleux, X., Hao, J.K., Sevaux, M., eds.: Evolutionary Multi-Criterion Op-
timization. 5th International Conference, EMO 2009. Springer. LNCS, Nantes,
France (April 2009) 468–480

34. Ishibuchi, H., Nojima, Y.: Optimization of Scalarizing Functions Through Evo-
lutionary Multiobjective Optimization. In Obayashi, S., Deb, K., Poloni, C., Hi-
royasu, T., Murata, T., eds.: Evolutionary Multi-Criterion Optimization, 4th In-
ternational Conference, EMO 2007. Volume 4403., Matshushima, Japan, Springer.
LNCS (March 2007) 51–65

35. Carpinelli, G., Caramia, P., Mottola, F., Proto, D.: Exponential Weighted Method
and a Compromise Programming Method for Multi-objective Operation of plug-in
Vehicle Aggregators in Microgrids. International Journal of Electrical Power &
Energy Systems 56 (2014) 374 – 384

36. Li, D.: Convexification of a Noninferior Frontier. Journal of Optimization Theory
and Applications 88(1) (1996) 177–196

37. Li, D., Yang, J.B., Biswal, M.: Quantitative Parametric Connections Between Me-
thods for Generating Noninferior Solutions in Multiobjective Optimization. Euro-
pean Journal of Operational Research 117(1) (1999) 84–99

38. Dellino, G., Fedele, M., Meloni, C.: Dynamic Objectives Aggregation Methods for
Evolutionary Portfolio Optimisation. A Computational Study. Int. J. Bio-Inspired
Comput. 4(4) (jul 2012) 258–270

39. Triantaphyllou, E.: Multi-criteria Decision Making Methods: A Comparative
Study. Volume 44. Springer US (2000)

40. Angelo, J.S., Barbosa, H.J.: On Ant Colony Optimization Algorithms for Multi-
objective Problems. In Ostfeld, A., ed.: Ant Colony Optimization – Methods and
Applications. InTech, Cham (2011) 53–74

41. Bjornson, E., Jorswieck, E.A., Debbah, M., Ottersten, B.: Multiobjective Signal
Processing Optimization: The Way to Balance Conflicting Metrics in 5G Systems.
IEEE Signal Processing Magazine 31(6) (Nov 2014) 14–23

42. Kasprzak, E., Lewis, K.: Pareto Analysis in Multiobjective Optimization using
the Collinearity Theorem and Scaling Method. Structural and Multidisciplinary
Optimization 22(3) (2001) 208–218

43. Wang, R., Zhang, Q., Zhang, T.: Pareto Adaptive Scalarising Functions for Decom-
position Based Algorithms. In Gaspar-Cunha, A., Antunes, C.H., Coello Coello,
C., eds.: Evolutionary Multi-Criterion Optimization, 8th International Conference,
EMO 2015. Volume 9018. Springer. LNCS, Guimarães, Portugal (March 29 - April
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