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Abstract. Generating Pareto Front Approximations with good conver-
gence, uniformity, and spread regardless of the geometry of the Pareto
Front remains as an open problem. Many Multi-Objective Evolutionary
Algorithms (MOEAs) have been proposed for this aim achieving remark-
able results. However, the utilization of Swarm Intelligence algorithms
such as Multi-Objective Ant Colony Optimization Algorithms (MOA-
COs) has been scarcely studied. In this paper, we propose a Geometric-
Invariant MOACOR (GI-MOACOR) designed to tackle multi-objective
optimization problems with a continuous decision space. According to
our experimental results, GI-MOACOR outperforms the existing MOA-
COs for continuous search spaces and it is competitive with respect to
state-of-the-art MOEAs on several test suites with regular and irreg-
ular Pareto Front geometries. To the best of the author’s knowledge,
GI-MOACOR is the first Pareto-Front-Shape invariant MOACO.

Keywords: Multi-Objective Ant Colony Optimization, Pareto Front
Shape Invariance, Continuous Decision Space, Pair-Potential Energy

1 Introduction

A Pareto Front (PF) is the image of the solution to a Multi-Objective Optimiza-
tion Problem (MOP). A PF is a manifold of dimension at most m−1 that repre-
sents the trade-offs among them ≥ 2 conflicting objectives fi : Ω ⊆ Rn → R [22].
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sejo Nacional de Humanidades, Ciencias y Tecnoloǵıas (CONAHCYT) to pursue
graduate studies under the CVU number 1238924. Carlos A. Coello Coello is a
member of the Faculty of Excellence at the School of Engineering and Sciences of
Tecnologico de Monterrey as part of a sabbatical leave.
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In benchmark problems and real-world applications, the geometric characteris-
tics of a PF may drastically change. In other words, a PF could be convex, linear,
concave, disconnected, degenerate, or mixed. Hence, Multi-Objective Evolution-
ary Algorithms (MOEAs), which are metaheuristic methods to approximate the
solution to a MOP, should be capable of generating an accurate and finite repre-
sentation of a PF, regardless of its geometry [2]. However, Ishibuchi et al. pointed
out that the performance of some MOEAs depends on the PF geometry [16].

In recent years, two main design strategies have been proposed to alleviate the
performance dependence of MOEAs. On the one hand, MOEAs with adaptive
reference point sets transform a set of objective vectors throughout the evolution-
ary process, aiming to generate a Pareto Front Approximation (PFA) that prop-
erly represents the PF [19–21, 24]. On the other hand, Multi-Indicator MOEAs
leverage the strengths of multiple Quality Indicators3 (QIs) to construct selec-
tion mechanisms that increase the selection pressure towards the PF, exhibiting
a specific distribution of points [10, 11, 14, 17]. All these MOEAs have shown
promising results when tackling MOPs with different PF shapes [15,16,26]. How-
ever, Swarm Intelligence metaheuristics, such as Multi-Objective Ant Colony
Optimization algorithms (MOACOs) [12], have been scarcely studied with the
aim of a PF shape invariance behavior.

MOACOR [13] and the Indicator-based MOACOR (iMOACOR) [7] were pro-
posed to tackle MOPs with a continuous decision space. They have obtained
competitive results against MOEAs at tackling MOPs with degenerate and dis-
connected PF shapes [7, 13]. Hence, there may be specific MOPs where MOA-
COs can potentially discover and exploit complex relations among the variables
that are difficult to MOEAs [7, 13]. It is worth noting that both algorithms
use the mechanisms of ACOR to explore the decision space and to create new
solutions [23]. Furthermore, MOACOR and iMOACOR use an archive with k
decision vectors as a pheromone matrix to model the decision space using n
Gaussian-kernel Probability Density Functions (GKPDFs). Both MOACOs dif-
fer in the selection mechanisms adopted to update the pheromone matrix. On
the one hand, MOACOR uses the selection mechanisms of NSGA-II, thus, it loses
selection pressure in high-dimensional objective spaces [3]. On the other hand,
iMOACOR replaces the selection operators of NSGA-II by a survival selection
mechanism based on the R2 indicator [1, 14]. Unlike MOACOR, iMOACOR can
solve MOPs with more than three objectives and it generates uniform PFAs if
the geometry of the PF is correlated with an m-dimensional simplex. Thus, the
performance of iMOACOR depends on the PF shape.

In addition to the issues mentioned above of MOACOR and iMOACOR, the
use of ACOR raises other problems. ACOR shows a strong dependence on a
parameter ξ > 0 that controls the evaporation of the pheromones and, thus,
the convergence behavior. As a result, ACOR has shown an extremely poor
performance on multi-modal single-objective optimization problems. However, if
ξ could take large values without reducing its convergence capability, solutions

3 A unary Quality Indicator is a set function that assigns a real value to a PFA
depending on its degree of proximity to the PF, spread, or uniformity [18].
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with high diversity would be reached. Addressing these issues would enhance the
performance of ACOR and, possibly, that of MOACOR and iMOACOR.

In this paper, we enhance ACOR to improve its exploration capabilities.
Then, we propose the Geometric-Invariant MOACOR that uses the enhanced
ACOR and a diversity-preserving mechanism based on pair-potential energy [6]
to deal with MOPs regardless of their PF geometry. We tested GI-MOACOR
on several test suites with regular and irregular PF shapes on multiple QIs.
Our experimental results indicate that GI-MOACOR outperforms MOACOR and
iMOACOR, and it is competitive with state-of-the-art MOEAs designed to tackle
MOPs with regular and irregular PF geometries. Thus, to the authors’ best
knowledge, GI-MOACOR is the first PF-shape-invariant MOACO, highlighting
that this work shows that Swarm Intelligence-based algorithms can have this
property.

The structure of this paper is organized as follows. Section 2 presents the
background to make the paper self-contained. Section 3 outlines our proposed GI-
MOACOR. Section 4 describes our experimental settings and Section 5 discusses
the results. Finally, Section 6 provides our main conclusions as well as some
possible paths for future research.

2 Background

In this section, we first describe ACOR which is the search engine of GI-MOACOR.
Then, we defined a MOP and some terms important in Multi-Objective Opti-
mization. Finally, we briefly introduce Pair-Potential Energy.

2.1 ACOR

ACOR is an ACO for continuous search spaces proposed in 2008 [23]. A dis-
tinctive characteristic of ACOR is the utilization of a pheromone matrix T that
stores the best k solutions sorted in ascending order by the objective function.
Hence, each solution x⃗l ∈ T has a rank l according to its position in the order-
ing. For each dimension i = 1, . . . , n of Ω, where Ω ⊆ Rn is the decision space4,
ACOR models the promising search region with a Gaussian-kernel Probability
Density Function (Gi(z)), using the solutions in T . Thus, the promising region

is defined as Gi(z) =
∑k

l=1 wlg
i
l(z, µ

i
l, σ

i
l), where wl ≥ 0 is a weight factor and

gil(z, µ
i
l, σ

i
l) is a Gaussian function with mean µi

l = xli (the ith decision variable
of x⃗l) and the standard deviation σi

l is defined as follows:

σi
l = ξ

k∑
r=1

|xri − xli|
k − 1

, (1)

where ξ ≥ 0, known as evaporation rate, is a user-defined parameter that controls
convergence. Small values of ξ increase the convergence behavior of ACOR. To

4 Ω = [l1, u1] × [l2, u2] × · · · × [ln, un], where li and ui define the lower and upper
bounds, respectively, of the ith decision variable.
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generate a new candidate solution (x⃗new), each antj ∈ C = {ant1, . . . , antM} first
selects a guiding pheromone x⃗l ∈ T with probability pl. Then, antj samples all
Gi

l(z), i = 1, . . . , n to construct a new candidate solution. The probability pl of
selecting x⃗l is directly proportional to its weight wl that is defined as follows:

wl =
1

qk
√
2π

· e−
(l−1)2

2q2k2 , (2)

where q ≥ 0 is a user-defined parameter that controls the diversification process
of the search, where large values of q promote a higher degree of elitism.

2.2 Multi-Objective Optimization

In this paper, we solve unconstrained MOPs5 assuming, without loss of gener-
ality, the minimization of all the objectives:

min
x⃗∈Ω

{
f(x⃗) := [f1(x⃗), f2(x⃗), ..., fm(x⃗)]T

}
, (3)

where x⃗ = [x1, x2, ..., xn]
T is an n-dimensional decision vector and Λ = f(Ω) ⊆

Rm is the objective space. f : Ω → Λ is a vector-valued function based onm(≥ 2)
objectives fi : Ω → R, i = 1, 2, . . . ,m. In MOPs, the definition of optimality is
commonly based on the Pareto dominance relation. Given x⃗, y⃗ ∈ Ω, we say that
x⃗ dominates y⃗ (denoted as x⃗ ≺ y⃗) if ∀i = 1, 2, . . . ,m, fi(x⃗) ≤ fi(y⃗) and there
exists at least an index j ∈ {1, 2 . . . ,m} such that fj(x⃗ < fj(y⃗). Then, x⃗∗ ∈ Ω
is Pareto optimal if there is no other x⃗ ∈ Ω such that x⃗ ≺ x⃗∗. The solution to
a MOP is the Pareto Set PS = {x⃗∗ ∈ Ω | x⃗∗ is Pareto optimal} and its image
f(PS) is the Pareto Front. A PFA is a set of solutions that approximate a PF
where the solutions are mutually non-dominated, i.e., given x⃗, y⃗ ∈ A, x⃗ ̸≺ y⃗ and
y⃗ ̸≺ x⃗.

2.3 Potential Energy

A Pair-Potential Energy function (PPF), denoted as K, measures the interaction
between particles at positions u⃗, v⃗ ∈ Rm. In physics, there is a wide range of
PPFs but just a few of them have been utilized in EMOO [8]. Two representative

PPFs are the Coulomb’s law KCOU(u⃗, v⃗) = q1q2
4πϵ0

· ∥u⃗− v⃗∥−2, where 1
4πϵ0

is the

Coulomb’s constant, being ϵ0 ≈ 8.8542 × 10−12[F/m] the vacuum permittivity,
and the Riesz s-kernel, KRSE(u⃗, v⃗) = ∥u⃗− v⃗∥−s, where s > 0. In the context
of EMOO, Falcón-Cardona et al. [8] proposed to set q1 = ∥u⃗∥ and q2 = ∥v⃗∥.
Given K : Rm × Rm → R, the total potential energy (U) of an N -point set
A = {a⃗1, a⃗2, . . . , a⃗N}, with N ≥ 2, where the lower the U of A the higher the
diversity of the set [8], is given by:

5 In the Evolutionary Multi-Objective Optimization (EMOO) community, the term
Many-Objective Optimization Problem (MaOP) is used to denote problems having
more than three objectives.
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UK(A) =

N∑
i=1

N∑
j=i
j ̸=i

K(⃗ai, a⃗j). (4)

In recent years, U has been used in MOEAs to increase the diversity of
PFAs, regardless of the PF geometry. MOEAs use selection mechanisms based
on heuristic algorithms to approximate A∗ = argmin A⊂S

|A|=N
U(A), where N <<

|S|. These selection mechanisms have been used as pruning policies in external
archives [9], density estimators [14], and for the generation of reference point
sets [6]. Mainly, these selection mechanisms are based on a fast greedy removal
algorithm that iteratively deletes from S the point a⃗worst = argmaxa⃗∈S ∆(S, a⃗),
where ∆(S, a⃗) = U(S)− U(S \ {a⃗}) is the so-called contribution to U [6].

3 Our Proposal: GI-MOACOR

This section describes our proposed GI-MOACOR, which aims to tackle regular
and irregular MOPs. GI-MOACOR utilizes an enhanced version of ACOR that
solves the dependency to ξ and the lack of diversification when selecting solutions
from the pheromone matrix. GI-MOACOR also employs a PPF-based selection
mechanism to promote diversity regardless of the PF geometry by performing a
subset selection on T . In the following sections, we describe three mechanisms
(namely, Classification, Construction, and Diversification) to improve the
performance of ACOR. Finally, we introduce our proposed GI-MOACOR.

Algorithm 1 Classification
Input: T : Pheromone matrix; σ: Deviation threshold
Output: CHOICES, STAGNATED.
1: CHOICES, STAGNATED← ∅, ∅
2: for i = 1 to n do
3: σ′

xi
← Standard-deviation(T , i)

4: σ′
xi
← (σ′

xi
− li)/(ui − li)

5: if σ′
xi

> σ then

6: CHOICES← CHOICES ∪ {i}
7: else
8: STAGNATED← STAGNATED ∪ {i}
9: end if
10: end for
11: return CHOICES, STAGNATED

3.1 Detection of Stagnated Variables

In ACOR, each antj ∈ C selects a guiding pheromone x⃗l ∈ T to generate a new
candidate solution (x⃗new) by sampling gil(z), i = 1 . . . , n. The sampling is done
without dispersion information of each dimension in the pheromone matrix. For
some problems, especially multi-modal ones, pheromones in T may converge to
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a single solution. Consequently, σi
l ≈ 0 for all l = 1, . . . , k and i = 1, . . . , n

which causes a lack of exploration. To improve the exploration ability of ACOR,
we propose a mechanism (see Algorithm 1) to classify the decision variables
in T into stagnated or not. This mechanism requires a threshold σ ∈ (0, 1)
that indicates the minimum permissible deviation value. Line 1 initializes the
sets CHOICES and STAGNATED. For each dimension i, we calculate the standard
deviation (σxi

) of the ith decision variable in T and we normalize it using the
lower and upper bounds, li and ui, respectively, of this decision variable. In case
that σ′xi

≥ σ, the dimension i is assigned to CHOICES, otherwise i is assigned
to STAGNATED. Hence, STAGNATED will contain the stagnated decision variables
and CHOICES the rest. The smaller the value of σ, the stricter is the constraint
to consider a variable as stagnated. According to our experimental observations,
well-spread values have 0.2 ≤ σ′xi

≤ 0.4. Hence, we recommend setting σ ≤ 0.15,
as larger values might prematurely assign non-stagnated decision variables to
set STAGNATED, compromising convergence.

3.2 Constructing New Candidate Solutions

To improve the exploration and exploitation ability of our approach, we propose
here a new method to construct a candidate solution x⃗new ∈ Ω. To this aim, antj
needs to provide as input a guiding pheromone x⃗l. In contrast to the original
ACOR where an ant samples each gil(z, µ

i
l, σ

i
l), in our proposal only n decision

variables from CHOICES are selected to construct x⃗new. Algorithm 2 sets the
value of n by iteratively calculating n = min(n,∼ UN[1, |CHOICES|]), where ∼
UN[1, |CHOICES|] generates a random natural number in the range [1, |CHOICES|.
Then, in line 5, n random and distinct variables from CHOICES are assigned
to I. To construct x⃗new ∈ Ω, the Gaussian kernels associated with each i ∈
I are sampled. The remaining variables6 are copied directly from the guiding
pheromone x⃗l. It is worth emphasizing that modifying fewer decision variables
allows the use of larger values of ξ. As a result, it maintains convergence while
increasing diversity. In consequence, this reduces the dependency of ACOR to ξ.

Algorithm 2 Construction
Input: x⃗l: Guiding pheromone; ξ: Evaporation rate; q: Diversification rate; CHOICES: Set of non-

stagnated variables
Output: x⃗new.
1: n← n
2: for objective j = 1 to m do
3: n← min(n, ∼ UN[1, |CHOICES|])
4: end for
5: I ← Randomly select n distinct variables from CHOICES
6: Calculate σi

l using ξ and q

7: xnew,i ← Sample gi
l (z, µ

i
l , σ

i
l ), ∀i ∈ I

8: xnew,i ← xli, ∀i ∈ {1, 2, . . . , n} \ I
9: return x⃗new

6 Note that each antj ∈ C might modify a different number n of decision variables.
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Algorithm 3 Diversification
Input: K: PPF;M: External archive; T : Pheromone matrix; α: Percentage of pheromone replace-

ment; STAGNATED: Set of stagnated decision variables
Output: T : Updated pheromone matrix
1: k ← |T |
2: if |M| > k then

3: T ← UK-Based Selection Mechanism(M,K, k)
4: else
5: N ← Randomly select k − |M| guiding pheromones x⃗ ∈ M
6: T ←M∪N
7: end if
8: i← Select a random decision variable from STAGNATED
9: Randomly permute the pheromones of T
10: for j = 1 to ⌈k × α⌉ do
11: Tji ←∼ UR[li, ui]
12: end for
13: return T

3.3 Avoiding Stagnation of Decision Variables

The original ACOR suffers from stagnation because the best solutions are stored
in the pheromone matrix. When the solutions in T are similar, σi

l ≈ 0 (see
Eq. (1)) for all l = 1, . . . , k and i = 1, . . . , n. In consequence, an ant cannot
explore more regions of Ω. Algorithm 3 avoids stagnation by increasing the di-
versity of solutions in T , using an external archive M. First, if M has more than
k = |T | solutions, the content of T is replaced by a subset of k solutions from
M using a PPF-based subset selection as in [6]. Otherwise, k − |M| solutions
are randomly selected from M to be inserted in T . Lines 8 and 9 randomly
permute the pheromones of T and randomly select a decision variable i from
STAGNATED. Finally, ⌈k×α⌉ solutions ∈ T are perturbed by assigning a random
real number ∼ UR[li, ui] to the ith component of the solutions. Thus, this injec-
tion of randomness aims to increase the exploration ability and diversification
of ACOR. As a result, the ith component of T will be added to the set CHOICES
by Algorithm 1.

3.4 GI-MOACOR

Algorithm 4 outlines the main loop of GI-MOACOR, which uses a bounded
external archive M of maximum size 3µ to store non-dominated solutions found
during the search process. The size of the set M is limited because larger sizes
require more computational and time resources to update, with a complexity of
O(|M|2) [3]. Additionally, previous experimentation has shown that performance
is not compromised once the size reaches 3µ. In case that M has more than 3µ
solutions, we apply a UK-based subset selection using the algorithm provided
in [6]. Lines 7 to 24 sketch the main loop of GI-MOACOR. First, Algorithm 1
classifies the decision variables into CHOICES and STAGNATED. Then, each antj ∈
C, j = 1, . . . , k generates a new candidate solution using Algorithm 2, adding
it to T . In line 14, M and T are joined and, then, T is sorted with the Non-
Dominated Sorting Algorithm [3] and pruned if necessary. In line 17, we ensure
that M has at most 3µ solutions. Since applying Algorithm 3 at each iteration
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Algorithm 4 GI-MOACOR
Input: ξ0: Initial evaporation rate; q: Diversification rate; µ: Approximation size; σ: Deviation

threshold; α: Percentage of pheromone replacement; Tw: Replacement time window; K: PPF
Output: M: Pareto front approximation
1: k ← ⌈µ/4⌉
2: Randomly initialize pheromone matrix T of size k
3: Initialize external archiveM with non-dominated solutions from T
4: Mmax ← 3µ
5: T ← UK-Based Selection Mechanism (T ,K, k)
6: g, ξ ← 0, ξ0
7: while termination condition is not fulfilled do
8: CHOICES, STAGNATED← Classification (T , σ)
9: for j = 1 to k do
10: antj selects a guiding pheromone x⃗l ∈ T
11: x⃗new ← Construction (x⃗l, ξ, q, CHOICES)
12: T ← T ∪ {x⃗l}
13: end for
14: M←M ∪ T
15: T ← Non-Dominated Sorting(T )

16: T ← UK-Based Selection Mechanism (T ,K, k)
17: PruneM if |M| >Mmax

18: if g mod Tw == 0 and |STAGNATED| > 0 then
19: T ← Diversification (K,M, T , α, STAGNATED)
20: end if
21: if 80% of process is completed then
22: ξ ← ξ0/2
23: end if
24: g ← g + 1
25: end while
26: M← UK-Based Selection Mechanism (M,K, µ)
27: returnM

may produce a lack of convergence, we execute it every Tw iterations only if
|STAGNATED| > 0. Finally, ξ is updated if 80% of the search process has been
completed to encourage an exploitation behavior. GI-MOACOR returns a subset
of µ solutions from M using the UK-based subset selection.

4 Experimental Settings

This section is devoted to test the performance of GI-MOACOR
7. We compared

our proposal against MOACOR [13] and iMOACOR
8 [7], and five state-of-the-art

MOEAs9 (designed to tackle both regular and irregular PF shapes): AdaW [19],
AR-MOEA [24], SPEA2+SDE [17], RVEA-iGNG [20], and Two Arch2 [28]. We
performed 30 independent executions of each algorithm per test instance.

4.1 Benchmark Problems

We adopted the test suites Deb-Thiele-Laumanns-Zitzler (DTLZ) [4], Walking-
Fish-Group (WFG) [15], their inverted versions DTLZ−1 and WFG−1 [16], re-

7 The source code of GI-MOACOR is available at https://github.com/

Humberto-Tamayo/GI-MOACOR.git.
8 MOACOR and iMOACOR were coded in Python 3.10.12. Their source code is avail-
able at https://github.com/Humberto-Tamayo/MOACOR-iMOACOR.git.

9 We used the implementations from the PlatEMO platform [25].
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Table 1. Characteristics of the PF geometries of the selected MOPs and the reference
point for the HV calculation.

MOP PF geometry Simplex-like Reference point (HV)

DTLZ1 Triangular (linear) Yes (1, . . . , 1)

DTLZ2 - DTLZ4 Concave Yes (2, . . . , 2)

DTLZ5 & DTLZ6

Concave (m = 2)

Degenerate (m = 3)

Unknown (m > 3)

Yes

No

No

(2, . . . , 2)

DTLZ7 Disconnected No (1, . . . , 1, 21)

DTLZ1−1 Inverted triangular No (1, . . . , 1)

DTLZ2−1 - DTLZ6−1 Convex No (1, . . . , 1)

DTLZ7−1 Disconnected No (0.1, . . . , 0.1,−10)

WFG1 Mixed Yes (3, 5, 7, . . . , 2m + 1)

WFG2 Disconnected Yes (3, 5, 7, . . . , 2m + 1)

WFG3
Linear (m = 2)

Degenerate (m ≥ 3)

Yes

No
(3, 5, 7, . . . , 2m + 1)

WFG4 - WFG9 Concave Yes (3, 5, 7, . . . , 2m + 1)

WFG1−1 Mixed No (1, . . . , 1)

WFG2−1, WFG4−1 - WFG9−1 Convex No (1, . . . , 1)

WFG3−1 Inverted triangular No (1, . . . , 1)

VIE1 Convex No (4, 5, 4)

VIE2 Mixed No (5,−15,−11)

VIE3 Mixed No (10, 18, 1)

IMOP1 Convex Yes (1.2, 1.2)

IMOP2 Concave Yes (1.2, 1.2)

IMOP3 Disconnected No (1.5, 1.2)

IMOP4 Degenerate No (1.2, 1.2, 1.2)

IMOP5 Disconnected No (1, 1, 2)

IMOP6 Degenerate No (1.2, 1.2, 1.2)

IMOP7 Concave No (1.2, 1.2, 1.2)

IMOP8 Degenerate No (1.2, 1.2, 3.2)

spectively, with 2, 3, 5, and 7 objectives. Additionally, we employed the Irregular
MOPs (IMOP) [26] and the Viennet problems (VIE) [27]. We selected these test
suites because they cover a wide range of PF geometries and search difficulties.

Table 1 presents the main characteristics of the PF geometries of the selected
MOPs, indicating if the geometry correlates with the simplex shape. For DTLZ
and DTLZ−1 problems, the number of variables was set to n = m+K−1, where
m denotes the number of objectives, K = 5 for DTLZ1, K = 10 for DTLZ2-
DTLZ6, and K = 20 for DTLZ7. The inverted versions share the same values of
K. Regarding WFG problems, we set the tuples (n,m, kposition), where kposition
is the number of position-related parameters, to (24, 2, 4), (26, 3, 4), (30, 5, 8),
and (34, 7, 12). For the IMOP test suite, the parameters K,L, a1, a2, and a3 are
set to 5, 5, 0.05, 0.05, and 10 as indicated by its authors [26].

4.2 Parameter Settings

For a fair comparison, all the algorithms use the same population size (µ) and
they consume the same number of function evaluations (FEmax). Hence, we
set (µ,m,FEmax) to (120, 2, 40× 103), (120, 3, 50× 103), (126, 5, 70× 103), and



10 R. H. Tamayo et al.

(210, 7, 90× 103). These values are selected as they are standard values utilized
in the EMOO literature [5]. Regarding GI-MOACOR, the parameters ξ0, q, σ, α,
and Tw, are set to 1.8, 0.5, 0.1, 0.5, and 4, respectively. The selection of values
is based on previous experimentation. Additionally, K is set to KCOU for all the
processes to ensure convergence and diversity as suggested by Falcón-Cardona
et al. [6], except on Algorithm 3, where is set to KRSE to take advantage of its
theoretical properties. In MOACOR and iMOACOR the parameters q and ξ are
set to 0.1 and 0.5, respectively, as suggested by their authors [7,13]. In MOACOR,
the number of ants is set to 2. For all the selected MOEAs, the parameter values
are set to their default values as in the PlatEMO platform [25]. The crossover and
mutation probabilities are set to 1.0 and 1/n, respectively, while both crossover
and mutation distribution indexes are set to 20.

4.3 Quality Indicators

We adopted the Hypervolume indicator (HV) and the Inverted Generational
Distance plus (IGD+) to assess convergence towards the PF [18]. To measure the

diversity of the PFAs, we used the Riesz s-energy Es = UK
RSE

(see Eq. 4), where
s > 0 is a user-supplied parameter. Table 1 lists the reference points used to
calculate HV for each test problem. The calculation of IGD+ requires a reference
point set, constructed by merging all the PFAs generated by all algorithms for
a given test instance and filtering out the non-dominated solutions. Then, we
performed an Es-based subset selection to obtain 100 × m solutions with s =
m+1 [6]. For Es assessment, we set s = m+1 to evaluate the normalized PFAs.

5 Discussion of Results

The main goal of this Section is to present the numerical comparison of GI-
MOACOR based on HV, IGD+, and Es. However, we first show how Algorithms 2
and 3 help to enhance the performance of the original ACOR. Then, we discuss
here the comparison of GI-MOACOR with MOACOR and iMOACOR. Then,
we focus on comparing GI-MOACOR with the selected MOEAs. Due to space
constraints, the complete numerical results for HV are provided in Tables SM-1
to SM-6 of the Supplementary Material (SM) available at https://github.com/
Humberto-Tamayo/GI-MOACOR.git. Tables SM-7 to SM-12 show the results for
IGD+, and Tables SM-13 to SM-18 show the results for Es. Table 2 presents a
summary of HV-based results in Tables SM-1 to SM-6 from the SM. Additionally,
Fig. 2 shows PFAs according to the first, second, third, and last rank in the
comparison from Tables SM-1 to SM-6.

5.1 Discussion of the Enhanced ACOR

To show the effect of Algorithms 1 and 3 in ACOR, we measured the perfor-
mance of ACOR when turning on and off these algorithms. Moreover, we used
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Fig. 1. Effect of Construction and Diversification algorithms in ACOR on the Ras-
trigin Function. (a) Original ACOR, (b) Construction on and Diversification off, (c)
Construction off and Diversification on, (d) Construction On and Diversification off.

ξ = 0.55, 1.85, 2.35 to identify its effect. We tested the algorithm with the multi-
modal Rastrigin Function with 20 decision variables with 35 thousand function
evaluations. Fig. 1(a) shows the performance of the original ACOR when Algo-
rithms 2 and 3 are turned off10. This illustrates that ACOR fails to converge
with high values of ξ and gets stuck with ξ = 0.55. The effect of Algorithm 2 is
shown in Figure 1(b) for ξ = 0.55, 1.85, 2.25. In this case, all the algorithms have
a similar behavior, showing a clear reduction in the dependency on ξ. On the
other hand, the effect of Algorithm 3 is illustrated in Figure 1(c) for ξ = 0.55,
obtaining better results than in Fig. 1(a). Finally, Figure 1(d) shows the effec-
tiveness of combining Algorithms 2 and 3, outperforming the original ACOR.
The enhancements of ACOR increase convergence and reduce the dependency to
ξ, thus improving diversity which is beneficial for MaOPs.

5.2 Comparison against MOACOs

Table 2 shows that GI-MOACOR outperforms MOACOR and iMOACOR at tack-
ling multi-frontal MOPs such as DTLZ1 and WFG4. Additionally, the results
associated with DTLZ4 and WFG8 show that GI-MOACOR performs compet-
itively against iMOACOR in regular MOPs and MaOPs. In this regard, Ta-
bles SM-3, SM-5, SM-9, and SM-11 indicate that GI-MOACOR outperforms
iMOACOR in most regular MaOPs from the DTLZ and WFG test suites. Ac-
cording to HV and IGD+, GI-MOACOR obtained better approximations in 17
out of 26 regular MaOPs with 5 and 7 objectives.

Fig. 3 shows a set of heat maps comparing GI-MOACOR with the selected
MOACOs and MOEAs. The heat maps show the number of times an algo-

10 Note that for Algorithms 2 and 3 to work, Algorithm 1 must be turned on.
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Table 2. Mean and standard deviation (in parentheses) of HV values. The two best
values are highlighted in gray scale, where the darker tone corresponds to the best one.
The rank in the comparison for each value is shown in parentheses. The symbol #
is placed where the best-ranked algorithm performs statistically better according to a
one-tailed Wilcoxon rank-sum test using a significance level of 0.05.

MOP m GI-MOACOR MOACOR iMOACOR AdaW AR-MOEA SPEA2+SDE Two Arch2 RVEA-iGNG

VIE1 3
2.316e+01(4#)

(1.995e-02)

2.306e+01(5#)

(3.042e-02)

2.254e+01(8#)

(6.831e-02)

2.320e+01(3)

(1.655e-02)

2.289e+01(6)

(7.504e-02)

2.289e+01(7#)

(1.425e-01)

2.323e+01(1)

(1.355e-02)

2.322e+01(2)

(1.989e-02)

VIE3 3
3.161e+01(1)

(1.509e-03)

3.152e+01(7#)

(1.809e-02)

3.149e+01(8#)

(3.691e-02)

3.160e+01(5)

(1.624e-03)

3.161e+01(2)

(1.366e-03)

3.160e+01(3)

(7.785e-03)

3.160e+01(4)

(5.184e-03)

3.159e+01(6)

(4.069e-03)

IMOP6 3
9.959e-01(6#)

(9.440e-03)

9.786e-01(8#)

(1.035e-02)

9.842e-01(7#)

(3.743e-03)

1.053e+00(1)

(1.460e-03)

1.014e+00(4)

(1.049e-01)

1.011e+00(5#)

(1.067e-01)

1.051e+00(2#)

(7.691e-04)

1.021e+00(3#)

(1.277e-01)

IMOP7 3
9.662e-01(2#)

(3.304e-02)

9.607e-01(4#)

(9.753e-02)

9.623e-01(3#)

(1.887e-02)

1.017e+00(1)

(1.456e-01)

4.016e-01(7)

(2.769e-01)

4.819e-01(6#)

(3.449e-01)

3.798e-01(8#)

(2.370e-01)

8.907e-01(5#)

(2.059e-01)

DTLZ1

2
8.629e-01(6#)

(8.770e-03)

0.000e+00(7#)

(0.000e+00)

0.000e+00(8#)

(0.000e+00)

8.736e-01(3)

(3.530e-04)

8.736e-01(2)

(4.751e-04)

8.733e-01(5#)

(5.185e-04)

8.734e-01(4)

(9.117e-04)

8.736e-01(1)

(2.328e-04)

3
9.663e-01(6#)

(5.766e-03)

0.000e+00(7#)

(0.000e+00)

0.000e+00(8#)

(0.000e+00)

9.742e-01(2#)

(1.546e-04)

9.743e-01(1)

(1.254e-04)

9.700e-01(5#)

(1.818e-03)

9.739e-01(4#)

(2.098e-04)

9.741e-01(3#)

(9.345e-05)

5
9.946e-01(5#)

(1.098e-02)
-

0.000e+00(7#)

(0.000e+00)

9.987e-01(2#)

(7.072e-05)

9.987e-01(1)

(1.657e-05)

9.941e-01(6#)

(1.837e-03)

9.984e-01(4#)

(5.122e-05)

9.985e-01(3#)

(8.291e-05)

7
9.558e-01 (6#)

(8.0076e-02)
-

0.000e+00 (7#)

(0.000e+00)

9.999e-01 (2#)

(2.530e-05)

9.999e-01 (1)

(1.266e-06)

9.983e-01 (5#)

(5.641e-04)

9.998e-01 (4#)

(9.268e-06)

9.999e-01 (3#)

(3.129e-05)

DTLZ4

2
3.211e+00(2)

(2.201e-04)

3.207e+00(4)

(4.573e-03)

3.211e+00(1)

(2.653e-05)

3.209e+00(3)

(4.143e-03)

2.848e+00(7)

(5.644e-01)

3.090e+00(5)

(3.694e-01)

2.888e+00(6)

(5.449e-01)

2.767e+00(8)

(5.936e-01)

3
7.408e+00(2)

(2.165e-03)

7.370e+00(5)

(1.471e-02)

7.420e+00(1)

(3.813e-04)

7.382e+00(3)

(1.953e-01)

6.960e+00(8)

(9.104e-01)

7.288e+00(7)

(3.457e-01)

7.307e+00(6)

(6.246e-01)

7.375e+00(4)

(1.839e-01)

5
3.163e+01(4#)

(2.249e-02)
-

3.164e+01(3#)

(3.938e-03)

3.165e+01(1)

(1.195e-02)

3.161e+01(5)

(1.663e-01)

3.158e+01(6#)

(2.018e-01)

3.152e+01(7#)

(6.123e-02)

3.165e+01(2#)

(1.147e-02)

7
1.277e+02 (6#)

(1.134e-02)
-

1.277e+02 (5#)

(4.751e-03)

1.277e+02 (4#)

(1.006e-02)

1.278e+02 (1)

(4.495e-04)

1.278e+02 (2#)

(2.997e-03)

1.268e+02 (7#)

(4.048e-01)

1.278e+02 (3#)

(5.284e-03)

DTLZ7

2
1.773e+01(1)

(9.318e-06)

1.770e+01(5#)

(7.212e-02)

1.772e+01(2#)

(3.993e-04)

1.771e+01(4)

(2.985e-02)

1.766e+01(8)

(1.414e-01)

1.771e+01(3)

(1.479e-02)

1.768e+01(7)

(1.203e-01)

1.769e+01(6)

(1.060e-01)

3
1.637e+01(1)

(1.761e-03)

1.624e+01(7#)

(3.756e-02)

1.624e+01(8#)

(7.939e-03)

1.637e+01(2)

(1.179e-02)

1.629e+01(6)

(1.282e-01)

1.631e+01(5)

(7.380e-02)

1.633e+01(4)

(1.020e-01)

1.636e+01(3)

(5.546e-02)

5
1.290e+01(3#)

(2.086e-02)
-

1.177e+01(7#)

(8.988e-02)

1.299e+01(2)

(3.210e-02)

1.279e+01(4)

(2.556e-02)

1.279e+01(5#)

(2.630e-01)

1.274e+01(6#)

(9.724e-02)

1.305e+01(1)

(3.280e-02)

7
9.180e+00 (2#)

(2.972e-02)
-

7.934e+00 (7#)

(1.534e-01)

9.055e+00 (3)

(1.926e-01)

8.847e+00 (5)

(4.012e-02)

8.947e+00 (4#)

(3.131e-01)

8.771e+00 (6#)

(4.031e-01)

9.423e+00 (1)

(7.067e-02)

DTLZ5−1

2
1.758e+01(3#)

(2.108e-04)

1.755e+01(6#)

(1.113e-02)

1.754e+01(8#)

(2.610e-02)

1.758e+01(4)

(4.175e-04)

1.757e+01(5)

(5.013e-05)

1.755e+01(7#)

(1.259e-02)

1.758e+01(1)

(3.801e-04)

1.758e+01(2)

(5.557e-04)

3
5.888e+01(1)

(3.682e-02)

5.637e+01(7#)

(4.488e-01)

5.635e+01(8#)

(3.805e-01)

5.886e+01(2)

(4.535e-02)

5.816e+01(5)

(3.628e-02)

5.703e+01(6)

(3.938e-01)

5.869e+01(3)

(8.140e-02)

5.859e+01(4)

(7.385e-02)

5
4.033e+02(3#)

(7.404e-01)
-

2.929e+02(7#)

(4.177e+00)

4.135e+02(1)

(1.278e+00)

3.889e+02(5)

(4.687e+00)

3.826e+02(6#)

(5.860e+00)

4.040e+02(2#)

(2.210e+00)

4.020e+02(4#)

(2.224e+00)

7
1.788e+03 (5#)

(6.238e+00)
-

1.191e+03 (7#)

(2.625e+01)

2.031e+03 (1)

(1.112e+01)

1.783e+03 (6)

(2.315e+01)

1.978e+03 (3#)

(2.773e+01)

1.970e+03 (4#)

(2.638e+01)

1.981e+03 (2#)

(1.663e+01)

WFG4

2
8.524e+00(6#)

(2.342e-02)

8.071e+00(8#)

(6.935e-02)

8.114e+00(7#)

(2.326e-02)

8.571e+00(5)

(3.198e-02)

8.583e+00(4)

(3.405e-02)

8.638e+00(2#)

(1.965e-02)

8.649e+00(1)

(1.148e-02)

8.614e+00(3)

(2.573e-02)

3
7.533e+01(4#)

(2.368e-01)

6.595e+01(8#)

(7.651e-01)

6.942e+01(7#)

(2.834e-01)

7.508e+01(6)

(2.495e-01)

7.517e+01(5)

(2.184e-01)

7.612e+01(1)

(1.738e-01)

7.589e+01(3)

(1.925e-01)

7.598e+01(2)

(1.647e-01)

5
8.915e+03(1)

(3.170e+01)
-

7.829e+03(7#)

(1.599e+02)

8.240e+03(6)

(6.735e+01)

8.536e+03(4)

(4.927e+01)

8.656e+03(2#)

(5.303e+01)

8.288e+03(5)

(5.584e+01)

8.593e+03(3)

(3.763e+01)

7
1.838e+06 (1)

(9.627e+03)
-

1.588e+06 (6#)

(2.822e+04)

1.496e+06 (7)

(3.291e+04)

1.704e+06 (4)

(1.347e+04)

1.739e+06 (2)

(1.287e+04)

1.592e+06 (5)

(1.822e+04)

1.726e+06 (3)

(1.149e+04)

WFG8

2
7.489e+00(5#)

(4.485e-02)

7.452e+00(8#)

(1.650e-01)

7.480e+00(7#)

(2.399e-02)

7.652e+00(2)

(3.484e-02)

7.540e+00(4)

(4.556e-02)

7.624e+00(3#)

(2.706e-02)

7.664e+00(1)

(3.290e-02)

7.483e+00(6)

(6.448e-02)

3
6.763e+01(6#)

(6.951e-01)

5.848e+01(8#)

(1.092e+00)

6.471e+01(7#)

(5.244e-01)

6.957e+01(4)

(4.102e-01)

6.944e+01(5)

(4.053e-01)

7.040e+01(1)

(1.555e-01)

6.993e+01(3)

(1.895e-01)

7.010e+01(2)

(2.292e-01)

5
7.640e+03(3#)

(1.331e+02)
-

5.268e+03(7#)

(3.124e+02)

7.239e+03(5#)

(9.265e+01)

7.824e+03(1)

(4.568e+01)

7.766e+03(2#)

(5.206e+01)

7.172e+03(6#)

(5.764e+01)

7.558e+03(4#)

(7.764e+01)

7
1.532e+06 (3#)

(2.850e+04)
-

9.383e+05 (7#)

(5.933e+04)

1.148e+06 (6#)

(4.279e+04)

1.577e+06 (1)

(1.491e+04)

1.560e+06 (2#)

(1.153e+04)

1.231e+06 (5#)

(2.321e+04)

1.441e+06 (4#)

(1.701e+04)

WFG7−1

2
2.226e+01(1)

(7.493e-04)

2.218e+01(8#)

(1.163e-01)

2.223e+01(6#)

(2.277e-02)

2.225e+01(3)

(5.147e-03)

2.224e+01(4)

(1.979e-03)

2.220e+01(7)

(1.877e-02)

2.225e+01(2)

(7.343e-03)

2.224e+01(5)

(1.325e-02)

3
1.441e+02(2#)

(3.066e-01)

1.364e+02(8#)

(1.170e+00)

1.384e+02(7#)

(1.204e+00)

1.441e+02(3)

(2.361e-01)

1.430e+02(5)

(2.325e-01)

1.409e+02(6#)

(9.857e-01)

1.444e+02(1)

(1.135e-01)

1.440e+02(4)

(2.331e-01)

5
5.917e+03(6#)

(4.959e+01)
-

3.748e+03(7#)

(6.122e+01)

6.005e+03(5)

(7.140e+01)

6.055e+03(3)

(5.859e+01)

6.039e+03(4#)

(2.122e+02)

6.357e+03(2#)

(3.209e+01)

6.359e+03(1)

(5.074e+01)

7
1.946e+05 (6#)

(2.881e+03)
-

1.512e+05 (7#)

(3.547e+03)

2.196e+05 (5)

(5.651e+03)

2.488e+05 (4)

(7.363e+03)

2.847e+05 (3#)

(5.079e+03)

2.888e+05 (2#)

(3.445e+03)

2.958e+05 (1)

(4.001e+03)
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Fig. 2. PFAs generated by GI-MOACOR and the selected MOACOs and MOEAs.

rithm is ranked first or second in the comparison based on HV, IGD+, and
Es, based on Tables SM-1 to SM-18. On the one hand, Fig. 3(a) shows that
the PFAs generated by GI-MOACOR are the best compared to MOACOR and
iMOACOR according to HV, IGD+, and Es in most of the adopted MOPs and
MaOPs. GI-MOACOR obtains the first rank in 80.89% of the MOPs and 89.58%
of the MaOPs11. Additionally, Fig. 2 shows several irregular MOPs such as
WFG3−1 DTLZ2−1, DTLZ7−1, and VIE2, where GI-MOACOR outperformed
MOACOR and iMOACOR, according to HV. For DTLZ2−1, DTLZ7−1, and
VIE2, iMOACOR shows difficulties to converge. These results indicate that GI-
MOACOR outperforms MOACOR and iMOACOR.

5.3 Comparison against state-of-the-art MOEAs

The goals of comparing GI-MOACOR with state-of-the-art MOEAs are three-
fold: 1) determining if GI-MOACOR is competitive against MOEAs designed to
tackle regular and irregular PF geometries, 2) identifying if GI-MOACOR out-
performs these MOEAs in MOPs with specific properties, and 3) pointing out
improvement areas for GI-MOACOR.

Table 2 and Fig. 2 show that GI-MOACOR is competitive with the se-
lected MOEAs in multiple irregular MOPs such as DTLZ2−1, DTLZ7−1, VIE3,
WFG7−1 for 4 objectives, DTLZ6 for 7 objectives, and DTLZ7 regardless of the
number of objectives, according to HV. Additionally, Tables SM-5 and SM-11 in-
dicate that GI-MOACOR obtains competitive results according to HV and IGD+

11 Note that MOACOR does not take part of the comparison of MaOPs since it does
not properly scale.
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Fig. 3. (a) Heat map that shows the number of times a MOACO was ranked first
according to HV, IGD+, and Es. (b) Heat map that shows the number of times GI-
MOACOR or a MOEA was ranked first or second according to the three selected QIs.

in WFG2, WFG6, WFG7, and WFG9 for 5 and 7 objectives. These MaOPs are
non-separable and simplex-like. These results show that GI-MOACOR does not
have a preference for specific PF geometries. However, it has a good perfor-
mance on disconnected, non-separable, and deceptive problems. We believe that
this behavior is due to the probabilistic mechanisms of ACOR. In contrast to
MOEAs where crossover might not easily generate offspring that jump across
disconnected regions, or in deceptive landscapes, ACOR is less constrained by
the need for solutions to be adjacent or directly related in the search space.

Fig. 3(b) compares GI-MOACOR with selected MOEAs. GI-MOACOR shows
superior PFA diversity (in terms of Es) due to its use of PPFs. Two Arch2 pro-
vides the best approximations for most MOPs, and SPEA+SDE excels in most
MaOPs according to HV and IGD+. Despite some challenges in covering the en-
tire PF in the IMOP test suite, GI-MOACOR achieves top ranks in many MOPs
and MaOPs, demonstrating its competitiveness. The issue likely stems from the
sensitivity of ACOR to the pheromone matrix composition, suggesting room for
improving its probabilistic sampling and pheromone updating mechanisms.

6 Conclusions and Future Work

In this paper, we proposed GI-MOACOR which is a Pareto-Front-Shape Invariant
MOACO for solving continuous MOPs. GI-MOACOR uses an enhanced ACOR
to improve its search capabilities and it has a diversity-preserving mechanism
based on PPFs. According to our experimental results using several benchmark
problems with regular and irregular Pareto Front geometries, it outperforms
both MOACOR and iMOACOR and it is competitive concerning state-of-the-art
MOEAs. It also showed significant performance in disconnected, non-separable,
and deceptive MOPs. For future work, we want to develop a hybrid model and
test PDFs to model more difficult and large-scale search spaces.
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