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Abstract. Pareto dominance (PD) has been the most commonly adopted relation
to compare solutions in the multiobjective optimization context. Multiobjective
evolutionary algorithms (MOEAs) based on PD have been successfully used in
order to optimize bi-objective and three-objective problems. However, it has been
shown that Pareto dominance loses its effectiveness as the number of objectives
increases and thus, the convergence behavior of approaches based on this concept
decreases. This paper tackles the MOEAs’ scalability problem that arises as we
increase the number of objective functions. In our study, we perform a compara-
tive study of some of the state-of-the-art fitness assignment methods available for
multiobjective optimization in order to analyze their ability to guide the search
process in high-dimensional objective spaces.


1 Introduction


Evolutionary algorithms (EAs) draw inspiration from the process of natural evolution
in order to evolve progressively a population of individuals (i.e., potential solutions to
the optimization problem) through the application of a series of probabilistic processes.
As a population-based approach, EAs are suitable alternatives to solve problems with
two or more objectives (the so-called multiobjective optimization problems, or MOPs
for short), since they are able to explore simultaneously different regions of the search
space and to obtain several points from the trade-off surface in a single run. Since the
mid-1980s, the field of evolutionary multiobjective optimization (EMO, for short) has
grown and a wide variety of multiobjective EAs (or MOEAs) have been proposed so
far.


Despite the considerable volume of research on EMO, most of these efforts have
been focused on bi-objective or three-objective problems. Recently, the EMO commu-
nity started to explore the scalability of MOEAs with respect to the number of objective
functions. As a result, several studies have shown that even the most popular MOEAs
fail to converge to the trade-off surface in high-dimensional objective spaces [16, 12,
10]. MOPs having more than 3 objectives are referred to as many-objective optimiza-
tion problems in the specialized literature [7].


EAs requires a function which measures the fitness of solutions in order to identify
the best candidates to guide the search process. When dealing with a single-objective







problem, such fitness function is usually related to the function to be optimized. How-
ever, when solving MOPs it is required an additional mechanism to map the multi-
objective space into a single dimension in order to allow a direct comparison among
solutions; this mechanism is known as the fitness assignment process3 [11].


Pareto dominance (PD) has been the most commonly adopted relation to discrimi-
nate among solutions in the multiobjective context, and it has been the basis to develop
most of the MOEAs proposed so far. However, PD loses its discrimination potential
with the increase in the number of objectives and thus, decreases the convergence abil-
ity of approaches based on this concept. With the aim of clarifying this point, Figure
1 shows how the number of nondominated solutions (i.e., equally good solutions for
PD) grows in a population in relation with the number of objectives as the search pro-
gresses. This experiment was performed using two well-known scalable test problems,
namely DTLZ1 and DTLZ6 [4]. The data in Figure 1 corresponds to the mean of 31
independent runs of a generic MOEA (described in Section 3) with a population of 100
individuals.
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Fig. 1: Proportion of Pareto-nondominated solutions with respect to the number of objectives.


From Figure 1, we can clearly see that an increment of the number of objectives
raises the proportion of nondominated individuals even in the case of the initial popula-
tion (generation 0) which is randomly generated. This problem becomes more evident
as the search progresses and the population is rapidly saturated with nondominated
solutions. When the whole population becomes nondominated it is not possible to dis-
criminate among solutions and thus, the search process weakens since it is performed
practically at random.


It should be clear how important is to devise alternative approaches to rank solutions
when dealing with many-objective problems. This paper tackles the MOEAs’ scalabil-
ity problem that arises when the number of objectives is increased, by performing a
comparative study of some state-of-the-art alternative approaches to PD. In our study,
we incorporate the considered approaches into a generic MOEA in order to investigate
their convergence ability and scalability with respect to the number of objectives.


The remainder of this document is structured as follows: Section 2 describes the
studied approaches. In Section 3, we present the results of the performed comparative
study. Finally, Section 4 provides our conclusions as well as some possible directions
for future research.


3 In this study, we will use indistinctly the terms fitness and rank to refer to the value which
expresses the quality of solutions and allows to compare them with respect to each other.







2 Multiobjective fitness assignment methods


In this study, we assume that all objectives are equally important and, without loss
of generality, we will refer only to minimization problems. Here, we are interested in
solving many-objective problems with the following form:


Minimize F(Xi) = [ f1(Xi), f2(Xi), . . . , fM(Xi)]T


subject to Xi ∈ F (1)


where Xi is a decision vector (containing decision variables), F(Xi) is the M-dimensional
objective vector (M > 3), fm(Xi) is the m-th objective function, and F is the feasible
region delimited by the problem’s constraints.


Also, from now on, we will use the ranking procedure proposed by Fonseca and
Fleming [9] for all the approaches described herein, except for those for which a differ-
ent ranking method is explicitly given. Fonseca and Fleming proposed to rank a solution
Xi as follows:


rank(Xi) = 1+ |{X j : X j ≺ Xi}| (2)


where X j ≺ Xi denotes that solution X j dominates (is better than) Xi according to a
preference relation ≺. ≺ was originally proposed for Pareto dominance.


2.1 Pareto dominance


Pareto dominance (PD) was proposed by Vilfredo Pareto [15] and is defined as follows:
given two solutions Xi, X j ∈ F , we say that Xi Pareto-dominates X j (Xi ≺P X j) if and
only if:


∀m ∈ {1,2, . . . ,M} : fm(Xi)≤ fm(X j) ∧
∃m ∈ {1,2, . . . ,M} : fm(Xi) < fm(X j) (3)


2.2 Ranking composition methods


Ranking composition methods (RCM) extract the separated fitnesses of every solu-
tion into a list of fitness values for each objective. These lists are then individually
sorted, resulting in a set of different ranking positions for every solution for each
objective. The ranking positions of a solution Xi are given by the vector R(Xi) =
[r1(Xi),r2(Xi), . . . ,rM(Xi)]T , where rm(Xi) is the rank of Xi for the m-th objective. Fi-
nally, the different ranking positions of an individual are composed into a single ranking
which reflects the candidate solutions’ quality [1]. Assuming a previous calculation of
R(Xi) for each solution Xi, we describe below some RCM reported in the specialized
literature.


Average Ranking (AR). This method was proposed by Bentley and Wakefield [1]. The
global rank of an individual Xi is given by:


rank(Xi) =
M


∑
m=1


rm(Xi) (4)







Maximum Ranking (MR). Bentley and Wakefield [1] also proposed a method in which
the global rank of an individual corresponds to its best ranking position:


rank(Xi) =
M


min
m=1


rm(Xi) (5)


2.3 Relaxed forms of dominance


Some authors have developed some alternatives to PD in order to allow a finer grain dis-
crimination among solutions. Relaxed forms of dominance (RFD), make possible for a
solution Xi to dominate another solution X j even in cases when Xi is Pareto-dominated
by X j. Generally, RFD can accept a detriment in some objectives if the solution presents
a considerable improvement in the other objectives. Next, we describe some RFD re-
ported in the literature.


Approaches that require parameters


The approaches described below require the fine-tuning of at least one parameter
which sometimes involves in-depth knowledge or understanding of the method and the
problem to be solved. This specification can be seen as a drawback, since it can reduce
the application range of such approaches.


α-domination Strategy (AD). Ikeda et al. [13] proposed a RFD to deal with what they
called dominance resistant solutions (DRS), i.e., solutions that are extremely inferior
to others in at least one objective, but hardly-dominated. The idea of AD is setting
upper/lower bounds of trade-off rates between two objectives, in order to allow Xi to
dominate X j if Xi is slightly inferior in an objective but largely superior in some other
objectives.


A solution Xi α-dominates solution X j (Xi ≺α X j) if and only if:


∀m ∈ {1,2, . . . ,M} : gm(Xi,X j)≤ 0 ∧
∃m ∈ {1,2, . . . ,M} : gm(Xi,X j) < 0 (6)


where


gm(Xi,X j) = fm(Xi)− fm(X j)+ ∑
n 6=m


αmn( fn(Xi)− fn(X j)) (7)


and αmn is the trade-off rate between objectives m and n. If αmn = 0 for all pairs of ob-
jectives, AD enforces PD. In [13], parameters αmn were set to a constant c = { 1


3 , 1
9 , 1


100}
in all m 6= n. Since 1


3 was the value which allowed the best performance in [13], this
value will be used for this study.


k-dominance (KD). Farina and Amato [8] proposed a dominance relation which takes
into account the number of objectives where a solution Xi is better, equal and worse than
another solution X j. For this purpose, the authors defined respectively the following







functions:


nb(Xi,X j) = |{m : fm(Xi) < fm(X j)}| m = 1,2, . . . ,M (8)
ne(Xi,X j) = |{m : fm(Xi) = fm(X j)}| m = 1,2, . . . ,M (9)
nw(Xi,X j) = |{m : fm(Xi) > fm(X j)}| m = 1,2, . . . ,M (10)


For simplicity, we will refer to functions in Equations (8), (9) and (10) as nb, ne
and nw, respectively. Given two solutions Xi and X j, we say that Xi k-dominates4 X j
(Xi ≺k X j) if and only if:


ne < M ∧ nb ≥
M−ne


k +1
(11)


where 0≤ k ≤ 1. If k=0, KD and PD relations’ discrimination would be equivalent. The
strictness of KD depends on the value chosen for k. In this study the value k = 1 will be
used in order to enhance discrimination among solutions.


Volume dominance (VD). This dominance relation was proposed by Le and Landa-
Silva [14]. VD is based on the volume of the objective space that a solution dominates.
The dominated volume of Xi is defined as the region R for which all its feasible solutions
are dominated by Xi. We need to define a reference point r such that it is dominated by
all solutions in R. The dominated volume of a solution Xi with respect to the reference
point r = [r1,r2, . . . ,rM]T is given by:


V (Xi,r) =
M


∏
m=1


(rm− fm(Xi)) (12)


To establish the dominance relationship of two solutions Xi and X j, we need to
compare their dominated volumes to the shared dominated volume (SV ), i.e., the vol-
ume dominated by both solutions. The SV is defined as follows:


SV (Xi,X j,r) =
M


∏
i=1


(ri−max( fm(Xi), fm(X j))) (13)


It is said that Xi volume-dominates X j (Xi ≺V X j) for a ratio rSV if either (14) or
(15) holds.


V (X j,r) = SV (Xi,X j,r) ∧ V (Xi,r) > SV (Xi,X j,r) (14)


V (Xi,r) > V (X j,r) > SV (Xi,X j,r) ∧
V (Xi,r)−V (X j,r)


SV (Xi,X j,r)
> rSV (15)


A small rSV indicates that a small difference between the dominated volumes of
two solutions is enough to establish preferences between them. The authors suggested


4 In [8] the term (1− k)-dominates is used, but for simplicity we will use k-dominates instead.







us that a value in the range [0.05, 0.15] is reasonable for rSV ; we will use rSV = 0.1. In
our experimental study we will apply this method to the normalized objectives within
the range [0,1] (see details in Section 3) and thus, the reference point could be any point
r such that rm > 1. We’ll use r = 1.1M for this study.


Contraction/Expansion of Dominance Area (CE). Sato et al. [17] proposed a method
to strengthen or weaken the selection process by expanding or contracting the solutions’
dominance area. The fitness value of a solution Xi for each objective function is modi-
fied as follows:


f ′m(Xi) =
r · sin(ωm +Sm ·π)


sin(Sm ·π)
∀m ∈ {1,2, . . . ,M} (16)


where r is the norm of vector F(Xi) and ωm is the declination angle between F(Xi)
and fm(Xi), which can be calculated as ωm = fm(Xi)/r. Sm is a user defined parameter
which allows to control the dominance area of Xi for the m-th dimension. The possible
values for Sm lie in the range [0.25,0.75]. If Sm = 0.5, then f ′m(Xi) = fm(Xi). Otherwise,
if Sm > 0.5 the dominated area is contracted, producing a coarser ranking of solutions
and would weaken the selection process. On the other hand, Sm < 0.5 expands the domi-
nance area and would strengthen the selection by producing a more fine grained ranking
of solutions. It is clear that for many-objective problems, we are interested in expand-
ing the dominance area of solutions in order to achieve a richer ordering of preferences
among them. For this study we adopted the value Sm = 0.25 for all m ∈ {1,2, . . . ,M}.


Parameter-less approaches


Unlike the above methods, the operation of the approaches described in this section
does not depend on any parameters’ fine-tuning, which expands their applicability and
facilitates their understanding and implementation.


L-dominance (LD). This dominance relation was proposed by Zou et al. [19]. Similar
to the KD relation, LD considers functions nb (8), ne (9) and nw (10), which count the
number of objectives in which a solution Xi is respectively better, equal and worse than
another solution X j. According to LD, we can say that Xi L-dominates X j (Xi ≺L X j)
if and only if:


nb−nw = L > 0 ∧ ‖f(Xi)‖p < ‖f(X j)‖p (for certain p) (17)


where ‖F(Xi)‖p is the p-norm of a solution Xi. The value p = 1 is used in this study.


Favour Relation (FD). In this alternative dominance relation, proposed by Drechsler
et al. [6], a solution Xi is said to dominate another solution X j (Xi ≺ f X j) if and only
if:


|{m : fm(Xi) < fm(X j)}|> |{n : fn(X j) < fn(Xi)}| for m,n ∈ {1,2, . . . ,M} (18)


Since FD is not a transitive relation (consider solutions Xi=(8,7,1), X j=(1,9,6) and
Xk=(7,0,9); it is clear that Xi ≺ f X j ≺ f Xk ≺ f Xi), authors proposed to rank solutions as







follows: to use a graph representation for the relation, where each solution is a node and
the preferences are given by edges, in order to identify the Strongly Connected Compo-
nents (SCC). A SCC groups all elements which are not comparable to each other (as the
cycle of solutions in the above example). A new cycle-free graph is constructed using
the obtained SCCs, such that it would be possible to establish an order by assigning the
same rank to all solutions that belong to the same SCC.


Preference order ranking (PO). di Pierro et al. proposed an strategy that ranks a pop-
ulation according to the order of efficiency of solutions [5]. An individual Xi is con-
sidered efficient of order k if it is not Pareto-dominated by any other individual for any
of the


(M
k


)
subspaces where are considered only k objectives at a time. Efficiency of


order M for a MOP with exactly M objectives simply corresponds to the original Pareto
optimality definition.


If Xi is efficient of order k, then it is efficient of order k + 1. Analogously, if Xi is
not efficient of order k, then it is not efficient of order k−1. Given these properties, the
order of efficiency of a solution Xi is the minimum k value for which Xi is efficient.
Formally:


order(Xi) =
M


min
k=1


(k : isE f f icient(Xi,k)) (19)


where isE f f icient(Xi,k) is to be true if Xi is efficient of order k. The order or efficiency
can be used to rank solutions. The smaller the order of efficiency an individual has, the
better this is.


In [5] it is proposed to use this strategy in combination with a PD-based ranking
procedure, in such a way that the order of efficiency can be used to discriminate among
solutions classified with the same rank according to PD. However, since it is known
that for many-objective problems the whole population rapidly becomes nondominated
(all solutions share the same rank), in this study we rank solutions by using the order of
efficiency alone.


3 Experimental results


The different ranking methods described in Section 2 were incorporated into a generic
MOEA in order to investigate their convergence ability as the number of objectives
increases. Figure 2 describes the implemented MOEA’s workflow. Initially, a parent
population of N individuals is randomly generated. Then, this population is ranked and
selection is performed in order to identify those individuals which are to be reproduced.
A children population of N new individuals is generated by applying variator operators
over the selected individuals. Finally, parent and children populations are combined
and ranked in order to select the N best individuals to survive and form the new parent
population (elitist MOEA [2]). The ranking step (which is remarked in Figure 2) is
where the different studied approaches were incorporated.


The implemented operators are: binary tournament selection based on the rank of
solutions. Simulated binary crossover (ηc = 15) with probability of 1. Polynomial mu-
tation (ηm = 20) with probability of 1/n, where n is the number of decision variables.
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Fig. 2: Generic MOEA’s workflow.


We used a population of N = 100 individuals and 300 generations for all experiments.
In order to avoid alterations in the behavior of the studied methods, we did not use any
additional mechanism to maintain diversity in the population.


The different studied approaches were applied to the normalized objective values:
f ′m(Xi) = fm(Xi)−GMINm


GMAXm−GMINm
for m = 1,2, ...,M, where GMAXm and GMINm are the maxi-


mum and minimum known values for the m-th objective. Since we know a priori that
for the adopted set of test problems GMINm = 0, we simply normalized the objectives
as follows: f ′m(Xi) = fm(Xi)


GMAXm
for m = 1,2, ...,M.


Problems DTLZ1 and DTLZ6 [4] were selected for our experimental study. These
test functions can be scaled to any number of objectives and decision variables. The
total number of variables in these problems is n = M + k− 1, where M is the number
of objectives. k is a difficulty parameter and was set to k = 5 for DTLZ1 and k = 10 for
DTLZ6. In this study, we consider instances with M = {5,10,15,20,30,50} objectives.
However, since PO becomes computationally expensive as the number of objectives
increases, we only applied it for instances with up to 20 objectives.


As a convergence measure, the average distance of Pareto-nondominated solutions
in the approximation set obtained by the MOEA from the Pareto front was computed
[3]. Since equations defining the Pareto front are known for the test problems adopted,
the convergence measure was analytically determined (without using any reference set)
[12, 18].


Tables 1 and 2 show the obtained results when the different methods were applied to
problems DTLZ1 and DTLZ6, respectively. These tables show the average and standard
deviation of the convergence measure for 31 independent trails of each experiment.


Table 1: Average and standard deviation of the achieved convergence in 31 runs for DTLZ1.


5 Obj. 10 Obj. 15 Obj. 20 Obj. 30 Obj. 50 Obj.
PD 1.363 ± 1.072 17.94 ± 14.67 6.740 ± 7.553 6.615 ± 7.254 5.687 ± 5.448 2.845 ± 2.301
AR 0.000 ± 0.000 0.000 ± 0.000 0.005 ± 0.023 0.019 ± 0.041 0.110 ± 0.117 0.378 ± 0.281
MR 45.40 ± 22.77 32.37 ± 12.13 26.62 ± 10.22 29.89 ± 12.32 18.92 ± 10.37 15.83 ± 8.824
AD 0.002 ± 0.002 0.001 ± 0.002 0.007 ± 0.024 0.005 ± 0.020 0.013 ± 0.031 0.091 ± 0.074
KD 0.000 ± 0.000 0.025 ± 0.134 0.022 ± 0.047 0.033 ± 0.058 0.128 ± 0.107 0.480 ± 0.329
VD 0.582 ± 0.355 0.464 ± 0.468 0.515 ± 0.384 0.400 ± 0.415 0.388 ± 0.374 0.323 ± 0.234
CE 0.002 ± 0.001 0.002 ± 0.001 0.002 ± 0.002 0.002 ± 0.001 0.008 ± 0.022 0.032 ± 0.059
LD 0.000 ± 0.000 0.000 ± 0.000 0.004 ± 0.023 0.004 ± 0.020 0.006 ± 0.023 0.030 ± 0.035
FD 0.001 ± 0.001 0.047 ± 0.151 0.121 ± 0.237 0.277 ± 0.492 0.829 ± 1.131 2.859 ± 3.330
PO 0.750 ± 0.691 1.879 ± 4.646 1.121 ± 1.302 0.853 ± 0.816 - -







From Table 1 we can highlight that, for DTLZ1, LD, CE and AD showed the best
convergence ability as the number of objectives increases, whereas MR obtained the
worst average convergence for all instances of this problem.


Table 2: Average and standard deviation of the achieved convergence in 31 runs for DTLZ6.


5 Obj. 10 Obj. 15 Obj. 20 Obj. 30 Obj. 50 Obj.
PD 6.525 ± 0.402 8.485 ± 0.350 8.584 ± 0.353 8.646 ± 0.352 8.783 ± 0.467 8.870 ± 0.285
AR 0.150 ± 0.044 10.00 ± 0.000 10.00 ± 0.000 10.00 ± 0.000 10.00 ± 0.000 10.00 ± 0.000
MR 8.607 ± 0.349 9.543 ± 0.233 9.820 ± 0.155 9.828 ± 0.096 9.887 ± 0.057 9.874 ± 0.050
AD 0.074 ± 0.028 0.553 ± 0.069 0.677 ± 0.109 0.659 ± 0.091 0.706 ± 0.093 0.679 ± 0.081
KD 0.063 ± 0.032 10.00 ± 0.000 10.00 ± 0.000 10.00 ± 0.000 10.00 ± 0.000 10.00 ± 0.000
VD 0.106 ± 0.035 0.102 ± 0.038 0.152 ± 0.089 0.213 ± 0.140 0.447 ± 0.313 0.634 ± 0.371
CE 0.081 ± 0.029 0.089 ± 0.030 0.080 ± 0.027 0.089 ± 0.030 0.094 ± 0.032 0.091 ± 0.028
LD 0.079 ± 0.029 7.416 ± 0.237 7.149 ± 0.319 7.105 ± 0.338 6.744 ± 0.326 6.218 ± 0.354
FD 5.377 ± 2.361 9.902 ± 0.135 9.515 ± 0.166 9.864 ± 0.096 9.742 ± 0.106 9.641 ± 0.112
PO 5.836 ± 0.644 9.847 ± 0.106 9.968 ± 0.041 9.994 ± 0.007 - -


Problem DTLZ6 (Table 2) imposes higher convergence difficulties for most of the
studied approaches. On the one hand, CE was the only method which achieved relatively
low values for the convergence measure in all the instances of this problem. On the other
hand, AR and KD seem to be the most affected methods by the DTLZ6’s difficulties,
since these obtained the worst performance in almost all instances.


Results confirm that Pareto dominance is not able to effectively guide the search
in many-objective scenarios. However, the achieved convergence of MR is even worse
than that of PR in all cases. In our opinion, this is because MR tends to favor extreme
solutions, i.e., it prefers solutions with the best performance for some objectives but
without taking into account their assessment in the rest of the objectives. With the aim
of clarifying this point, we present the following example. If in a 20-objective MOP, Xi
is the solution with the best performance with respect to the first objective, but it is the
worst solution for the remainder 19 objectives, Xi would be classified with the best rank
by MR. We consider MR as the worst of the studied alternatives.


In general, according to our experimental observations, MR, PD, PO and FR are the
four methods with the worst performance. On the other hand, results suggest that CE
provides the best convergence properties and the most stable behavior as the number of
objectives increases.


Additionally, we investigated the convergence speed achieved by the MOEA when
using the different ranking schemes of our interest. Figures 3 and 4 show for DTLZ1
and DTLZ6, respectively, the average convergence of 31 runs as the search progresses.
Due to space limitations, we only show results for the 20-objective instances, since 20
is the maximum number of objectives for which we performed experiments for all the
studied methods. The data shown in Figures 3 and 4 was plotted in logarithmic scale,
in order to highlight the differences in the results obtained using each method.


Figure 3 shows that CE, LD and AD performed the best for problem DTLZ1. We
can clearly see that these three methods had an accelerated convergence, since during
the first 50 generations they reached relatively low values for the convergence measure.
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Fig. 3: Convergence at different search stages for DTLZ1 problem with 20 objectives.
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Fig. 4: Convergence at different search stages for DTLZ6 problem with 20 objectives.


Regarding the DTLZ6 problem, Figure 4 shows that, as stated before, most of the
studied alternatives did not achieve good convergence results. CE, VD and AD (in this
order) showed the best convergence properties and a high convergence speed during the
first 130 generations.


4 Conclusions and Future Work


Since the performance of Pareto-based MOEAs deteriorates as the number of objec-
tives increases, it is necessary to identify alternative approaches to establish preferences
among solutions in many-objective scenarios. In this paper, we performed a compara-
tive study of some state-of-the-art approaches of this sort in order to investigate their
ability to guide the search process in high dimensional objective spaces.


Due to space limitations we only considered two test cases. However, it is of our
interest to extend these experiments to a larger set of test functions as well as to adopt
real-world many-objective problems in order to generalize our results.







Since the performance of some of the studied approaches depends of a proper pa-
rameters’ fine-tuning, as part of our future work we want to investigate the influence of
the parameter’s settings on the behavior of such approaches.


In this paper we focused on the convergence properties of different ranking schemes.
However, an important issue of MOEAs is to converge to a set of well-spread solutions.
Therefore, we also want to extend our experiments in order to study the distribution of
the approximation set achieved by each of the studied methods.
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