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Abstract. In this paper we propose an application of the Ant System
(AS) to optimize combinational logic circuits at the gate level. We define
a measure of quality improvement in partially built circuits to compute
the distances required by the AS and we consider as optimal those solu-
tions that represent functional circuits with a minimum amount of gates.
The proposed methodology is described together with some examples
taken from the literature that illustrate the feasibility of the approach.

1 Introduction

In this paper we extend previous work on the optimization of combinational
logic circuits [1, 2], by experimenting with a metaheuristic: the ant system (AS)
6, 3].

The AS is a multi-agent system where low level interactions between single
agents (i.e., artificial ants) result in a complex behavior of the whole ant colony.
The idea was inspired by colonies of real ants, which deposit a chemical substance
on the ground called pheromone [5]. This substance influences the behavior of
the ants: they will tend to take those paths where there is a larger amount of
pheromone. The AS was originally proposed for the traveling salesman problem
(TSP), and according to Dorigo [6], to apply efficiently the AS, it is necessary to
reformulate our problem as one in which we want to find the optimal path of a
graph and to identify a way to measure the distances between nodes. This might
not be an easy or obvious task in certain applications like the one presented
in this paper. Therefore, we will provide with a detailed discussion of how to
reformulate the circuit optimization problem as to allow the use of the AS, and
we will present several examples to illustrate the proposed approach.
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Fig. 1. Matrix used to represent a circuit to be processed by an agent (i.e., an ant).
Each gate gets its inputs from either of the gates in the previous column.

2 Description of the Aproach

Since we need to view the circuit optimization problem as one in which we want
to find the optimal path of a graph, we will use a matrix representation for the
circuit as shown in Fig. 1. This matrix is encoded as a fixed-length string of
integers from 0 to N — 1, where N refers to the number of rows allowed in the
matrix.

More formally, we can say that any circuit can be represented as a bidimen-
sional array of gates S; j, where j indicates the level of a gate, so that those
gates closer to the inputs have lower values of j. (Level values are incremented
from left to right in Fig. 1). For a fixed j, the index 4 varies with respect to the
gates that are “next” to each other in the circuit, but without being necessarily
connected. Each matrix element is a gate (there are 5 types of gates: AND, NOT,
OR, XOR and WIRE) that receives its 2 inputs from any gate at the previous
column as shown in Fig. 1.

We have used this representation before with a genetic algorithm (GA) [1,
2]. The path of an agent (i.e., an ant) will then be defined as the sub-portion
of this matrix (of a certain pre-defined maximum size) representing a Boolean
expression (i.e., an ant will build a circuit while traversing a path). Each state
within the path is a matrix position of the circuit and the distance between two
states of the path is given by the increase or decrease of the cost of the circuit
when moving from one state to the following. Such cost is defined in our case in
terms of the number of gates used—i.e., a feasible circuit that uses the minimum
amount of gates possible is considered optimal. The aim is to maximize a certain
payoff function. Since our code was built upon our previous GA implementation,
we adopted the use of fixed matrix sizes for all the agents, but this need not be
the case (in fact, we could represent the Boolean expressions directly rather than
using a matrix). The matrix containing the solution to the problem is built in a
column-order fashion following the steps described next.

The gate and inputs to be used for each element of the matrix are chosen
randomly from the set of possible gates and inputs (a modulo function is used
when the relationship between inputs and matrix rows is not one-to-one). Each
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Fig. 2. Encoding used for each of the matrix elements that represent a circuit.

state is, therefore, a triplet in which the first 2 elements refer to each of the
inputs used (taken from the previous level or column of the matrix) and the
third is the corresponding gate (chosen from AND, OR, NOT, XOR, WIRE
(WIRE basically indicates a null operation, or in other words, the absence of
gate) as shown in Fig. 2 (only 2-input gates were used in this work). For the
gates at the first level (or column), the possible inputs for each gate were those
defined by the truth table given by the user (a modulo function was implemented
to allow more rows than available inputs).

One important difference between the statement of this problem and the TSP
is that in our case not all the states within the path have to be visited, but both
problems share the property that the same state is not to be visited more than
once (this property is also present in some routing applications [4]).

When we move to another state in the path, a value is assigned to all the
states that have not been visited yet and the next state (i.e., the next triplet)
is randomly selected using a certain selection factor p. This selection factor
determines the chance of going from state i to state j at the iteration ¢, and is
computed using the following formula that combines the pheromone trail with
the heuristic information used by the algorithm:

PE;(t) = fij(t) X hi (1)

where k refers to the ant whose pheromone we are evaluating, ¢ refers to
the current iteration, f;;(t) is the amount of pheromone between state ¢ and
state j, and h; ; is the score increment between state ¢ and state j. This score is
measured according to the number of matches between the output produced by
the current circuit and the output desired according to the truth table given by
the user. This score increment (h; ;) is analogous to the distance between nodes
used in the TSP. No normalization takes place at this stage, because in a further
step of the algorithm a proportional selection process is performed.

The amount of pheromone is updated each time an agent builds an entire
path (i.e., once the whole circuit is built). Before this update, the pheromone
evaporation is simulated using the following formula:

fig(t+1) = L —a) x fi;() + ) f5(t) (2)

where 0 < a@ < 1 (o = 0.5 was used in all the experiments reported in this
paper) is the trail persistence and its use avoids the unlimited accumulation
of pheromone in any path, m refers to the number of agents (or ants) and
Yohes fi’fj (t) corresponds to the total amount of pheromone deposited by all the



ants that went through states (¢, j). Furthermore, the pheromone trail is updated

according to the circuit built by each agent. The pheromone of the gates of the
first row of each column is increased using the following criteria:

1) If the circuit is not feasible (i.e., if not all of its outputs match the truth

table), then:

z'lfj = ik,:j + payoff (3)

2) If the circuit is feasible (i.e., all of its outputs match the truth table), then:

3) The best individual (from all the agents considered) gets a larger reward:

z"fj = fz']fj + (payoff x 3) (5)

The value of “payoff” is given by the number of matches produced between
the output generated by the circuit built by the agent and the truth table given
by the user (a bonus is added for each WIRE found in the solution only in those
cases in which the circuit is feasible—i.e., it matches all the outputs given in the
truth table).

To build a circuit, we start by placing a gate (randomly chosen) at a certain
matrix position and we fill up the rest of the matrix using WIREs. This tries to
compute the effect produced by a gate used at a certain position (we compute
the score corresponding to any partially built circuit). The distance is computed
by subtracting the hits obtained at the current level (with respect to the truth
table) minus the hits obtained up to the previous level (or column). When we
are at the first level, we assume a value of zero for the previous level.

Table 1. Truth table for the circuit of the first example.
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3 Results

We used several examples taken from the literature to test our AS implementa-
tion. Our results were compared to those obtained by two human designers and
a genetic algorithm with binary representation (see [2] for details).



3.1 Example 1

Table 2. Comparison of results between the AS, a binary GA (BGA), and two human
designers for the circuit of the first example.

BGA Human Designer 1
F=Z(X+Y)®(XY) F=ZXaeY)+Y(Xe2)
4 gates 5 gates
2 ANDs, 1 OR, 1 XOR 2 ANDs, 1 OR, 2 XORs
AS Human Designer 2
F=(ZaXY)(X+Y) F=XYZ+X{Y ®2)
4 gates 6 gates

2 ANDs, 1 OR, 1 XOR 3 ANDs, 1 OR, 1 XOR, 1 NOT
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Fig. 3. Circuit produced by the AS for the first example.

Our first example has 3 inputs and one output, as shown in Table 1. In this
case, the matrix used was of size 5 x 5, and the length of each string representing
a circuit was 75. Since 5 gates were allowed in each matrix position, then the size
of the intrinsic search space (i.e., the maximum size allowed as a consequence
of the representation used) for this problem is 5!, where [ refers to the length
required to represent a circuit (I = 75 in our case). Thefore, the size of the
intrinsic search space is 5™ ~ 2.6 x 1052. The graphical representation of the
circuit produced by the AS is shown in Fig. 3. The AS found this solution after
13 iterations using 30 ants.

The comparison of the results produced by the AS, a genetic algorithm with
binary representation (BGA) and two human designers are shown in Table 2.
As we can see, the AS found a solution with the same number of gates as the
BGA. In this case, human designer 1 used Karnaugh Maps plus Boolean algebra
identities to simplify the circuit, whereas human designer 2 used the Quine-
McCluskey Procedure.

The parameters used by the BGA were the following: crossover rate = 0.5,
mutation rate = 0.0022, population size = 900, maximum number of generations



= 400. The solution reported for the BGA in Table 2 was found in generation
197. The matrix used by the BGA was of size 5 x 5.

3.2 Example 2

Table 3. Truth table for the circuit of the second example.
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Fig. 4. Circuit produced by the AS for the second example.

Our second example has 4 inputs and one output, as shown in Table 3. In
this case, the matrix used was of size 10 x 8. The size of the intrinsic search
space for this problem is then 5249, The graphical representation of the circuit



Table 4. Comparison of results between the AS, a binary GA (BGA), a human designer
and Sasao’s approach for the circuit of the second example

BGA
F=(WYyX'e(W+Y)®eZa® (X+Y +2)))
10 gates
2 ANDs, 3 ORs, 3 XORs, 2 NOTs
Human Designer 1
F=((ZX)e YW+ (XY)(ZoW")

11 gates
4 ANDs, 1 OR, 2 XORs, 4 NOTs
AS
F=(W+Y)®2)+ X' ) ((YZ) & (X'W))
9 gates
3 ANDs, 2 ORs, 2 XORs, 2 NOTs
Sasao
F=XoYWoXY'Z e XYW
12 gates

3 XORs, 5 ANDs, 4 NOTs

produced by the AS is shown in Fig. 4. The AS found this solution after 15
iterations using 30 ants.

The comparison of the results produced by the AS, a genetic algorithm with
binary representation (BGA), a human designer (using Karnaugh maps), and
Sasao’s approach [7] are shown in Table 4. In this case, the AS found a solution
slightly better than the BGA. Sasao has used this circuit to illustrate his circuit
simplification technique based on the use of ANDs & XORs. His solution uses,
however, more gates than the circuit produced by our approach.

The parameters used by the BGA for this example were the following: crossover
rate = 0.5, mutation rate = 0.0022, population size = 2000, maximum number
of generations = 400. Convergence to the solution shown for the BGA in Table 4
was achieved in generation 328. The matrix used by the BGA was of size 5 x 5.

3.3 Example 3

Our third example has 4 inputs and one output, as shown in Table 5. In this
case, the matrix used was of size 15 x 15. The size of the intrinsic search space for
this problem is then 5%7%. The graphical representation of the circuit produced
by the AS is shown in Fig. 5. The AS found this solution after 8 iterations using
30 ants.

The comparison of the results produced by the AS,; a genetic algorithm with
binary representation (BGA), and 2 human designers (the first using Karnaugh
maps and the second using the Quine-McCluskey procedure), are shown in Ta-
ble 6. In this example, the BGA found a solution slightly better than the AS.



Table 5. Truth table for the circuit of the third example.

ABCDF
00001
00010
00100
00110
01001
01011
01101
01111
10001
10011
10101
10110
11000
11011
11100
11111

Table 6. Comparison of results between the AS, a binary GA (BGA), and two human
designers for the circuit of the third example.

BGA
F=((A®B)® AD) + (C + (A® D))
7 gates
1 AND, 2 ORs, 3 XORs, 1 NOT
Human Designer 1
F=((A®B)® ((AD)(B+()))+ ((A+C) + D)
9 gates
2 ANDs, 4 ORs, 2 XORs, 1 NOT
AS
F=(BaoD)a(A+D) & ((B+C)+ (Aa D))
8 gates
3 ORs, 4 XORs, 1 NOT
Human Designer 2
F=AB+AB'D +C'D)
10 gates
4 ANDs, 2 ORs, 4 NOTs
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Fig. 5. Circuit produced by the AS for the third example.

The parameters used by the BGA for this example were the following: crossover
rate = 0.5, mutation rate = 0.0022, population size = 2600, maximum number
of generations = 400. Convergence to the solution shown for the BGA in Table 6
was achieved in generation 124. The matrix used by the BGA was of size 5 x 5.

4 Conclusions and Future Work

In this paper we have presented an approach to use the ant colony system to opti-
mize combinational logic circuits (at the gate level). The proposed approach was
described and a few examples of its use were presented. Results compared fairly
well with those produced with a BGA (a GA with binary representation) and
are better than those obtained using Karnaugh maps and the Quine-McCluskey
Procedure.

Some of the future research paths that we want to explore are the paral-
lelization of the algorithm to improve its performance (each agent can operate
independently from the others until they finish a path and then they have to
be merged to update the pheromone trails) and the hybridization with other
algorithms (e.g., local search).

We also want to experiment with other metaheuristics such as tabu search to
scale up the use of AS to larger circuits (our current implementation is limited
to circuits of only one output) without a significant performance degradation.
Finally, we are also interested in exploring alternative (and more powerful) rep-
resentations of a Boolean expression in an attempt to overcome the inherent
limitations of the matrix representation currently used to solve real-world cir-
cuits in a reasonable amount of time and without the need of excessive computer
power.
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