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Av. Instituto Politécnico Nacional No. 2508
Col. San Pedro Zacatenco, México, D.F. 07300, MEXICO
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Abstract. This paper presents a proposal based on binary particle swarm op-
timization to design combinational logic circuits at the gate-level. The proposed
algorithm is validated using several examples from the literature, and is compared
against a genetic algorithm (with integer representation), and against human de-
signers who used traditional circuit design aids (e.g., Karnaugh Maps). Results
indicate that particle swarm optimization may be a viable alternative to design
combinational circuits at the gate-level.

1 Introduction

Kennedy & Eberhart [6] proposed an approach called “particle swarm optimization”
(PSO) which was inspired on the choreography of a bird flock. The idea of this ap-
proach is to simulate the movements of a group (or population) of birds which aim to
find food. The approach can be seen as a distributed behavioral algorithm that performs
(in its more general version) multidimensional search. In the simulation, the behavior
of each individual is affected by either the best local (i.e., within a certain neighbor-
hood) or the best global individual. The approach uses then the concept of population
and a measure of performance similar to the fitness value used with evolutionary al-
gorithms. Also, the adjustments of individuals are analogous to the use of a crossover
operator. However, this approach introduces the use of flying potential solutions through
hyperspace (used to accelerate convergence) which does not seem to have an analogous
mechanism in traditional evolutionary algorithms. Another important difference is the
fact that PSO allows individuals to benefit from their past experiences whereas in an
evolutionary algorithm, normally the current population is the only “memory” used by
the individuals. PSO has been successfully used for both continuous nonlinear and dis-
crete binary optimization [6, 4, 7, 8].

As far as we know, this paper presents the first attempt to use PSO to design com-
binational circuits.
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Fig. 1. Matrix used to represent a circuit. Each gate gets its inputs from either of the gates in the
previous column. Note the encoding adopted for each element of the matrix as well as the set of
available gates used.

2 Problem Statement

We used the same matrix representation to encode a circuit as in some of our previous
work [2, 1]. Such representation is shown in Figure 1. This matrix is encoded as a fixed-
length string of bits or integers from

�
to ����� , where � refers to the number of

rows allowed in the matrix (we call it � -cardinality alphabet). In this paper, we will
be referring to our GA that uses an � -cardinality alphabet, since we have found in the
past that this version of the algorithm consistently produces better results than its binary
counterpart [2].

More formally, we can say that any circuit can be represented as a bidimensional
array of gates �	��
 � , where 
 indicates the level of a gate, so that those gates closer to
the inputs have lower values of 
 . (Level values are incremented from left to right in
Figure 1). For a fixed 
 , the index � varies with respect to the gates that are “next” to
each other in the circuit, but without being necessarily connected. Each matrix element
is a gate (there are 5 types of gates: AND, NOT, OR, XOR and WIRE1) that receives
its 2 inputs from any gate at the previous column as shown in Figure 1. Although our
implementation allows gates with more inputs and these inputs might come from any
previous level of the circuit, we limited ourselves to 2-input gates and restricted the
inputs to come only from the previous level. This restriction could, of course, be relaxed,
but we adopted it to allow a fair comparison with our previous GA-based approach.

1 WIRE basically indicates a null operation, or in other words, the absence of gate, and it is used
just to keep regularity in the representation used, since otherwise would have to use variable-
length strings.



Input 1 Input 2 Gate Type

Fig. 2. Encoding used for each of the matrix elements that represent a circuit.

A chromosomic string encodes the matrix shown in Figure 1 by using triplets in
which the 2 first elements refer to each of the inputs used, and the third is the corre-
sponding gate from the available set.

The matrix representation adopted in this work was originally proposed by Louis
[10, 9]. He applied his approach to a 2-bit adder and to the � -parity check problem (for
���

�������	�
). This representation has also been adopted by Miller et al. [11, 12] with

some differences. For example, the restrictions regarding the source of a certain input
to be fed in a matrix element varies in each of the three approaches: Louis [9] has strong
restrictions, Miller et al. [11] have no restrictions and we have relatively light restric-
tions. The encoding is also different in all cases. Louis [9] only encoded information
regarding one input and the type of gate to be used at each matrix position. He also
used binary representation. In our case, we have used both an � -cardinality alphabet
and a binary alphabet and we encode the gate to be placed at each matrix location plus
its two inputs. Miller et al. [11] encode a full Boolean operation using a single integer.
This representation is more compact, but it has the problem of requiring that mutation
takes the place of crossover to introduce enough diversity in the population, so that the
evolutionary algorithm can approach the feasible region.

Finally, the last difference among the three approaches previously mentioned is re-
garding the fitness function. Louis [9] simply maximizes the number of matches be-
tween the outputs produced by the circuit and those indicated in the truth table. We
have used a fitness function that works in two stages: first, it maximizes the number of
matches (as in Louis’ case). However, once feasible solutions are found, we maximize
the number of WIREs in the circuit. By doing this, we actually optimize the circuit in
terms of the number of gates that it uses. Miller et al. [11] did something similar to
Louis until recently (they have recently introduced a two-stage fitness function like the
one adopted by us [5]).

Thus, we can say that our goal is to produce a fully functional design (i.e., one that
produces all the expected outputs for any combination of inputs according to the truth
table given for the problem) which maximizes the number of WIREs.

3 Description of our Approach

The main motivation for using particle swarm optimization (PSO) to design combina-
tional circuits is that this algorithm has been found to be very efficient in a variety of
tasks [8]. Note however, that most of the successful uses of PSO reported in the litera-
ture deal with real numbers representations and in this case, we will be using a binary
encoding. Although a real numbers representation is possible (and in fact, we are cur-
rently working on such a version of the algorithm), the preliminary results reported in



this paper were found with a binary representation that worked reasonably well. The use
of real numbers to represent a circuit requires a more sophisticated genotype-phenotype
mapping. Next, we will describe the details of our implementation.

1. For i = 1 to � ( � = population size)
Initialize ��� ��� randomly
( � is the population of particles)
Initialize ��� ���
	�� ( � = speed of each particle)
Evaluate ��� ���
��������

= Best particle found in ��� ���
2. End For
3. For i = 1 to �

� ��������� � ����	���� ���
(Initialize the “memory” of each particle)

4. End For
5. Repeat

For i = 1 to �
��� ���
	���� �������! #" �%$'& � ��������� � ���(�'��� ���*)

 +" � $,& � ��������� � 
�������� �!�#��� ���*)
(Calculate speed of each particle)
( " � and " � are upper limits used to
draw positive random numbers from a uniform distribution
�.-.��� ���/	���� ���! ���� ���
If a particle gets outside the pre-defined hypercube

then it is reintegrated to its boundaries
Evaluate ��� ���
If new position is better then � ��������� � ���/	���� ���
��������

= Best particle found in ��� ���
End For

6. Until stopping condition is reached

Fig. 3. Particle swarm optimization pseudocode

The general algorithm of binary PSO is shown in Figure 3. In PSO, there are two
types of information available for the particles so that they can make the best decision
regarding where to move next. One of these is its own search experience (i.e., a particle
has passed through several states and it “knows” which of them has been the best so
far). Additionally, it also knows about the performance of the particles in its neighbor-
hood (i.e., it knows which are the best states that its neighbors have reached so far).
These two pieces of information correspond to the individual learning and the cultural
transmission, respectively [8].

Mathematically speaking, the binary version of PSO is defined such that the proba-
bility of an individual’s deciding zero or one (i.e., false or true) is [7]:



����� ��� ���
	 � � 	 ��� ��� �
� ��� � � 	 ��� ��� ��� � � 	 ��� �
� ����� � 	 (1)

where:

–
����� ��� ���
	 � � 	 is the probability that individual � will choose 1 for the bit at the�
-th position of the binary string.

–
� �
� ���
	 is the current state of the string position

�
of individual � .

–
�

refers to the current iteration.
–

� ��� ��� � � 	 is a measure of the individual’s predisposition or current probability of
deciding 1.

–
� �
� is the best state found so far.

–
��� � is the best state found in the neighborhood so far.

Although the main adjustment expression used by PSO can be seen as a form of
mutation, we found out that its explorative power was not enough in circuit design.
Therefore, we added a uniform mutation operator such as the one used with traditional
genetic algorithms. This operator, however, was only applied to a certain percentage
of the population (this is a parameter defined by the user). From our experiments, we
determined that a value between 1% and 3% was appropriate to setup the percentage of
the population subject to mutation.

Table 1. Truth table for the circuit of the first example.

X Y Z F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

4 Results

We used several examples taken from the literature to test our AS implementation.
Our results were compared to those obtained by two human designers and a genetic
algorithm with an � -cardinality representation (see [2] for details).

4.1 Example 1

Our first example has 3 inputs and 1 output ant its truth table is shown in Table 1. In this
case, the matrix used was of size

��� �
, and the length of each string representing a circuit



Table 2. Comparison of results between our PSO algorithm, the � -cardinality GA (NGA), and
two human designers for the circuit of the first example.

NGA Human Designer 1� 	�� &��  �� ) � 	�� &��	� � )  
� &���� �+)
4 gates 5 gates

2 ANDs, 1 OR, 1 XOR 2 ANDs, 1 OR, 2 XORs

PSO Human Designer 2� 	 & & �� ��+) � ) � �
� � 	 ��� �
�  �#& � � �+)
4 gates 6 gates

2 ANDs, 1 OR, 1 XOR 3 ANDs, 1 OR, 1 XOR, 1 NOT

Y

X F

Z

Fig. 4. Graphical representation of the best circuit found by our PSO algorithm for the first ex-
ample.

was � � . Since 5 gates were allowed in each matrix position, then the size of the intrinsic
search space (i.e., the maximum size allowed as a consequence of the representation
used) for this problem is

���
, where � refers to the length required to represent a circuit

( � �	� � in our case). Thefore, the size of the intrinsic search space is
����������� � � � � � �

.
Fitness is computed in the following way: 8 (number of outputs that we must match to
have a feasible circuit) +

� � �
(size of the matrix) - number of gates used (i.e., different

of WIRE)). Therefore, a fitness of 29 (the best value produced for this circuit) means
that the circuit is feasible (otherwise, its fitness could not possibly be above 8), and that
it has 4 gates (i.e., 21 WIREs), because 8 + (25-4) = 8 + 21 = 29.

The graphical representation of the best circuit produced by PSO is shown in Fig. 4.
Our PSO algorithm found this solution using the following parameters2: 90 particles,
300 iterations (i.e., 27,000 evaluations of the objective function were required), � � �
� � �

� � �
, �! #"%$ �'& � � , �  � � %. The parameters used by the NGA were the fol-

lowing: crossover rate = 0.5, mutation rate = 0.5/75 = 0.0022, population size = 90,
maximum number of generations = 300.

The comparison of the results produced by PSO, the NGA and two human designers
are shown in Table 2. In this case, human designer 1 used Karnaugh Maps plus Boolean
algebra identities to simplify the circuit, whereas human designer 2 used the Quine-
McCluskey Procedure.

2 These parameters were empirically derived.



PSO produced feasible circuits 100% of the time and it found the optimum in 7 out
of 20 runs performed (i.e., 35% of the time), reaching a fitness of 28 in all the other
runs. The average fitness of the 20 runs performed was 28.35, with a standard deviation
of 0.49. The graphical representation of the best solution found by PSO is depicted in
Figure 4.

On the other hand, the best solution that the NGA could find using the same popula-
tion size had also a fitness of 29 (i.e., a circuit with 4 gates), but it appeared only 10% of
the time. Also, 20% of the time, the best solution found by the NGA was infeasible. The
average fitness of these 20 runs was 21.4, with a standard deviation of 8.438009244. In
this example, our PSO algorithm showed a better performance (on average) than the
NGA.

4.2 Example 2

Table 3. Truth table for the circuit of the second example.

Z W X Y F
0 0 0 0 1
0 0 0 1 1
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
1 0 1 1 0
1 1 0 0 0
1 1 0 1 1
1 1 1 0 0
1 1 1 1 0

Our second example has 4 inputs and one output, as shown in Table 3. In this case,
the matrix used was also of size

� � �
. Our PSO algorithm used the following param-

eters: 200 particles, 1000 iterations (i.e., 200,000 evaluations of the objective function
were required), � � � � � �

� � �
, �  #"%$ � & � � , �  � & %. The parameters used by the

NGA were the following: crossover rate = 0.5, mutation rate = 0.0022, population size
= 200, maximum number of generations = 1000.

The comparison of the results produced by PSO, an � -cardinality GA (NGA), a hu-
man designer (using Karnaugh maps), and Sasao’s approach [13] are shown in Table 4.
Sasao has used this circuit to illustrate his circuit simplification technique based on the
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Fig. 5. Graphical representation of the best circuit found by PSO for the second example.

Table 4. Comparison of results between PSO, an � -cardinality GA (NGA), a human designer and
Sasao’s approach for the circuit of the second example

NGA� 	 & � � � � � & & �  
��) � � ��&��  
�� ��+) ) ) �
10 gates

2 ANDs, 3 ORs, 3 XORs, 2 NOTs

Human Designer 1� 	 & & � � � ) ��& � � � � ) )
 & &�� � ��) & � � � � ) )
11 gates

4 ANDs, 1 OR, 2 XORs, 4 NOTs

PSO� 	 &�� �� � ) ��& & � �
� ) &��  
��) ) �
7 gates

2 ANDs, 2 ORs, 2 XORs, 1 NOT

Sasao� 	 � ��� � � � ���
� � � � � ����� � � �

12 gates
3 XORs, 5 ANDs, 4 NOTs



use of ANDs & XORs. His solution uses, however, more gates than the circuit produced
by our approach.

Our PSO algorithm found a solution with a fitness value of 34 (i.e., a circuit with
7 gates) 20% of the time, and feasible circuits were found 67% of the time. The aver-
age fitness of the 20 runs performed was 29.35, with a standard deviation of 7.4. The
graphical representation of the best solution found is depicted in Figure 5.

The best solution that the NGA could find using the same population size had a
fitness of 31 (i.e., a circuit with 10 gates), and it appeared only 20% of the time. Also,
65% of the time, the best solution found by the NGA was infeasible. The average fitness
of these 20 runs was 20.25, with a standard deviation of 7.68. In this example, our PSO
algorithm showed a better performance than the NGA.

4.3 Example 3

Table 5. Truth table for the circuit of the third example.

A B C D F � F � F �

0 0 0 0 0 0 0
0 0 0 1 0 0 1
0 0 1 0 0 1 0
0 0 1 1 0 1 1
0 1 0 0 0 0 1
0 1 0 1 0 1 0
0 1 1 0 0 1 1
0 1 1 1 1 0 0
1 0 0 0 0 1 0
1 0 0 1 0 1 1
1 0 1 0 1 0 0
1 0 1 1 1 0 1
1 1 0 0 0 1 1
1 1 0 1 1 0 0
1 1 1 0 1 0 1
1 1 1 1 1 1 0

Our third example is a two-bit adder (4 inputs and 3 outputs), and its truth table
is shown in Table 5. The matrix used in this case was again of size

� � �
. Our PSO

algorithm used the following parameters: 300 particles, 2000 iterations (i.e., 600,000
evaluations of the objective function were required), � � � � � �

� � �
, �  #"%$ � & � � ,�  � � %. The parameters used by the NGA were the following: crossover rate = 0.5,

mutation rate = 0.0022, population size = 300, maximum number of generations = 2000.
The comparison of the results produced by PSO, an � -cardinality GA (NGA), and

one human designer (using Karnaugh maps) are shown in Table 6.
Our PSO algorithm found a solution with a fitness value of 66 (i.e., a circuit with 7

gates) but only once in the 20 runs performed. Feasible circuits were found only 20%



Table 6. Comparison of results between our PSO algorithm, an � -cardinality GA (NGA), and
one human designer for the circuit of the third example.

NGA�
� 	 � ����

� 	 &��
��� ) � � ��
� 	 ���  � � &������ )

7 gates
2 ANDs, 1 OR, 4 XORs

Human Designer 1�
� 	 �
����

� 	 &������ ) � �  & &������ ) � � ) ��
�%	 ���  � � &��  � )

12 gates
5 ANDs, 3 ORs, 3 XORs, 1 NOT

PSO�
� 	 � ����

� 	 & � � ) ��&��
��� )�
�%	 &���� )  & & � � ) &��
��� ) )

7 gates
3 XORs, 3 ANDs, 1 OR
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Fig. 6. Graphical representation of the best circuit found by our PSO algorithm for the third
example.



of the time. The average fitness of the 20 runs performed was 48.85, with a standard
deviation of 6.82. The graphical representation of the best solution found by our PSO
algorithm is depicted in Figure 6.

The best solution that the NGA could find using the same number of fitness function
evaluations had a fitness of 66 (i.e., a feasible circuit with 7 gates). This solution also
appeared only once in the 20 runs performed. However, the NGA could find feasible
solutions 75% of the time. The average fitness of these 20 runs was 58.2, with a standard
deviation of 7.17. It can be clearly seen that in this example the NGA performed better
(on average) than our PSO algorithm.

5 Conclusions and Future Work

We have presented the first formal proposal to use binary particle swarm optimization
for designing combinational logic circuits. The approach presented seems promising,
since it produced competitive (and in some cases better) results with respect to an � -
cardinality genetic algorithm (except for the last example) and it consistently outper-
formed the solutions produced by human designers. In fact, our experiments3 indicate
that our PSO is very competitive with circuits that have only one output, but the ap-
proach is less robust when dealing with multiple-outputs circuits.

One of the current limitations of our approach is the exploratory power of the algo-
rithm which is still not as good as we expected. This is more evident in circuits with
several outputs such as the two-bit adder in which our PSO algorithm had a poorer
performance than the NGA (on average).

As part of our future work, we are planning to introduce a population-based ap-
proach such as the one proposed in [3] to improve the search capabilities of our al-
gorithm. We are also working on an indirect representation that allows us to use real
numbers to represent circuits. We hypothesize that PSO will have a better performance
if we can manage to produce a real numbers representation, since there is plenty of
evidence of such positive behavior in the literature [8].
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