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Abstract


In this paper we show how information theory concepts
can be used in evolutionary circuit design and minimization
problems. Conditional entropy, mutual information, and
normalized mutual information are commonly used to mea-
sure or estimate the amount of information shared by two
random variables. Although the simple number reported
by these measures may guide the evolutionary search, we
show that normalized mutual information produces more
amenable fitness landscape for search than the others. Sev-
eral landscape plots and experiments are used to support
and explain our main argument.


1 Introduction


In this paper we use multiplexers and genetic program-
ming (GP) for the synthesis of gate-level Boolean functions.
This means that GP working at a gate-level representation
will try to produce the circuit that implements the Boolean
function. We propose a fitness function that by measuring
the Normalized Mutual Information, drives the search to-
wards circuits that maximize the similarity between the tar-
get function and the evolved function.


2 Problem Statement


The design problem is the following: find the smallest
circuit that implements a Boolean function specified by its
truth table [2, 1]. The design metric adopted in this case
is the number of components in a 100% functional circuit.


The process works at “gate-level” and the only component
replicated is the binary multiplexer.


3 Basic concepts of IT


Uncertainty and its measure provide the basis for
developing ideas about Information Theory [3]. The most
commonly used measure of information is Shannon’s
entropy.


Entropy The average information supplied by a set ofk
symbols whose probabilities are given by{p1, p2, . . . , pk},
can be expressed as,


H(p1, p2, . . . , pk) = −
k∑


s=1


pklog2pk (1)


The information shared between the transmitter and the re-
ceiver at either end of the communication channel is esti-
mated by its Mutual Information,


MI(T ; R) = H(T )+H(R)−H(T, R) = H(T )−H(T |R)
(2)


The conditional entropyH(T |R) can be calculated
through the joint probability, as follows:


H(T |R) = −
n∑


i=1


n∑


j=1


p(tirj)log2
p(tirj)
p(rj)


(3)


An alternative expression of mutual information is


MI(T ; R) =
∑


t∈T


∑


r∈R


p(t, r)log2
p(t, r)


p(t)p(r)
(4)







Mutual information, Equation 2, is the difference be-
tween the marginal entropiesH(T ) + H(R), and the joint
entropyH(T, R). We can explain it as a measure of the
amount of information one random variable contains about
another random variable, thus it is the reduction in the un-
certainty of one random variable due to the knowledge of
the other.


Studholme [5] proposed normalized mutual information
as an invariant measure for image registration problems.
His approach improves mutual information since he shows
his normalized version has better characteristics for measur-
ing the shared information between two images at different
angles and area of overlapping. We investigate this issue in
Section 4


NMI(T ; R) =
H(T ) + H(R)


H(T, R)
(5)


4 Entropy and Circuits


Entropy has to be carefuly applied to the synthesis of
Boolean functions. Assume any two Boolean functions,F1
andF2, and a thirdF3 which is the one’s complement of
F2, thenF3 �= F2.


H(F2) = H(F3)


Also Mutual Information shows a similar behaviour.


MI(F1, F2) == MI(F1, F3)


Assume the target Boolean function is T, then
MI(T, F2) = MI(T, F3), but only one of the cir-
cuits implementing F2 and F3 would evolve towards the
solution since their Boolean functions are complementary.
A fitness function based on mutual information will reward
both circuits with the same value, but their Boolean
function could be complementary. When these individuals
are selected for reproduction they destroy their building
blocks hence convergence is never reached. The events
just described are similar to the TwoMax problem and the
Ising Model problem of Hoyweghen et.al. [4]. We propose
the use of Hamming distance as a way to bias the search
towards only one of the attractors (see next section).


badfitnessfunction#1 = MI(T, C) = H(T )−H(T |C)


The entropy termH(T ) is constant since this is the expected
target vector. Therefore, instead of maximizing mutual in-
formation the fitness function can only minimize the condi-
tional entropy,


badfitnessfunction#2 = H(T |C) (6)


Figure 1. Landscape of Mutual Information


We calledbad to these fitness functions based on mutual in-
formation because we were not able to find a solution with
them. Although mutual information has been described
as the “common” information shared by two random pro-
cesses, the search space is not amenable for evolutionary
computation. In Figure 1 we show this search space over
mutual information for all possible combinations with two
binary strings of 8 bits (shown in decimal). The area shown
corresponds to about14 ( [1, 150] × [1, 150]) of the whole
search space of ([1, 254] × [1, 254]) (the values 0 and 255
were not used).


For any two equal vectors, their Mutual In-
formation lies on the line at 45o (over points
{(1, 1), (2, 2), (3, 3) . . . (n, n)} ). In the next Section
we continue this discussion and design fitness functions
whoselandscape seems more promisory for exploration.


5 Fitness Function based on Normalized Mu-
tual Information


So far we have described the poor scenario where the
search is driven by a fitness function based on the sole mu-
tual information. We claim that fitness functions based on
Normalized Mutual Information (NMI) should improve the
performance of the genetic programming algorithm because
of the form of the NMI landscape. This is shown in Figure
3 for two 8-bit vectors (as previous case). Note on the fig-
ure how the search space becomes more regular, and more
important, notice the appearance of thewall at 45o where
both strings are equal.


We propose three new fitness functions based on
Normalized Mutual Information (Equation 5) and report
experiments using the next three fitness functions (higher
fitness means better).







Assume a target Boolean function ofm atributes
T (A1, A2, . . . , Am), and the circuit Boolean functionC of
the same size. In the following, we propose variations of
the basic fitness function of Equation 7, and discuss the in-
tuitive idea of their (expected) behavior.


fitness = (Length(T )−Hamming(T, C))×NMI(T, C)
(7)


We tested Equation 7 in the synthesis of several problems
and the results were quite promising. Thus, based on this
primary equation we designed the following fitness func-
tions. In Figure 2 we show thefitness landscape of Equation
7.


fitness1 =
m∑


i=1


fitness


NMI(Ai, C)
(8)


fitness2 =
m∑


i=1


fitness× NMI(Ai, C) (9)


fitness3 = (Length(T )−Hamming(T, C))×(10−H(T |C))
(10)


The function fitness, Equation 7, is driven by NMI(T,C)
and adjusted by the factorLength(T )−Hamming(T, C).
This factor tends to zero whenT andC are far in Ham-
ming distance, and tends toLength(T ) when T and C
are close in Hamming distance. The effect of the term is
to give the correct rewarding of the NMI to a circuitC
close toT . Equation 7 is designed to remove the conver-
gence problems described in the previous section.Fitness1
and Fitness2, Equations 8 and 9, combines NMI ofT and
C with NMI of C and the attributesAk of the target func-
tion. Thus, fitness1 and fitness2 pretends to use more in-
formation available in the truth table in order to guide the
search. Fitness3 is based on conditional entropy and it uses
the mentioned factor to supress the reproduction of undesir-
able trees. Since conditional entropy has to be minimized
we use the factor10−H(T |C) in order to maximize fitness.
Equations 8 and 6 use the conditional entropy term, never-
theless, only Equation 8 works fine. As a preliminar dis-
cussion regarding the design of the fitness function, the no-
ticeable difference is the use of Hamming distance to guide
the search towards the aforementionedoptimum wall of the
search space. The Hamming distance destroys elements of
the population on one side of the wall, and favors the other
side. Thus, there is only one attractor in the search space.


6 Experiments


In the following experiments we find and contrast the
convergence of our GP system for the three fitness functions
defined above.


Figure 2. Landscape of: f = (Length(T ) −
Hamming(T, C)) × NMI(T, C)


Figure 3. Landscape of Normalized Mutual
Info.







Event Fitness1 Fitness2 Fitness3
100% Funct. 13 ± 5 14 ± 7 18 ± 6
Opt. Soltn. 30 ± 7 30 ± 10 40 ± 20


Table 1. Results of Experiment 1


Event Fitness1 Fitness2 Fitness3
100% Funct. 39 ± 12 40 ± 11 50 ± 12
Opt. Solutn. 160 ± 15 167 ± 15 170 ± 20


Table 2. Results of Experiment 2


6.1 Experiment 1


Here we design the following (simple) Boolean function:


F (a, b, c, d) =
∑


(0, 1, 2, 3, 4, 6, 8, 9, 12) = 1


We use a population size of 300 individuals,pc = 0.35,
pm = 0.65, and we run our algorithm for 100 generations.
The optimal solution has 6 nodes, thus we find the gener-
ation in which the first 100% functional solution appears,
and the generation number where the optimal is found. The
problem was solved 20 times for each fitness function.


Table 1 shows the results of these experiments.


6.2 Experiment 2


The next test function is:


F (a, b, c, d, e, f) = ab + cd + ef


In this case, we use a population size of 600 individu-
als,pc = 0.35, pm = 0.65, and we stop after 200 genera-
tions. The optimal solutions has 14 nodes. Each problem
was solved 20 times for each fitnesss function.


Table 2 shows the results of these experiments.


7 Final remarks and conclusions


A fitness function using only conditional entropy was
tested with no success at all. We believe this is a clear in-
dication of a fitness function that does not take into account
the properties of entropy. In general, the three fitness func-
tions work quite well, all of them find the optimum in most
cases (with some higher probability than in previous exper-
iments), thus comparable to other fitness functions based
on Hamming distances. We introduced a combination of
Hamming distance and information theory measures in the
fitness function to guide the population towards only one at-
tractor, avoiding the use of crowding methods in that way.


Based on the results shown in Tables 1 and 2 we would
give some advantage to normalized mutual information over
simple mutual information because it is less biased. The
comparison of the fitness landscapes is encouraging.
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