Abstract: In this paper, we propose an extension to an optimization
model for design of reinforced concrete beams subject to a specified
set of constraints. The new model is more suitable for real-world
applications, because it better follows reinforced concrete design reg-
ulations and practical recipes used by experienced engineers. To solve
this new model, we used an artificial intelligence technique based on
the mechanics of natural selection, called the genetic algorithm. In
order to deal with the parameter tuning problem that characterizes
genetic algorithms applications (i.e., how to choose the population
size, crossover and mutation rates, and mazximum number of gener-
ations), we developed a very simple methodology that provides good
results in a reasonable amount of time when using floating point rep-
resentation. A prototype of our system is currently being tested so
that we can have a reliable design tool that can be used to solve real-
world problems in a short period of time.

Keywords: genetic algorithms, design optimization, structural op-
timization, artificial intelligence.

1 Introduction

In the traditional design methodology, a solution is proposed
and then corroborated by mathematical analysis in order to verify
that the problem requirements are satisfied. If the requirements are
not satisfied, a new solution is proposed. In this trial and error pro-
cess the engineer gains experience, but at a very high cost in terms of
time and effort. As time is always a constraint in real design, a rea-
sonable sub-optimal solution is normally adopted. Computers have
been recently used to help engineers automate this process. However,
their use has concentrated mainly in performing the tedious math-
ematical calculations that are required. Alternatively, the optimal
design approach consists of changing the design based on a certain
“optimality condition”. However, the general optimal design prob-
lem is highly nonlinear and nonconvex [1]. As a result, structural
optimization problems are characterized by having multiple local op-
tima. This paper focuses on the use of an artificial intelligence (AI)
technique based on the mechanics of natural selection, called the
genetic algorithm (GA) [2] [3]. The design process based on this
technique is very similar to the optimal design process previously
mentioned. The main difference is the notion of a fitness function
instead of a cost function, and the fact that the adaptation of the
design is dependent upon neither (a) the engineer nor (b) the gra-
dient of the cost function, as in the two previous cases. Even more

interesting is that initial designs are randomly generated, without
any human intervention, and nevertheless the technique converges
to an optimal design in a reasonable amount of time.

The design of a reinforced concrete beam is normally an inter-
active process in which the engineer assumes the self-weight of the
beam beforehand, and a trial section is chosen. Then, the moment
of resistance of this section is determined, to check its suitability
against the given applied bending moment. This process is repeated
until a trial section is found suitable. This procedure often creates
difficulty in exactly matching the moment of resistance of the sec-
tion with the total applied bending moment due to the self-weight
of the beam, which may be quite substantial in many cases. There-
fore, the design process of a beam is not only slow, but also has a
complete lack of economics, since the only concern is to find any
section suitable for the given conditions, without even considering
the possibility of making it as cheap as possible.

In this paper, we'll present a model for optimal design which
minimizes the cost of a reinforced concrete beam based not only on
the allowable stresses of the element, but also in the costs of con-
crete, steel and shuttering. Our model follows that proposed by
Chakrabarty [4] [5], with certain modifications (i.e., additional con-
straints) that makes it suitable for practical applications. In the
next section, we’ll introduce some general concepts from reinforced
concrete design. Then, our model will be shown and the genetic al-
gorithm approach will be described. Finally, we’ll present the results
found by our model when solving some problems found in the liter-
ature, and we’ll briefly discuss some of the issues that arose when
using genetic algorithms in this kind of application.

2 Basic Concepts

According to the strength design method adopted for this
work, the nominal moment capacity M, of a rectangular beam with
tension reinforcement only is given by [6]:

M, = bd*fw(1l — 0.59w) (1)

where b is the width of the beam, d is the distance from the extreme
compressive fibre to the centroid of tension reinforcement, f. is the
compressive strength of concrete, w = (A,f,/bdf.), f, is the yield
strength of reinforcement and A, is the area of tension reinforcement.
There is an infinite amount of solutions to equation (1) that yield
the same value of M, [6]. In the traditional design process, the
values of b and/or d are assumed, and the remaining parameters are

calculated based on them, iterating until a suitable section is found.
An obvious restriction of this approach is that only a few sections can
be evaluated in this manner. Since equation (1) does not incorporate
any cost parameter, there is no way of achieving a least-cost design.
Therefore, we need to include certain cost parameters combined with
the design parameters in our optimal design model, so that we can
produce least-cost suitable designs.

3 Previous Work

The optimal design of beams was first proposed by Galileo [7],
even though his calculations were wrong. Apparently, the doctoral
dissertation by E. J. Haug Jr. [8] (see also [9]) in 1966 is one of the
first modern attempts to use a digital computer as a tool for the op-
timal design of this structural element. Haug reduced the non-linear
optimal design problem to a Lagrange problem in the Calculus of
Variations. His model includes restrictions and tries to minimize the
weight of the beam in several different situations. Venkayya [10] de-
veloped a method based on an energy criteria and a search procedure
for design of structures subjected to static loading. He argues that
his method can handle very efficiently: (a) designs for multiple load
conditions, (b) stress constraints, (c) constraints on displacements,
(d) constraints on sizes of the elements. His method has been suc-
cessfuly applied to the design of trusses, frames and beams. Osyczka
[11] [12] has applied multi-objective optimization techniques to beam
design problems. Also, Prakash et al. [13] proposed a model for opti-
mal design of reinforced concrete sections in which the costs of steel,
concrete and shuttering were included. Chakrabarty’s model [4] [5]
has some similarities with Prakash’s model, but the former is more
complete and detailed. That’s the main reason why we decided to
use Chakrabarty’s model as a basis for our implementation, even
though we had to slightly modify it in order to produce designs that
fall into Mexico’s standard regulations for reinforced concrete design,
since the original model led in some cases to inconsistent designs.

4 The Optimal Design Model

A schematic section of a rectangular singly reinforced concrete
beam is shown in Figure 1. The cost per unit length of the beam
will be given by the following expression [5]:

y(z) = c1z1 + comazs + c322 + a3 (2)

Figure 1: Schematic section of a singly reinforced rectangular beam.
Taken from [4].

where y(z) is the cost per unit length of the beam ($/cm), ¢; is the
cost coeflicient due to volume of tensile steel reinforcement in the
beam ($/cm?), c; is the cost coefficient due to volume of concrete in
the beam ($/cm3), c3 is the cost coefficient due to shuttering along
the vertical surfaces of the beam ($/cm?), ¢4 is the cost coefficient
due to shuttering along the bottom horizontal surface of the beam
($/cm?), z1 is the variable giving the area of tensile steel reinforce-
ment as shown in Figure 1 (¢cm?), z, is the variable giving the depth
of the beam as shown in Figure 1 (¢m) and z3 is the variable giving
the width of the beam, as shown in Figure 1 (c¢m).

The variables x1, 5 and 3 not only affect the cost of a beam,
but will also determine its moment of resistance. Since z; may be
calculated if we know z5 and z3 [6], we’ll propose different values for
these two variables so that the total cost of the beam is minimum,
verifying at the same time that our section has a proper resistant
moment. Then, our optimal design model is the following:

minimize: f(z) = 121 + cazox3 + c322 + c4T3

subject to:
ayzy eszs < 1 (equilibrium constraint) (3)
apzyt + azzazsryt < 1
(bending moment compatibility constraint) (4)

(width — height ratio constraint) (5)

Q(z2 — aszs)(f, foxszs + z1fy)as/zq > 1

(acting moment constraint) (6)
ag/x3 <1 (minimum width constraint) (7)
T1, T, T3, e, x5 > 0 (non — negativity constraint) (8)

Here x4 is a variable defining the total applied bending moment
including the bending moment due to self-weight of the beam; x5
is a variable defining the depth of the equivalent rectangular stress
block. Additionally, we have the following formulas:

c1 = wy X ¢y ($/cm?) (9)

where w, = 0.00785 kg/cm® (assumed value) is the unit weight of
steel reinforcement, and c, is the unit cost of steel reinforcement

(8/kg).
co=(1+7)c, x 107° ($/em?) (10)

where c, is the unit cost of concrete ($/m?) and r is the cover ratio.

c3=2(1+7)c, x 107* (§/cm?) (11)

where c, is the unit cost of shuttering ($/m?).

cs=c, x 107 ($/cm?) (12)

ay = 0.851./ f, (13)

where f, is the yield strength of steel reinforcement (N/cm?) and f,
is the compressive strength of concrete (N/cm?).

a3 = D(1 4 r)w.kL? (14)

where D = 1.4 (assumed) is the load factor for dead load, w. =
0.0228 N/cm? is the unit weight force of concrete, k is the moment
coefficient for the design section (= 1.8 for simply supported beam)
and L is the span of the beam (cm).

ay = 1/(£Qf.) (15)

where @ is the capacity reduction factor (= 0.90 for flexure) and f, =

0.85 (assumed) is the reduction factor of concrete. Also, as is the

applied bending moment (N —cm), a5 = % (assuming the centroid of

compressive force at half the depth of equivalent rectangular stress
block), and ag is the minimum acceptable width of the beam.

To determine z4 (total bending moment, including self-weight
of the beam), we use:

T4 = QAo + A3T2T3 (16)

To calculate z; (area of reinforcement steel), we use:

Iy = W5L'2'T3f;/fy (17)
where
1— . 1— 4(0.59)14’
0.9.’L‘3.’1:§fC
= 18
v 1.18 (18)

This last expression can be derived from equation (1). Finally, z5
(depth of the equivalent stress block) is given by:

x5 = z1/(a123) (19)

5 Use of Genetic Algorithms

To solve this optimization problem, we used a Turbo Pascal
implementation of the Simple Genetic Algorithm (SGA) proposed
by David Goldberg [3], and we experimented with several represen-
tation schemes. We have previously used binary representation [14]
and we have tried Gray coding [15] for structural optimization prob-
lems with a continuous search space like this one. For this particular
application, we decided to experiment also with floating point rep-
resentation. We won’t talk much about the genetic algorithm (GA),
since we have done so in previous publications [16] [17] [18]. Instead,
we’ll give some details about the different representation schemes
that we used in our experiments.

The traditional representation used by the genetic algorithms
community is the binary scheme according to which a chromosome
is a string of the form (by,bs,...,b,,), where by, bs, ... b, are called
allele (either zeros or ones). Since the binary alphabet offers the
maximum number of schemata per bit of information of any coding
[3], its use has became very popular among scientists. This coding
also facilitates theoretical analysis of the technique and allows el-
egant genetic operators. However, since the “implicit parallelism”
property of GAs does not depend on using bit strings [19] it may be
worthwhile to experiment with larger alphabets and even with new
genetic operators. In particular, for optimization problems in which

the parameters to be adjusted are continuous, a floating point repre-
sentation scheme seems a logical choice. Accoding to this represen-
tation, a chromosome is a string of the form (dy,ds, ..., d,,), where
di,ds,...,d,, are digits (numbers between zero and nine). One of the
advantages of floating point representation is that it has the prop-
erty that two points close to each other in the representation space
must also be close in the problem space, and vice versa [19]. This
is not generally true in the binary approach, where the distance in
a representation is normally defined by the number of different bit
positions. However, it is possible to reduce such discrepancy by us-
ing Gray coding. The Gray code representation has the property
that any two points next to each other in the problem space dif-
fer by only one bit [19]. In other words, an increase of one step in
the parameter value corresponds to a change of a single bit in the
code. This is a well known technique used to reduce the distance
of two points in the problem space, and it is argued to bring some
benefit because of their adjacency property, and the small perturba-
tion caused by many single mutations. Finally, we should mention
that we used a two-point crossover, and binary tournament selec-
tion in all our tests. The only operator that had to be redefined
was mutation, which in the floating point representation consisted
on selecting a random number between 0 and 9. Our fitness func-
tion was given by equation (2), using a penalty function of the form
fitness = 1/(cost * (v * 500 + 1)) where v depends on the number
of constraints violated, and 500 was a value derived experimentally.
Whenever the design doesn’t violate any constraint, the fitness func-
tion is just the inverse of the cost (the GA only maximizes, and we
required a minimization in this case).

6 Examples

The following example was taken from Everard and Tanner [6]:
Design a least-cost reinforced concrete rectangular beam simply sup-
ported over a span of 10 m supporting a uniform dead load of
15 kN/m and a uniform live load of 20 kN/m. The concrete strength
f. =30 MPa and the steel yield strength fy =300 M Pa. The unit
cost of steel (CS), concrete (CC) and shuttering (CSH) are $ 0.72/kg,
$ 64.5/m3 and $ 2.155/m?, respectively. Assume a cover ratio (r) of
0.10, unit weight of concrete of 2323 kg/m® and capacity reduction
factor as 0.90.

The ultimate uniform load is
=1.4x 154 1.7 x 20 = 55 kN/m.
The ultimate applied bending moment is

30cm

=
° o T
86.478 cm
3 bars of
20 mm
B Ay 1
W 8.648 cm
v

4 bars of 30 mm

Figure 2: Optimum design of the beam of the first example.

Parameter | Chakrabarty | GA (B) | GA (G) | GA (FP)
z; (em?) 37.6926 36.1893 | 41.5905 37.5205
z (cm) 86.0629 89.5402 | 78.6177 86.4776
z3 (em) 30.0000 30.0162 | 30.0447 30.0022

cost ($/cem) 0.4435 0.4442 0.4464 0.4436

Table 1: Comparison of the geometric programming approach used
by Chakrabarty [4] and the GA using binary (B), Gray coding (G)
and floating point (FP) representation.

=55 x 10%/8 = 687.5 kN, m = 687.5 x 10° N — cm.
Using this information, we can get the values of the cost coefficients
and the other model constants:

c1 = 0.0056520 co = 0.00007095
cs = 0.00047410 cqs = 0.00021550

a; = 0.08500 as = 68750, 000
az = 438'233,950 a4 = 0.00043573
as = 0.50 ag = 30.00

Our results and their comparison with the geometric programming
method used by Chakrabarty [5] are shown in Table 1. As we can
see, the floating point representation produced the best results and
Gray coding the worst. Our final design for this problem is shown in
Figure 2, and has a total height of 95.125, which is about 1% more
than Chakrabarty’s design. This slight difference is due to the fact

Parameter | Chakrabarty | GA (FP)
b (cm) 20 20
21 (cm?) 31.1267 39.5412
zg (em) 101.5494 82.7043
z3 (cm) 20.000 20.6825
cost ($/cm) 0.3725 0.3885
b (cm) 40 40
21 (cm?) 43.6017 13.7644
z (cm) 76.1499 75.9102
z3 (cm) 40.000 40.0042
cost ($/cm) 0.5073 0.5074
b (cm) 62.5 62.5
z1 (em?) 55.4435 35.7172
25 (cm) 62.5974 104.3223
z3 (cm) 62.500 62.5010
cost ($/cm) 0.6341 0.7274

Table 2: Comparison of the geometric programming approach used
by Chakrabarty [4] and the GA using floating point representation.

that Chakrabarty’s model considers the area of reinforcement steel as
a variable, even when this is a parameter that depends on the beam
section, and can’t take any arbitraty value. On the other hand, our
costs of steel, concrete and shuttering represent the 47.80%, 41.50%
and 10.70% of the total cost, which corresponds almost exactly to
the costs obtained by Chakrabarty. Floating point represention was
used in all the further experiments, since it provided the best results
overall. It should be noticed that our model has more constraints
than Chakrabarty’s model, in order to make it more realistic. For
example, we require the relation z3/z* to be between 0.25 and 0.60
which is a common recipe used by civil engineers in practice. The
reason for this is not purely empirical. These limits allow us to
have a “reasonable” amount of reinforcement steel in our designs, so
that we can guarantee a good adherence between steel and concrete,
and we can provide a good control of the beam’s deflection. Since
Chakrabarty doesn’t impose this constraint in his model, some of
the results shown next will violate it.

First, we’ll perform an analysis similar to that conducted by
Chakrabarty, experimenting with different values of b. The results
of our tests are shown in Table 2. For the case in which b = 62.50

Chakrabarty’s model produces a design 42.98% more expensive than
when b = 30. Our design is 63.98% more expensive. However,
Chakrabarty’s design violates the restriction imposed by equation
(5). Therefore, in practice an engineer would prefer our design even
when it’s more expensive, for the reasons previously exposed. In all
the remaining examples, it will always be the case that when our
results are not equals to those produced by Chakrabarty’s model
(or almost equal, should we say, since there is always a difference in
the last digit due to rounding-off errors) it’s because his design is
violating some constraint—normally that defined by equation (5)—.

Finally, we tested different values for the costs of reinforcement
steel, concrete and shuttering. The results are shown in Table 3.
Again, the discrepancies between our results and those produced by
Chakrabarty’s method will indicate some violation of the constraints
imposed by our model.

7 Selecting the Parameters of the GA

One of the main problems when using GAs in optimization
problems is how to choose the most appropriate parameter values
(i.e., population size, maximum number of generations, and muta-
tion and crossover rate). This is normally a trial and error process
which takes some time. One of the experiences derived from this
research was the fact that it turned out to be much harder to fine
tune the parameters of the GA when a floating point representation
scheme was used. To deal with this problem, we used a systematic
process that seems to be able to generate optimal (or at least sub-
optimal) solutions in a very short period of time and with minimal
human intervention. We set the population size and the maximum
number of generations as constants (400 chromosomes and 50 gen-
erations). Then, we ran a nested loop in which the crossover rate
and the mutation rate went from 0.1 to 0.9 at increments of 0.1. For
each run, we updated 2 files. One contained only the final costs, and
the other had a summary that included, besides the cost, the cor-
responding values of the design parameters and the mutation and
crossover rates used. Also, a flag indicating if any constraint was
violated or not. When the whole process ended up, the file with
the costs was sorted in ascending order, and the smallest value was
searched in the other file. If that cost didn’t violate any constraint,
then the design parameters corresponding to that cost were printed
as the final answer. Otherwise, the next cost was taken and searched
in the auxiliary file, repeating the same process until a cost that did-
n’t violate any constraint was found. In practice, we normally never

Parameter | Chakrabarty GA (FP)
b (cm) 40 40
CS =0.36 CC =64.5 CSH = 2.155
2, (em?) 57.0072 50.2583
Zs (cm) 59.8678 66.7020
Z3 (cm) 20.000 40.0033
cost ($/cm) 0.3680 0.3716
CS =1.08 CC =64.5 CSH = 2.155
21 (em?) 37.2006 37.0318
Z5 (cm) 89.5455 00.0205
z3 (cm) 40.000 40.0010
cost ($/cm) 0.6206 0.6207
CS =144 CC =64.5 CSH = 2.155
zp (em?) 33.2691 33.2279
Zs (cm) 1011724 101.3565
z3 (cm) 40.000 40.0001
cost ($/cm) 0.7198 0.7199
CS =0.72 CC =32.25 CSH = 2.155
z1 (cm?) 33.0372 35.0698
z3 (cm) 95.5279 95.4719
z3 (cm) 40.000 40.0001
cost ($/cm) 0.3875 0.3876
CS =0.72 CC =129.0 CSH = 2.155
21 (cm?) 55.4240 49.9278
z3 (cm) 61.2698 67.0981
Z3 (cm) 20.000 40.0050
cost ($/cm) 0.6987 0.7035
CS =0.72 CC =64.5 CSH =1.0775
z1 (cm?) 42.3510 42.5568
z5 (cm) 78.3650 78.0625
z3 (cm) 40.000 40.0001
cost ($/cm) 0.4847 0.4848
CS =0.72 CC =64.5 CSH =4.31
21 (cm?) 45.9454 45.9012
zo (cm) 72.4085 72.5103
Z3 (cm) 20.000 40.0003
cost ($/cm) 0.5511 0.5512

Table 3: Comparison of the geometric programming approach used
by Chakrabarty [4] and the GA using floating point representation.

had to search more than twice for any given minimum cost. Since
each run is completely independent from the others, we can perform
all this process in parallel, so that the total execution time will be
practically the same required for a single run (approximately 15 sec-
onds in a PC DX/2 running at 66 MHz and with a mathematical
COProCessor).

Future Work and Conclusions

Even when we already have some concrete results in this re-
search, a lot of work remains to be done. For example, we are cur-
rently exploring other techniques for adjusting the parameters of the
GA, such as fuzzy logic. Also, we are interested on doing a theo-
retical analysis of the search space of this optimization problem, so
that we can devise some strategies to solve it more efficiently. Nev-
ertheless, our current results are very promising, and the system has
called the attention of more than one engineer both in the academia
and the building industry in México.

We have been working in the use of GAs for structural op-
timization problems during the last two years, and so far, we have
implemented systems to generate optimal designs of beams, columns
and plane and space trusses. However, our final goal is to develop
a complete structural optimization system that uses GAs, and that
probably incorporates also the traditional mathematical program-
ming techniques available, together with some other powerful heuris-
tics such as tabu search and simulated annealing. Such a system
intends to be a very powerful tool for computer aided structural de-
sign that will allow to reduce costs without sacrificing safety.

References

[1] Belegundu, A. D., A Study of Mathematical Programming Methods
for Structural Optimization. PhD dissertation, University of lowa,
Dept. of Civil and Environmental Engineering, 1982.

[2] Holland, J. H., Adaptation in Natural and Artificial Systems. Ann
Harbor : University of Michigan Press, 1975.

[3] Goldberg, D. E., Genetic Algorithms in Search, Optimization and
Machine Learning. Reading, Mass. : Addison-Wesley Publishing
Co., 1989.

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Chakrabarty, B. K., “A model for optimal design of reinforced con-
crete beam,” Journal of Structural Engineering, vol. 118, pp. 3238-
3242, nov 1992.

Chakrabarty, B. K., “Model for optimal design of reinforced concrete
beams,” Computers and Structures, vol. 42, no. 3, pp. 447-451, 1992.

Everard, N. J. and III, J. L. T., Theory and Problems of Reinforced
Concrete Destgn. McGraw-Hill Book Company, second ed., 1987.

Galilei, G., Dialogues Concerning Two New Sciences. Evanston, Ill.
Northwestern University Press, 1950. Originally published in 1665.

Haug, E. J., Minimum Weight Design of Beams with Inequality Con-
straints on Stress and Deflection. Department of mechanical engi-
neering, Kansas State University, 1966.

Haug, E. J. and Kirmser, P. G., “Minimum weight design of beams
with inequality constraints on stress and deflection,” Journal of Ap-
plied Mechanics. Transactions of the ASME, pp. 999-1004, dec 1967.

Venkayya, V. B., “Design of optimum structures,” Computers and
Structures, vol. 1, pp. 265-309, 1971.

Osyczka, A., Multicriterion Optimization in Engineering with FOR-
TRAN programs. Ellis Horwood Limited, 1984.

Osyczka, A., “Multicriteria optimization for engineering design,” in
Design Optimization (Gero, J. S., ed.), pp. 193-227, Academic Press,
1985.

Prakash, A., Agarwala, S. K., and Singh, K. K., “Optimum design
of reinforced concrete sections,” Computers and Structures, vol. 30,
no. 4, pp. 1009-1011, 1988.

Coello, C. A. C., “Discrete optimization of trusses using genetic algo-
rithms,” in EXPERSYS-9). Expert Systems Applications and Arti-
ficial Intelligence (Chen, J., Attia, F. G., and Crabtree, D. L., eds.),
(Houston, Texas), pp. 331-336, I.I.T.T. International. Technology
Transfer Series, nov 1994.

Coello, C. A. and Christiansen, A. D., “Using genetic algorithms for
optimal design of axially loaded non-prismatic columns,” Tech. Rep.
TUTR-CS-95-101, Tulane University, jan 1995.

Coello, C. A., “Uso de algoritmos genéticos para el diseno éptimo de
armaduras,” in Congreso Nacional de Informadtica - 1994 Herramien-
tas para los Mercados Globales, (Mexico City, México), pp. 290-305,
Fundacién Arturo Rosenblueth, jun 1994. (in Spanish).

[17]

[18]

[19]

Coello, C. A. C., “El algoritmo genético como alternativa a la pro-
gramacién dinamica,” in Actas del VIII Simposio Internacional en
Aplicaciones de Informdtica, (Antofagasta, Chile), pp. 151-157, Uni-
versidad Catdlica del Norte, nov 1994. (in Spanish).

Coello, C. A. and Christiansen, A. D., “Optimization of truss designs
using genetic algorithms,” Tech. Rep. TUTR-CS-94-102, Tulane Uni-
versity, nov 1994.

Michalewicz, Z., Genetic Algorithms + Data Structures = Evolution
Programs. Springer-Verlag, second ed., 1992.

