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Abstract


In this paper we apply information theory concepts to
evolutionary Boolean circuit synthesis. We discuss the
schema destruction problem when simple conditional en-
tropy is used as fitness function. The design problem is
the synthesis of Boolean functions by using the minimum
number of binary multiplexers. We show that the fitness
landscape of normalized mutual information exhibits better
characteristics for evolutionary search than the landscape
of simple mutual information. A comparison of minimum
evolved circuits shows the potential of information theory
concepts.


1 Introduction


Information theory originated from the studies of Claude
Shannon on the transmission of messages over communi-
cation channels. A message is only a string of symbols
with some meaning in some particular domain. For digital
communications and many other areas, removing or identi-
fying redundant information from a message is part of the
procedure to improve channel capacity. In early 20th cen-
tury several researchers had agreed in the relationship be-
tween the information carried by a message and the mini-
mum or shortest code that represents such the message. A
way to understand information was proposed by Shannon
[14], who suggested the use of information entropy as a
measure of the amount of information contained within a
message. Thus, entropy tells us that there is a limit in the
amount of information that can be removed from a random
process (a message) without information loss. For instance,
in theory, music can be compressed (in a lossless form) and
reduced up to its entropy limit. Further reduction is only


possible at the expense of information lost. After Shannon,
entropy is the measure of disorder and the basis of Infor-
mation Theory (IT) [16]. Information theory (IT) was first
used by Hartamann et al. [6] to transform decision tables
into decision trees. Boolean function minimization through
IT techniques has been approached by several authors [8, 9].
These methods are top-down, thus, the design strategy fol-
lows after a set of axioms in the knowledge domain. Luba
et al. [11] address the synthesis of logic functions using
a genetic algorithm and a fitness function based on simple
conditional entropy.


The ID3 algorithm for the construction of classifiers
(based on decision trees) is probably the best-known com-
puter science representative that relies on entropy measures
[13]. For ID3, an attribute is more important for concept
classification if it provides greater “information gain” than
the others.


In this paper we use multiplexers and genetic program-
ming (GP) for the synthesis of gate-level Boolean functions.
This means that GP working at a gate-level representation
will try to produce the circuit that implements the Boolean
function. We propose a fitness function that by measuring
the Normalized Mutual Information, drives the search to-
wards circuits that maximize the similarity between the tar-
get function and the evolved function. Our system works
exclusively in a bottom-up fashion, thus no preprocessing
of the search space is needed. The paper is organized as
follows. Section 2 describes the problem statement, Sec-
tion 3 introduces basic concepts of information theory used
throughout the article. In Section 4 we show how entropy
based methods will prevent convergence of any evolution-
ary method if not used correctly. In Section 5 we propose
three fitness function based on normalized mutual informa-
tion and conditional entropy. Section 6 is devoted to exper-
iments, and we finish with conclusions and final remarks in







Section 7.


2 Problem Statement


The design problem is the following: find the smallest
circuit that implements a Boolean function specified by its
truth table [2, 1, 4]. The design metric adopted in this case
is the number of components in a 100% functional circuit.
The fitness function works in two stages. The goal of the
first stage is the generation of 100 % functional circuits.
The goal of the second stage is the minimization of the
number of components of those circuits. Therefore, two
fitness functions are used during the evolutionary process.
The process works at “gate-level” and the only component
replicated is the binary multiplexer. A binary multiplexers
implements the Boolean function f = ax + a′y, where a is
the control and {x,y} the input signals. The use of multi-
plexers is a sound approach because: 1) they are universal
generators of Boolean functions, and 2) any circuit in the
population is the Shannon expansion of a Boolean function.
The expansion is a sum of products (SOP) which are easily
represented as decision trees. Therefore, circuits are en-
coded as trees and the approach follows the representation
adopted by Genetic Programming. Leaves of the tree are
only 1s and 0s (as in a decision tree), and the nodes are the
variables of the Boolean function. Every variable of a node
takes the place of the “pivot” variable used in the expansion.


Definition 1. Boolean Residue The residue of a Boolean
function
f(x1, x2, . . . , xn) with respect to a variable xj is the value
of the function for a specific value of xj . It is denoted by
fxj


, for xj = 1 and by fx̄j
for xj = 0.


f = x̄jf |x̄j
+ xjf |xj


(1)


The pivot variable is xj . The Shannon expansion of the
function f(a, b, c) = a′b′c + a′bc′ + ab′c′, is the residue of
the expansion over variable a:


f(a, b, c) = a′F (a = 0)+aF (a = 1) = a′(b′c+bc′)+a(b′c′)


The procedure could continue till no further expansion is
possible. In Figure 1 we show the result of the expansion
performed over variables “b-c-a” (in that order). Note that
the variable over which the expansion is performed takes the
control of the multiplexer, and the two residues become in-
puts. Different variable ordering result in different size cir-
cuits, thefore, in principle the use of an evolutionary method
to deal with the combinatorial problem is sound.


Further expansion of the “residual” functions yields the
complete tree of muxes implementing the target function.


3 Basic concepts of IT


Uncertainty and its measure provide the basis for
developing ideas about Information Theory [5]. The most
commonly used measure of information is Shannon’s
entropy.


Definition 2. Entropy The average information supplied
by a set of k symbols whose probabilities are given by
{p1, p2, . . . , pk}, can be expressed as,


H(p1, p2, . . . , pk) = −


k∑


s=1


pklog2pk (2)


The information shared between the transmitter and the re-
ceiver at either end of the communication channel is esti-
mated by its Mutual Information,


MI(T ; R) = H(T )+H(R)−H(T, R) = H(T )−H(T |R)
(3)


The conditional entropy H(T |R) can be calculated
through the joint probability, as follows:


H(T |R) = −


n∑


i=1


n∑


j=1


p(tirj)log2


p(tirj)


p(rj)
(4)


An alternative expression of mutual information is


MI(T ; R) =
∑


t∈T


∑


r∈R


p(t, r)log2


p(t, r)


p(t)p(r)
(5)


Mutual information, Equation 3, is the difference be-
tween the marginal entropies H(T ) + H(R), and the joint
entropy H(T, R). We can explain it as a measure of the
amount of information one random variable contains about
another random variable, thus it is the reduction in the un-
certainty of one random variable due to the knowledge of
the other [5].


Conditional entropy is used in top-down circuit mini-
mization methods [3], and also in evolutionary approaches
[11, 10].


Studholme [15] proposed normalized mutual informa-
tion as an invariant measure for image registration prob-
lems. His approach improves mutual information since he
shows his normalized version has better characteristics for
measuring the shared information between two images at
different angles and area of overlapping. We investigate this
issue in Section 4


NMI(T ; R) =
H(T ) + H(R)


H(T, R)
(6)


Example: We illustrate these concepts by computing the
Mutual Information between two Boolean vectors F and C,
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Figure 1. Shannon expansion of function and equivalent circuit using multiplexers


A B C F=AB+BC
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1


Table 1. Function F = AB + BC used to com-
pute MI(F;C)


shown in Table 1. Variable C is an argument of the Boolean
function F (A, B, C) = AB + BC. We aim to estimate the
description the variable C can do about variable F , that is,
MI(F ; C).


We use Equations 3 and 4 to calculate MI(F ; C). Thus,
we need the entropy H(F ) and the conditional entropy
H(F |C).
Entropy requires the discrete probabilities p(F = 0) and
p(F = 1) which we find by counting their occurrences


H(F ) = −(
5


8
log2


5


8
+


3


8
log2


3


8
) = 0.9544


The conditional entropy, Equation 4, uses the joint proba-
bility p(fi, cj), which can be estimated through conditional
probability, as follows: p(f, c) = p(f)p(c|f). Since either
vector F and C has two possible values, the discrete joint


distribution has four entries, as follows:


p(F = 0, C = 0) = p(f = 0)p(c = 0|f = 0) = 5


8
× 3


5
= 0.375


p(F = 0, C = 1) = p(f = 0)p(c = 1|f = 0) = 5


8
× 2


5
= 0.25


p(F = 1, C = 0) = p(f = 1)p(c = 0|f = 1) = 3


8
× 1


3
= 0.125


p(F = 1, C = 1) = p(f = 1)p(c = 1|f = 1) = 3


8
× 2


3
= 0.25


Now we can compute the conditional entropy by using
Equation 4. The double summation produces four terms
(since n = 2):


H(F |C) = −(
3


8
log2


3


4
+


1


4
log2


1


2
+


1


8
log2


1


4
+


1


4
log2


1


2
)


H(F |C) = 0.9056


Therefore, MI(F ; C) = H(F ) − H(F |C) = 0.9544−
0.9056 = 0.0488. In fact, for the the three arguments
of the example function we calculate that MI(F ; A) =
MI(F ; B) = MI(F ; C). Also, NMI(F ; A) =
NMI(F ; B) = NMI(F ; C) = 1.0256. Although no
function argument seems to carry more information than
the others for the truth table of this example, next we show
that the fitness landscape spawn by these measures differs
in shape, and that NMI seems more suitable for searching.







4 Entropy and Circuits


Entropy has to be carefuly applied to the synthesis of
Boolean functions. Assume any two Boolean functions, F1
and F2, and a third F3 which is the one’s complement of
F2, then F3 6= F2.


H(F2) = H(F3)


Also Mutual Information shows a similar behaviour.


MI(F1, F2) == MI(F1, F3)


The implications for Evolutionary Computation are im-
portant since careless use of mutual information can anulate
the system’s convergence. Assume the target Boolean func-
tion is T, then MI(T, F2) = MI(T, F3), but only one of
the circuits implementing F2 and F3 would evolve towards
the solution since their Boolean functions are complemen-
tary. A fitness function based on mutual information will
reward both circuits with the same value, but one is pref-
ered over the other. Things could go worst as evolution
progresses because the mutual information increases when
the circuits are closer to the solution. In fact, two comple-
mentary circuits are given larger rewards. The scenario is
one in which the population is pulled by two equally strong
attractors whose best solution are complementary individ-
uals. When these individuals are selected for reproduc-
tion they destroy their building blocks hence convergence
is never reached. The events just described are similar to
the TwoMax problem and the Ising Model problem of Hoy-
weghen et.al. [7]. They propose to treat the problem as
a multimodal function optimization, so a crowding method
(niching) is used in order to allow the evolution of the pop-
ulation towards two attractors. In this article we do not wish
to know both complementary solutions, therefore, we pro-
pose the use of the Hamming distance of an individual as
a way to bias the search towards only one of the attractors
(see next section).
The fitness function of that scenario is as follows. Assume
T is the target Boolean function (must be seen as a truth ta-
ble), and C is output of any circuit in the population. Fitness
function is either the maximization of mutual information or
minimization of the conditional entropy term. This is,


badfitnessfunction#1 = MI(T, C) = H(T )−H(T |C)


The entropy term H(T ) is constant since this is the expected
target vector. Therefore, instead of maximizing mutual in-
formation the fitness function can only minimize the condi-
tional entropy,


badfitnessfunction#2 = H(T |C) (7)


We called bad to these fitness functions based on mutual in-
formation because we were not able to find a solution with


Figure 2. The search space of Mutual Informa-
tion


them. Although mutual information has been described
as the “common” information shared by two random pro-
cesses, the search space is not amenable for evolutionary
computation. In Figure 2 we show this search space over
mutual information for all possible combinations with two
binary strings of 8 bits (shown in decimal). The area shown
corresponds to about 1


4
( [1, 150] × [1, 150]) of the whole


search space of ( [1, 254] × [1, 254]) (the values 0 and 255
were not used).


The mutual information space, clearly full of spikes,
does not favors the area of common information. For any
two equal vectors, their Mutual Information lies on the line
at 45o (over points {(1, 1), (2, 2), (3, 3) . . . (n, n)} ). In the
next Section we continue this discussion and design fitness
functions whose landscape seems more promisory for ex-
ploration.


5 Fitness Function based on Normalized Mu-
tual Information


So far we have described the poor scenario where the
search is driven by a fitness function based on the sole mu-
tual information. We claim that fitness functions based on
Normalized Mutual Information (NMI) should improve the
performance of the genetic programming algorithm because
of the form of the NMI landscape. This is shown in Figure
3 for two 8-bit vectors (as previous case). Note on the fig-
ure how the search space becomes more regular, and more
important, notice the appearance of the wall at 45o where
both strings are equal.


We propose three new fitness functions based on
Normalized Mutual Information (Equation 6) and report







Figure 3. The search space of Normalized Mu-
tual Information


experiments using the next three fitness functions (higher
fitness means better).


Assume a target Boolean function of m atributes
T (A1, A2, . . . , Am), and the circuit Boolean function C of
the same size. In the following, we propose variations of
the basic fitness function of Equation 8, and discuss the in-
tuitive idea of their (expected) behavior.


fitness = (Length(T )−Hamming(T, C))×NMI(T, C)
(8)


We tested Equation 8 in the synthesis of several problems
and the results were quite optimistic. Thus, based on this
primary equation we designed the following fitness func-
tions. In Figure 4 we show the fitness landscape of Equation
8.


fitness1 =


m∑


i=1


fitness


NMI(Ai, C)
(9)


fitness2 =


m∑


i=1


fitness× NMI(Ai, C) (10)


fitness3 = (Length(T )−Hamming(T, C))×(10−H(T |C))
(11)


The function fitness, Equation 8, is driven by NMI(T,C)
and adjusted by the factor Length(T )−Hamming(T, C).
This factor tends to zero when T and C are far in Ham-
ming distance, and tends to Length(T ) when T and C


Figure 4. Fitness landscape of: f =
(Length(T )− Hamming(T, C)) × NMI(T, C)


are close in Hamming distance. The effect of the term is
to give the correct rewarding of the NMI to a circuit C


close to T . Equation 8 is designed to remove the conver-
gence problems described in the previous section.Fitness1
and Fitness2, Equations 9 and 10, combines NMI of T and
C with NMI of C and the attributes Ak of the target func-
tion. Thus, fitness1 and fitness2 pretends to use more in-
formation available in the truth table in order to guide the
search. Fitness3 is based on conditional entropy and it uses
the mentioned factor to supress the reproduction of undesir-
able trees. Since conditional entropy has to be minimized
we use the factor 10−H(T |C) in order to maximize fitness.
Equations 9 and 7 use the conditional entropy term, never-
theless, only Equation 9 works fine. As a preliminar dis-
cussion regarding the design of the fitness function, the no-
ticeable difference is the use of Hamming distance to guide
the search towards the aforementioned optimum wall of the
search space. The Hamming distance destroys elements of
the population on one side of the wall, and favors the other
side. Thus, there is only one attractor in the search space.


6 Experiments


In the following experiments we find and contrast the
convergence of our GP system for the three fitness functions
defined above. Initial population is created randomly but
allowing the deep of the tree at most the number of variables
of the Boolean function.


6.1 Experiment 1


Here we design the following (simple) Boolean function:







Event Fitness1 Fitness2 Fitness3
100% Funct. 13± 5 14± 7 18 ± 6
Opt. Soltn. 30± 7 30 ± 10 40 ± 20


Table 2. Generation number where the first
100% functional circuit is found, and the gen-
eration where the optimum is found, for three
fitness functions


Event Fitness1 Fitness2 Fitness3
100% Funct. 39± 12 40 ± 11 50± 12
Opt. Solutn. 160± 15 167± 15 170± 20


Table 3. Generation number where the first
100% functional circuit is found, and the gen-
eration where the optimum is found, for three
fitness functions


F (a, b, c, d) =
∑


(0, 1, 2, 3, 4, 6, 8, 9, 12) = 1


We use a population size of 300 individuals, pc = 0.35,
pm = 0.65, and we run our algorithm for 100 generations.
The optimal solution has 6 nodes, thus we find the gener-
ation in which the first 100% functional solution appears,
and the generation number where the optimal is found. The
problem was solved 20 times for each fitness function.


Table 2 shows the results of these experiments.


6.2 Experiment 2


The next test function is:


F (a, b, c, d, e, f) = ab + cd + ef


In this case, we use a population size of 600 individu-
als, pc = 0.35, pm = 0.65, and we stop after 200 genera-
tions. The optimal solutions has 14 nodes. Each problem
was solved 20 times for each fitnesss function.


Table 3 shows the results of these experiments.


6.3 Experiment 3


The last problem is related to partially specified Boolean
functions [1]. With this experiment we address the ability of
the system to design Boolean functions with “large” number
of arguments and specific topology. For this, we have de-
signed a synthetic problem were the topology is preserved
when the number of variables increases.


ABCD F(ABCD)
0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 1 0 0 1
1 0 0 0 1
0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0


Table 4. Partially specified Boolean function
of Example 3 needs (2 ∗ 2k) − 1


k vars size Prev. Fit1 Fit2 Fit3
2 4 7 60 60 60 60
3 8 15 200 190 195 194
4 16 31 700 740 731 748
5 32 63 2000 2150 2138 2150


Table 5. Generation number where the first
100% functional circuit is found, and the gen-
eration where the optimum is found, for three
fitness functions


Boolean functions with 2k variables are implemented
with (2 ∗ 2k) − 1 binary muxes if the truth table is spec-
ified as shown in Table 4.


We ran experiments for k = 2, 3, 4, thus 4,8, and 16
variables and we have contrasted these results with the best
known solutions for this problem (reported in [1]). For com-
pleteness, all above results are reported together with the
results of the new experiments in Table 5, where we use the
three fitness functions (Equations 9,10,11).


All parameters are kept with no change for similar ex-
periments, average is computed for 20 runs. Former exper-
iments use a fitness function based on Hamming distance
between the current solution of an individual and the tar-
get solution of the truth table. One important difference is
the percentage of correct solution found. We have reported
[2, 1] that in 90% of the runs we found the solution (for the
case of fitness based on Hamming distance). For the three
fitness functions based on entropy we found the solution in
99% of the runs.







7 Final remarks and conclusions


A fitness function using only conditional entropy was
tested with no success at all. We believe this is a clear in-
dication of a fitness function that does not take into account
the properties of entropy. In general, the three fitness func-
tions work quite well, all of them find the optimum in most
cases (with some higher probability than in previous exper-
iments), thus comparable to other fitness functions based
on Hamming distances. Entropy based measures seem hard
to adapt to Evolutionary Computation since the entropy of
evolutionary systems is not well understood. We introduced
a combination of Hamming distance and information the-
ory measures in the fitness function to guide the population
towards only one attractor. Based on the results shown in
Tables 2 and 3 we would give some advantage to normal-
ized mutual information over simple mutual information be-
cause it is less biased. The comparison of the fitness land-
scapes is already encouraging and favors normalized mu-
tual information, so more experiments are being performed
in this direction.
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