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Abstract. In this paper, a new multiobjective optimization technique based
on the genetic algorithm (GA) is introduced. This method is based in the
concept of min-max optimum, taken from the Operations Research literature,
and can produce the Pareto set and the best trade-off among the objectives.
The results produced by this approach are compared to those produced with
other mathematical programming techniques and GA-based approaches using
a multiobjective optimization tool called MOSES (Multiobjective Optimization
of Systems in the Engineering Sciences). The importance of representation is
hinted in the example used, since it can be seen that reducing the chromosomic
length of an individual tends to produce better results in the optimization pro-
cess, even if it’s at the expense of a higher cardinality alphabet.

1 Introduction

Engineering optimization has been a very fertile area of research in the last
few years, but the normal trend has been to deal with a single objective at a
time, and use ideal and unrealistic problems, rather than real-world applications.
Assuming only one objective is generally unrealistic for engineering optimization
problems, since most real-world problems have several (possibly conflicting)
objectives. The common practice, therefore, has been to let the designer to
make decisions based on his/her experience, instead of using some well-defined
optimality criterion.

Over the years, the Operations Research community has produced more
than 20 mathematical programming techniques to deal with multiple objec-
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tives. However, the main focus of these approaches is to produce a single trade-
off based on some notion of optimality, rather than producing several possible
alternatives from which the designer may choose. More recently, the genetic al-
gorithm (GA), an artificial intelligence search technique based on the mechanics
of natural selection, has been found to be effective on some scalar optimization
problems. In order to extend the GA to deal with multiple objectives, the
structure of the GA has been modified to handle a vector fitness function.

This paper will review some of the previous work in multiobjective optimiza-
tion using GAs, and a new approach, proposed by the author, will be introduced.
Also, MOSES (Multiobjective Optimization of Systems in the Engineering Sci-
ences), a system developed as a testbed for multiobjective optimization tech-
niques by the author, will be briefly described together with an example of its
use. The new approach, based on the notion of min-max optimum, is able to
generate the Pareto set and better trade-offs than any of the other techniques
included in MOSES. The importance of using alphabets of cardinality higher
than two will be emphasized, and the results found with this alternative rep-
resentation will be shown to be better than those produced using a traditional
binary representation, both for single and multiobjective optimization.

1.1 Statement of the Problem

Multiobjective optimization (also called multicriteria optimization, multiperfor-
mance or vector optimization) can be defined as the problem of finding [13]:

a vector of decision variables which satisfies constraints and opti-
mizes a vector function whose elements represent the objective func-
tions. These functions form a mathematical description of perfor-
mance criteria which are usually in conflict with each other. Hence,
the term “optimize” means finding such a solution which would give
the values of all the objective functions acceptable to the designer.

Formally, we can state it as follows:

Find the vector z* = [z7,23,.. ., ;L‘Z]T which will satisfy the m inequality
constraints:

9:i(2)>0 1i=1,2,...,m (1)
the p equality constraints

hi(2)=0 i=1,2,...,p (2)
and optimize the vector function

F@) = [A(2), f2(2), ..., fe(@)]" (3)

_ T . .. .
where z = [21, 23, ...,2,]" is the vector of decision variables.



1.2 Min-Max Optimum

The idea of stating the min-maz optimum and applying it to multiobjective
optimization problems, was taken from game theory, which deals with solving
conflicting situations. The min-max approach to a linear model was proposed
by Jutler and Solich and was been further developed by Osyczka [11], Rao [14]
and Tseng & Lu [18].

The min-max optimum compares relative deviations from the separately
attainable minima. Consider the ith objective function for which the relative
deviation can be calculated from

v @) = £
ci(a) = M @
or from
v @) = ;)
%)= ©)

Tt should be clear that for (4) and (5) we have to assume that for every ¢ € T
and for every z € X, fi(z) # 0.

If all the objective functions are going to be minimized, then equation (4)
defines function relative increments, whereas if all of them are going to be max-
imized, it defines relative decrements. Equation (5) works conversely.

2 Multiobjective Optimization Using GAs

Some of the most important GA-based multiobjective optimization techniques
will be briefly explained in this section.

3 VEGA

David Schaffer [16] extended Grefenstette’s GENESIS program [8] to include
multiple objective functions. Schaffer’s approach was to use an extension of the
Simple Genetic Algorithm (SGA) that he called the Vector Evaluated Genetic
Algorithm (VEGA), and that differed of the first only in the way in which se-
lection was performed. This operator was modified so that at each generation
a number of sub-populations was generated by performing proportional selec-
tion according to each objective function in turn. Thus, for a problem with &
objectives, k sub-populations of size N/k each would be generated, assuming a
total population size of N. These sub-populations would be shuffled together to
obtain a new population of size N, on which the GA would apply the crossover
and mutation operators in the usual way. Schaffer realized that the solutions
generated by his system were non-inferior in a local sense, because their non-
inferiority is limited to the current population, and while a locally dominated
individual is also globally dominated, the converse is not necessarily true [16].



4 Lexicographic Ordering

The basic idea of this technique is that the designer ranks the objectives in order
of importance. The optimum solution is then found by minimizing the objective
functions, starting with the most important one and proceeding according to
the order of importance of the objectives [15]. Fourman [6] suggested a selec-
tion scheme based on lexicographic ordering. In a first version of his algorithm,
objectives were assigned different priorities by the user and each pair of individ-
uals were compared according to the objective with the highest priority. If this
resulted in a tie, the objective with the second highest priority was used, and
so on. A second version of this algorithm, reported to work surprisingly well,
consisted of randomly selecting the objective to be used in each comparison.
As in VEGA, this corresponds to averaging fitness across fitness components,
each component being weighted by the probability of each objective being cho-
sen to decide each tournament [5]. However, the use of pairwise comparisons
makes an important difference with respect to VEGA, since in this case scale
information is ignored. Therefore, the population may be able to see as convex
a concave trade-off surface, depending on its current distribution, and on the
problem itself.

5 Weighted Sum : Hajela’s Method

Hajela and Lin [9] included the weights of each objective in the chromosome,
and promoted their diversity in the population through fitness sharing. Their
goal was to be able to simultaneously generate a family of Pareto optimal de-
signs corresponding to different weighting coefficients in a single run of the GA.
Besides using sharing, Hajela and Lin used a vector evaluated approach based
on VEGA to achieve their goal. They proposed the use of a utility function of
the form:

_ F
=Y Wit (6
i=1 4
where F;* are the scaling parameters for the objective criterion, [ is the num-
ber of objective functions, and W; are the weighting factors for each objective
function F;. In MOSES’s implementation, a min-max approach was used to
determine the utility function, so that the scaling factor was the ideal vector.
Hajela’s approach also uses a sharing function of the form:

= (8)° <o
b(d;;) = (osh v Qi <O 7
() 0, otherwise ™)

where o = 1 for this work, d;; is a metric indicative of the distance between
designs ¢ and j, and o4p 1s the sharing parameter, which is typically chosen
between 0.01 and 0.1. The fitness of a design ¢ is then modified as:



Ji
- 8
= T et "

where M is the number of designs located in vicinity of the i-th design.
Hajela incorporates weight combinations into the chromosomic string, and
under his representation, a single number represents not the weight itself, but
a combination of them. For example, the number 4 (under floating point rep-
resentation) could represent the vector X,, = (0.4,0.6) for a problem with two
objective functions. Then, sharing is done on the weights. Finally, a mating
restriction mechanism was imposed, to avoid members within a radius o4 to

Ccross.

6 MOGA

Fonseca and Fleming [4] have proposed a scheme in which the rank of a certain
individual corresponds to the number of chromosomes in the current population
by which it is dominated. Consider, for example, an individual z; at generation
t, which i1s dominated by pl(»t) individuals in the current generation. Its current
position in the individuals’ rank can be given by [4]:
rank(z;,t) =1+ pl(-t) (9)
All non-dominated individuals are assigned rank 1, while dominated ones
are penalized according to the population density of the corresponding region
of the trade-off surface. See Fonseca and Fleming [4] for details.

7 NSGA

The Non-dominated Sorting Genetic Algorithm (NSGA) was proposed by Srini-
vas and Deb [17], and is based on several layers of classifications of the individ-
uals. Before the selection is performed, the population is ranked on the basis
of nondomination: all nondominated individuals are classified into one category
(with a dummy fitness value, which is proportional to the population size, to
provide an equal reproductive potential for these individuals). To maintain the
diversity of the population, these classified individuals are shared with their
dummy fitness values. Then this group of classified individuals is ignored and
another layer of nondominated individuals is considered. The process continues
until all individuals in the population are classified. A stochastic remainder
proportionate selection was used for this approach. Since individuals in the first
front have the maximum fitness value, they always get more copies than the
rest of the population. This allows to search for nondominated regions, and
results in quick convergence of the population toward such regions. Sharing, by
its part, helps to distribute it over this region.



8 NPGA

Horn and Nafpliotis [10] proposed a tournament selection scheme based on
Pareto dominance. Instead of limiting the comparison to two individuals, a
number of other individuals in the population was used to help determine dom-
inance. When both competitors were either dominated or non-dominated (i.e.,
there was a tie), the result of the tournament was decided through fitness shar-
ing [7]. The pseudocode for Pareto domination tournaments assuming that all
of the objectives are to be maximized can be found in Horn and Nafpliotis [10].

9 An Approach Using a Min-Max Strategy

The idea of this approach is to generate the individuals in such a way that they
all constitute feasible solutions. This can be ensured by checking that none of
the constraints is violated by the solution vector encoded by the corresponding
chromosome, and by designing special operators. Then the user has to provide
a vector of weights, which are used to spawn as many processes as weight com-
binations are provided (normally this number will be reasonably small). Each
process is really a separate GA in which the given weight combination is used in
conjunction with a min-max approach to generate a single solution. After the n
processes are terminated (n=number of weight combinations provided), a final
file 1s generated containing the Pareto set, which is formed by picking up the
best solution from each of the processes spawned in the previous step. Since this
approach requires knowing the ideal vector, the user is given the opportunity to
provide such values directly (in case he/she knows them) or to use another GA
to generate it.

10 Example

To illustrate the use of MOSES and the efficiency of the new technique proposed,
one engineering design example were selected from the literature [3]. Since it is
generally intractable to obtain an analytical representation of the Pareto front,
it is usually very difficult to measure the performance of a multiobjective opti-
mization technique. For the purposes of this paper the results were compared
only in terms of the best trade-offs that could be achieved. For that sake, the
following expression was used

fi = filz)

— (10)
Pi

k
Lp(f) = Z w;

where k is the number of objectives, p; = f?,or fi(z), depending on which
gives the maximum value for L, (f), and w; refers to the weight assigned to each
objective (if not known, equal weights are assigned to all the objectives). A
sketch of the Pareto front produced by each technique can actually be obtained



Figure 1: Fig. 1 Sketch of the machine tool spindle used for the example.

with MOSES, but due to space limitations such graphs won’t be included in
this paper.

10.1 Design of a Machine Tool Spindle

Consider the problem of a preliminary design of a machine tool spindle as pre-
sented in Figure 1 (taken from Eschenauer et al. [3]). The formulation of the
multiobjective optimization problem is to minimize fi(z) and fa(z) as defined

below [3].

™
filz) = o [a(d} — d3) +1(df — d3)] (11)
Fa3 l 1, F a\?  cqa’
z) = 14+ -2 — {1+~ — 12
f2(@) 3E1a< +afb)+ca [( +1) +cbl2] (12)
I, =0.049(d: — d¥), I, = 0.049(dy — d2) (13)
Ca = 35400(8,4|¥dy, ey = 35400(6,5|3 d;> (14)
gi(e) =1-13 <0
g2(z) =1 —1<0 (15)
gB(I) = dal - da S 0
_(]4(([‘): a — a2<0
g5(éL‘) = dbl — db < 0
16
ge(z) =dp — dpa <0 (16)
g7(z) = —d, <0
(éb)_pld —dp <0
go(z) = pady —dys <0 (17)
a
g10(2) = |Aa + (Aa = Ap) 7|~ A <0 (18)

For this example, it is assumed that d, must be chosen from the set X3 =
{80,85,90,95}, and dp from the set X4 = {75,80,85,90}. Additionally, the

following constant parameters are assumed:



Method X1 X2 X3 X4 f1 fz
Monte Carlo 1 | 59.08 | 189.17 | 90 | 75 | 606667.43 | 0.032467
Monte Carlo 1 | 26.26 | 193.29 | 90 | 85 | 1457744.67 | 0.019242
GA (Binary) | 60.00 | 200.00 | 80 | 75 | 466532.80 | 0.038087
GA (Binary) | 25.00 | 190.09 | 95 | 90 | 1640191.80 | 0.016613

GA (FP) 56.16 | 194.49 | 95 | 90 | 312430.43 | 0.017951

GA (FP) 25.35 | 189.58 | 95 | 90 | 1641135.80 | 0.016615

Literature 63.89 | 183.29 | 85 | 80 | 531059.80 | 0.030182

Literature 66.45 | 183.36 | 95 | 85 | 694101.00 | 0.023078

Table 1: Comparison of results computing the ideal vector of the example (de-
sign of a machine tool spindle). For each method the best results for optimum
f1 and fy are shown in boldface.

dom=25.00 mm dq1=80.00 mm
da2:95.00 mim d61:75.00 mim
dp2=90.00 mm p1=1.25

p2=1.05 lx;=150.00 mm
1,=200.00 mm a=80.00 mm

FE =210,000.0 N/mm? F=10,000N

A, = 0.00540000 mm Ap = —0.00540000 mm
A = 0.01000000 mm drq = —0.00100000 mm

drp = —0.00100000 mm

11 Comparison of Results

The ideal vector that each method generates will be compared with the best
results reported in the literature [3]. The two Monte Carlo methods included
in MOSES were used, together with Osyczka’s multiobjective optimization sys-
tem [12] to obtain the ideal vector. Also, several GA-based approaches will
be tested using the same parameters (same population size and same crossover
and mutation rates). If niching is required, then the niche size will be computed
according to the methodology suggested by the developers of the method.

The ideal vector of this problem was computed using the two Monte Carlo
Methods included in MOSES (generating 100 points), and a GA (with a pop-
ulation of 100 chromosomes running during 50 generations) using binary and
floating point representation. The corresponding results are shown in Table 1,
including the best results reported in the literature [3]. The results for Monte
Carlo Method 2 are the same than for Method 1. Notice that since Osyczka’s
multiobjective optimization system is not able to handle discrete variables, no
results are available for the min-max method using Osyzcka’s system. The GA



using both binary and floating point representation found the ideal vector with
a procedure to adjust its parameters that has been described somewhere else [1]
(the results shown are the best after 81 runs). As can be seen in the results, the
best result for the first objective was found using floating point representation,
and the best result for the second objective was found using binary represen-
tation, although the difference for this second objective is not really significant
with respect to the difference for the first objective. The use of this floating
point representation in various single and multiobjective optimization problems
has been found to be superior (in general) to the binary representation, mainly
as we increase the number of variables or their respective allowable ranges [1]. In
terms of the multiobjective optimization problem, the new technique introduced
in this paper produces a better overall result than any of the other existing ap-
proaches, including the mathematical programming techniques. As it turns out,
this technique also produces the best sketch of the Pareto front and is able to
keep it for as many generations as necessary, contrasting with the other GA-
based techniques that either lose the front very quickly (e.g., VEGA, NSGA,
and Hajela’s method) or aren’t able to find it at all (e.g., GALC and the Lex-
icographic method). The only two approaches with which the new technique
can really compete in terms of finding the Pareto front are NPGA y MOGA,
not only in this but in most of the other problems analyzed by the author [2].

12 Conclusions

A new multiobjective optimization method based on the min-max optimization
approach has been proposed. This approach is very robust because it trans-
forms the multiobjective optimization problem into several single objective op-
timization problems, and it works very well independently of the representation
scheme used. However, a floating point representation seems to work better for
numerical optimization applications. The main drawback of the new approach
is that it requires the ideal vector and a set of weights to delineate the Pareto
set. Nevertheless, when the ideal vector is not known, a set of target (desirable)
values for each objective can be provided instead. Also, finding proper weights
is normally an easy task, since not many of them are required to get reasonably
good results.

13 Future Work

Much additional work remains to be done, since this is a very broad area of
research. For example, it is desirable to do more theoretical work on niches
and population sizes for multiobjective optimization problems to verify some of
the empirical results obtained by the author. In that sense, it is expected that
MOSES may be useful as an experimentation tool for those interested in this
area. To talk about convergence in this context seems a rather difficult task,
since there is no common agreement on what optimum really means. However,



Method X1 X9 X3 X4 fl fz Lp(f)

Ideal Vector 312430.43 | 0.01662 | 0.00000

Monte Carlo 1 56.67 | 190.22 | 85 | 80 | 728581.78 | 0.02647 | 1.92555

Monte Carlo 2 26.26 | 193.29 | 90 | 85 | 1457744.67 | 0.01924 | 3.82407

GALC (B) 42.27 | 187.83 | 95 | 90 | 1386131.13 | 0.01696 | 3.45719

GALC (FP) 42.78 | 188.01 | 95 | 90 | 1377893.38 | 0.01697 | 3.43203

Lexicographic (B) 62.02 | 200.00 | 95 | 85 856072.60 | 0.02184 | 2.05486

Lexicographic (FP) | 61.98 | 190.91 | 95 | 80 | 709307.00 | 0.02619 | 1.84682

VEGA (B) 54.63 | 200.00 | 90 | 85 987526.38 | 0.02124 | 2.43936
VEGA (FP) 54.45 | 191.11 | 95 | 90 | 1151553.50 | 0.01775 | 2.75405
NSGA (B) 65.22 | 200.00 | 90 | 85 708412.19 | 0.02439 | 1.73510
NSGA (FP) 62.00 | 197.36 | 95 | 90 | 985238.13 | 0.01884 | 2.28746
MOGA (B) 65.52 | 200.00 | 90 | 85 699786.88 | 0.02453 | 1.71643
MOGA (FP) 67.75 | 189.34 | 95 | 90 | 800608.63 | 0.02011 | 1.77289
NPGA (B) 57.92 | 200.00 | 90 | 75 654768.06 | 0.03223 | 2.03595
NPGA (FP) 43.53 | 187.86 | 95 | 90 | 1363536.50 | 0.01701 | 3.38794
Hajela (B) 59.87 | 188.12 | 95 | 80 | 757841.81 | 0.02498 | 1.92946
Hajela (FP) 61.19 | 188.10 | 95 | 90 | 975296.19 | 0.01861 | 2.24167

GAminmax (B) 66.99 | 200.00 | 90 | 85 656950.38 | 0.02532 | 1.62676

GAminmax (FP) 71.98 | 188.17 | 95 | 90 | 672894.56 | 0.02169 | 1.45917

Table 2: Comparison of the best overall solution found by each one of the
methods included in MOSES for the example given. GA-based methods were
tried with binary (B) and floating point (FP) representations. The following
abbreviations were used: GALC = Genetic Algorithm with a linear combination
of objectives using scaling. In all cases, weights were assumed equal to 0.5 (equal
weight for every objective).



if we use concepts from Operations Research such as the min-max optimum,
it should be possible to develop such a theory of convergence for these kinds
of problems. Also, it is highly desirable to be able to find more ways of in-
corporating knowledge about the domain into the GA, as long as it can be
automatically assimilated by the algorithm during its execution and does not
have to be provided by the user (to preserve its generality).
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