Robust Multiscale Affine 2D-Image Registration
through Evolutionary Strategies

Héctor Fernando Gémez Garcial, Arturo Gonzdlez Vega®, Arturo Hernédndez
Aguirre', José Luis Marroquin Zaleta', and Carlos Coello Coello?

L Center for Research in Mathematics, Department of Computer Science,
Guanajuato, Gto. 36240, MEXICO
hector,gonzart,artha, jlm@cimat .mx
2 CINVESTAV-IPN Seccién de Computacién, México, D.F. 07300, MEXICO

ccoello@cs.cinvestav.mx

Abstract. We propose a robust methodology based on multiscale anal-
ysis, affine transforms, and evolutionary strategies for solving the image
registration problem. The approach is found robust for the affine regis-
tration of medical images.

1 Introduction

The goal of image registration is to find the best correspondence between images
of the same scene. The intuitive approach to this problem is to find “relevant
features” on the images that can be used to bring them into correspondence.
As noted in [5], finding relevant features is one of three main components of
any image registration problem; the second is similarity metric, and the third is
search space and strategy. Our approach to image registration can be described
around these components as follows: 1) feature space is not created, nor induced
or searched; images are sampled and a few points are used for matching. 2) It uses
a metric based on pixel intensity to measure image correspondence, and 3) the
search space is kept small by subsampling the images whereas the optimization
mechanism is implemented through evolutionary strategies.

2 The image registration problem

For the sake of sufficiency of the article we describe the registration problem
(defined elsewhere in the literature). Assume two images I (x,y) and I>(z,y) are
available from the same object but the object changes position from one to other.
The images are 2-dimensional arrays with some intensity value at every pixel
position (z,y). The image registration problem is to find the mapping between
two tmages I; and I, that gives the best correspondence. Equation 1

12(x,y) :Il(f(xvy)) (1)

is the formal registration model where function f: I (z,y) — I>(z,y) performs
the mapping between images. Approximations to f can be constructed by some



transformations: affine and projective amongst several. No transform applies to
all problems thus in choosing a suitable transform it is advisable to consider the
sources of misregistration. They are generally due to sensor noise, sensor type,
and changes in scene conditions [8]. This paper describes an image-to-image
registration technique without use of any knowledge about the sensors. Images
are taken with the same instrument but (simulated) from different positions, thus
the only source of misregistration is related to changes in scene conditions. Note
that the image registration problem is clearly a function approximation one. That
is, f is unknown but it will be approximated through affine transformations.

2.1 Affine transforms

An affine transform is a linear transform composed of the following geometric
transformations: translation, rotation, scaling, stretching, and shearing [7]. As
noted affine transforms are sound basis for our mapping function approximation
problem since the source of misregistration can be tackled as follows: distortions
due to different sensor orientation are corrected by translation and rotation,
changes in altitude are corrected by scaling, and stretching and shearing correct
distortions due to changes in the viewing angle [5]. A useful subset of affine
transform that combines rotation and translation is called rigid-body transform.
In Equation 2, (22,y2) is the transformed coordinate (z1,y;) after translations
(tz,ty), rotation by angle 8, and scaling by factor s (an affine transform is only
linear when translation is zero [5]).
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The general 2D affine transformation (the basis of our approach) is expressed
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as shown in Equation 3. The matrix [

stretching, and shearing.
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Hence we should understand the affine registration problem as the problem of
finding the parameter set {a1.1,a1 2,013,021, 2,2, 02,3} for the affine transform
that best mimics the function f : I (z,y) — I2(x,y). Provided function approx-
imation is sound we still need to address the question of how well two images
match. The similarity measure used affects the matching quality. One popular
similarity measures is normalized cross-correlation [14]; since its computation is

expensive in this paper we use a simpler and reliable well known approach: the
sum of absolute difference of pixel intensities.

3 Related work

Image registration has been approached from a large variety of techniques, we
should only mention in this section those articles closely related to this arti-



cle. The work of Fitzpatrick and Grefenstette [6] is one of the first works on
registration of medical images based on Genetic Algorithms. Brown [5] noted
that probabilistic methods are more suitable for registration and segmentation
of medical images, thus less than 7% of the methods (95) accounted by Maintz
[11] use a form of evolutionary algorithm as optimization tool. Ankenbrandt and
Buckles [1] use genetic algorithms for scene recognition, Bhanu and Sungkee
[4] describe several methods based on evolutionary techniques for image seg-
mentation. Roberts and Howard [12] use genetic programming for orientation
detection, Ross et. al. [13] also use genetic programming but for edge detection;
Bhandarkar [3] recently compared several techniques for image segmentation us-
ing evolutionary computation. Louchet [10] applied evolutionary strategies to
stereovision.

4 Multiscale representation

A multiscale representation, also called Gaussian pyramid, is a set of images
generated by the successive application of smoothing and subsampling operations
over a source image of dimensionality d. At each step the new image contains
only 2% pixels of the previous image [9]. A typical multiscale pyramid is shown in
Figure 1. The successive application of smoothing and subsampling operations
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Fig. 1. Multiscale Gaussian pyramid for Image registration

helps to eliminate unnecessary details while keeping important features. These
features are very important for the first iteration of our method at the lowest
level of resolution (bottom of pyramid). Inherent to multiscaling is the reduction
in the size of the image, a property that reduced processing time without altering
precision.



5 The multiscale affine image registration method

Our approach to image registration is based on a multiscale representation. The
sequential application of smoothing and subsampling operations is performed
in a top-down fashion. Then registration is performed bottom-up. The whole
registration process is as follows and it is shown in Figure 1

— Top-Down step. Apply a smoothing and subsampling procedure K times
to both images I; and I». A set of K subsampled images is computed and
stored (K of each image). The smoothing procedure (to prevent alising) is
a low-pass filter implemented by image convolution with a Gaussian kernel
(0 =0.5).

— Bottom-Up step. Register the images at the bottom of the pyramid (lowest
resolution). Initial population is seeded with individuals mutated out of the
identity transform, that is, individuals are mutations of the identity matrix,
and the zero translation vector. Once the (u + A)-ES algorithm reaches a
nominal fitness value or number of iterations, the registration process is
repeated but this time using the images at the immediate level above. For
seeding the next initial population the object variables of the best individual
of the previous registration step are mutated. Control variables are generated
anew. At any registration level no more than 256 sampled pixels are used to
compute the fitness value. Notice in Figure 1 the image at the bottom has
only 256 pixels, but the immediate above must be sampled because it has
1024 pixels (although the image itself was derived by the sampling procedure
of the top-down step, it is again sampled to compute the fitness function).

A (4 M) Evolutionary Strategy is used for searching and optimization of the
six real variables that control the general affine transform. Crossover operation
for control and object variables is generalized intermediate, mutation is uncor-
related (no rotation angles), in accordance with that version of the algorithm as
described by Béck [2]. Population size does not change during the process. No
knowledge (landmarks) from the image has to be derived or located during the
process, our method uses only 256 sample points equally spaced and distributed
over the image. Thus, about 0.4 of image pixels are used for registration in our
experiments.

Fitness function is based on the similarity measure “absolute difference of
intensities”, as follows:

1
1+ % Yteatree (f(@,y) — L(z,y)]

Where (2 is the set of sample points, N is the cardinality of 2 (256), and f(z,y)
the required transformation. The fitness function takes values in [0, 1] to repre-
sent [nomatch — per fectmatch]. Another strategy to create the set §2 is to take
random samples with uniform probability distribution. The set can be generated
anew between 3 and 5 times per level, improving the registration ability of the
algorithm over noisy images. Since an affine transformation AT maps pixel’s in-
teger coordinates of image I> into real coordinates on image I1, a cubic spline

(4)

fitness =



interpolation procedure IP is used to calculate the proper intensity value of each
transformed coordinate.

An important issue related to the fitness function is the quality of the registra-
tion implied by the fitness value (Equation 4). In Table 1 we show the value of
the summation term for several fitness function values that are used in our ex-
periments. It is clear that a change of .01 in the fitness value implies a change of
2.58 in the summation term. Since the summation term accounts for 256 pixels
and each pixel intensity lies in the interval [0, 255], a high value of fitness implies
high image matching. Yet, moderate values of fitness also imply good matching.

Fitness Value| X term (256 pixels)
1.0 0.0
.99 2.58
.98 5.22
97 7.91
.96 10.6
.95 13.4
.94 16.3

Table 1. Relation fitness function - summation of intensity error

6 Experiments

After some trials we found that a (100 + 150)-ES finds solutions with aver-
age approximation error no greater than 10~% (on each objective variable), in
average time of 200 seconds. A (250 + 50)-ES finds solutions with average ap-
proximation error no greater than 1072, in average time of 30 seconds. For all
experiments reported in the following sections, the population parameters are:
@ = 250, and A = 50. Since to each objective variable corresponds one control
parameter, an individual is composed by six control variables (Equation 3), and
six objective variables. Control parameters (variance) for matrix coefficients are
01,1 =012 =021 =022 Z 0.17 and for translation coefficients 01,3 =023 Z 1.0
Every 0 < 5.0 We used a PC computer with Xeon processor running at 1.7
Ghertz with 1 Gbyte of memory; all algorithms are programmed in C++4. In the
sequel we describe three experiments.

The goal of the first experiment is to verify the ability of the method to consis-
tently reach the optimum and to measure the error. In the second experiment
we contrast overall convergence. Two of the three test images are known to be
hard to register: a slice of MRI of the human brain, and an angiogram.

6.1 Robustness and consistency of the method

This experiment is designed to measure the approximation error on each of
the six parameters. Therefore, a fixed set of affine transformation coefficients



(see Equation 3) is randomly generated and used in all 70 runs. The matrix
coefficients (that imply rotation, scaling and shearing) are: 0.819684, 0.089627,
0.16434,0.40437 The coefficients denoting translations over the axes are: 25.532335,
and 39.6115 For these experiments we used a MRI image of the brain, as shown
in Figure 2
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Fig. 2. MRI of brain used in experiment 1

In Table 2 we resume the robustness and consistency ability of the method to
reach the highest fitness value (1.0). Out of 70 runs:

— 24 runs reached fitness > 0.99
— 29 runs reached fitness > 0.98
— 44 runs reached fitness > 0.97
— 47 runs reached fitness > 0.96
— 52 runs reached fitness > 0.95
— 63 runs reached fitness > 0.94

The rest of the experiments (7) had fitness < 0.94 Information in Table 2 shows
that for fitness value of 0.94 the coefficients begin to deteriorate. To the human
eye this level of error is not apparent, yet the data for that row indicates that the
translation coefficients differ in six pixels (average). Thus, for the experiments
of the next section we take a fitness value of up to 0.95 as the minimum required
to indicate “good registration”.



Interval| Measure [0.8196|0.0896/0.1643|0.4043(21.5323|39.6115
0.99-1.0 Avg. |0.8194|0.0904 | 0.1649 | 0.4049 | 21.4508 | 39.4623
0.99-1.0|Std.Dev.| 0.0031 | 0.0041 | 0.0025 | 0.0010 | 0.9496 | 0.3939
0.98-1.0f Avg. |0.8190|0.0884 | 0.1660 | 0.4050 | 21.7839 | 36.6115
0.98-1.0{Std.Dev.| .0031 | .0064 | .0038 | .0010 | 1.2821 | 0.5188
0.97-1.0 Avg. |0.8171]0.0830 | 0.1694 | 0.4052 | 22.9012 | 38.9512
0.97-1.0{Std.Dev.| 0.0045 | 0.0113 | 0.0072 | 0.0010 | 2.3640 | 0.8696
0.96-1.0) Avg. |0.8164|0.0825|0.1701 | 0.4050 | 23.1073 | 38.8960
0.96-1.0{Std.Dev.| 0.0056 | 0.0126 | 0.0079 | 0.0022 | 2.7110 | 0.9956
0.95-1.0 Avg. |0.8154|0.0869 | 0.1703 | 0.4038 | 22.4673 | 39.1022
0.95-1.0{Std.Dev.| 0.0063 | 0.0261 | 0.0093 | 0.0057 | 4.3408 | 1.5174
0.94-1.0 Avg. |0.7792]0.0803 | 0.1886 | 0.4032 | 27.9592 | 37.1533
0.94-1.0{Std.Dev.| 0.1547 | 0.0495 | 0.0491 | 0.0167 | 15.1011 | 4.6558

Table 2. Error in transformation parameters by interval

6.2 Overall convergence experiments

In this set of experiments we ran 20 random registrations with each one of the
test images: MRI-brain (Figure 2), Diana (Figure 4), and angiogram (Figure
3), and checked for convergence. As explained before, if fitness reaches 0.95 the
registration is counted as good. The same problems were also registered using
the Gauss-Newton optimization algorithm. In this gradient descent technique we
also used the same procedure and fitness function. Table 3 shows the number of
successful runs (convergence) of each algorithm for every image.

Test image|Multiscale Evolutionary|Gauss-Newton

MRI-Brain 19/20 11/20

Angiogram 20/20 6/20
Diana 17/20 1/20

Table 3. Convergence in 20 random experiments for two techniques

7 Discussion and conclusions

From the first set of experiments we have shown our method consistently finds
the solutions with good accuracy. The second set of experiments is a clear proof
of the robustness of the method. The Gauss-Newton based method, as any other
based on gradient descent, is prone to fall in local minima. The evolutionary
approach is a strategy that shares global knowledge among the individuals of
the population, thus convergence to the solution occurs with high probability.
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Fig. 3. Evolutionary multiscale registration of an angiogram
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Fig. 4. Evolutionary multiscale registration of “Diana”



In general our approach contradicts several authors [5] who have found weak
properties in evolutionary methods for image registration.

Future work A fitness function based on normalized cross-correlation (and
other approaches) will be studied. Other problem worth of studying is the reg-
istration of images with noise. The combination of non-linear transforms with
evolutionary techniques is a promising approach to image registration.
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