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Abstract

We describe a genetic algorithm approach to the auto-
mated design of vibratory bowl part feeders. Our ap-
proach gives us near-optimal designs in much less time
than previously published optimal, brute-force search
methods. We have implemented our approach in an
automated part feeder design system, and we present
preliminary results generated by our system.

1 Introduction

A recent report from the National Research Council
[1993] has indicated a need for further research in the
area of “rapidly reconfigurable production systems.”
The goal of such systems is to allow manufacturing
lines to be quickly and easily modified to accommodate
new products.

A prominent problem in manufacturing automation
is the accurate and reliable presentation of small parts,
in a desired orientation, to a workcell. This is often
referred to as the “parts feeding” problem. Method-
ologies available for this problem include sophisticated
computer vision-based bin-picking, manual loading of
pallets, trays, or magazines, and the design of special-
ized feeding machines.

The design of automated feeder mechanisms (e.g.,
vibratory bowl feeders, centrifugal hoppers, magnetic
feed hoppers) is currently more of an art than a science.
However, recent work by Boothroyd [1992] and others
has shown a methodology for designing such feeders,
based on knowledge of part geometry and part mate-
rial properties. The term “programmable feeder” has
been used to describe a machine which can be adapted
to new parts, rather than handling only one kind of
part. Usually, this adaptation involves the redesign and
replacement of the physical “tracks” on which parts
move. The present paper presents a framework for the
automated design of part feeder tracks.

*The research reported here was supported in part
by Grants NSF/LEQSF (1992-93)-ADP-04 and NSF IRI-
9410461.

Specialists who can design effective parts presenta-
tion systems are in great demand. With the current
trend toward flexible assembly systems, smaller batch
sizes, and the attendant assembly line reconfigurations,
the problem of adapting feeder designs to new parts
has become very important. Human expert designs for
feeders are quite successful, but the prospect of au-
tomation of part feeder design and tuning has several
rewards:

e potentially faster and cheaper setup during assem-
bly line reconfiguration.

e codification and preservation of specialized exper-
tise used by human specialists in feeder design.

e an expanded class of feeder designs through em-
pirical modeling when mechanical analysis is diffi-
cult (e.g., curved part shapes, slightly deformable
parts).

e automatic refinement of drive parameters and
gate configurations to maximize throughput of the
feeder.

e sensor-based on-line monitoring of feeder effective-
ness, with automatic diagnosis of faults and sug-
gestion of repairs.

In the present paper, we concentrate on the problem
of determining the physical layout of tracks for vibra-
tory bowl feeders.! In such devices, small parts travel
from the bottom of a bowl along a track that spirals
around the inside of the bowl. A vibratory motion
causes the parts to climb up the track toward the lip of
the bowl. Along the tracks are a sequence of “gates”
which either (1) reorient parts as they pass along the
track or (2) reject parts (i.e., cause parts to fall off the
track back into the bottom of the bowl) if they are not
in a desired orientation.

In general, the track layout design problem has two

components:

!See [Goldberg et al. 1991] and [Goldberg et al. 1995]
for related work using a different part feeding mechanism.



1. Given a part which we desire to feed, determine a
sufficient set of gates for reorienting and rejecting
the part.

2. Given a set of gates from which to choose, and a
desired output orientation, determine an ordered
sequence of gates along the track which will pro-
duce the highest feeder efficiency (highest frac-
tional throughput of parts exiting in the desired
orientation) and no parts exiting in undesired ori-
entations.

We focus on problem 2 and use previously published
results [Boothroyd 1992; Murch and Boothroyd 1971]
for problem 1. Our approach, which we describe in
the next two sections of the paper, uses a genetic al-
gorithm. In the next section we discuss genetic algo-
rithms in a general setting. Then we describe how we
use the genetic algorithm framework for the problem
of part feeder track design. Following the description
of the method, we present four designs which were au-
tomatically derived by our system.

2 Genetic Algorithms

The genetic algorithm (GA) [Holland 1975] [Goldberg
1989] is a highly parallel search algorithm that is based
on the mechanics of natural selection (survival of the
fittest). Its basic operation is illustrated by the follow-
ing segment of pseudo-code [Buckles and Petry 1992]:

generate initial population, G(0);
evaluate G(0);
t:=0;
repeat
t:=t+1;
generate G(t) using G(t-1);
evaluate G(t);
until a solution is found

During the first generation, a set of individuals (each
of which represents a potential solution to the problem
we are dealing with) is generated randomly. The es-
sential characteristics of each individual are encoded
by a chromosome, normally of fixed length. We asso-
ciate a fitness function with each individual, in order
to determine how “good” the individual’s solution is
with respect to the rest of the population. This fitness
function has to be provided by the user, and it should
clearly reflect the importance of a certain solution over
the others. We also need to choose the most suitable
representation for encoding these solutions within the
GA. The most common approach is to use a binary rep-
resentation, although it is also possible to use letters,
or a representation in which each gene (any position

along the length of a chromosome) is a small integer
[Michalewicz 1992].

By applying the corresponding fitness function, a se-
lection procedure takes place, so that the fittest indi-
viduals reproduce, providing additions to the popula-
tion of the next generation. There are two main selec-
tion schemes:

1. Roulette wheel: Under this approach, each indi-
vidual is assigned a certain probability F; of be-
ing selected, computed according to the formula
F;, = fz/(zj fj), where f; is the fitness value of
each chromosome i [Buckles and Petry 1992]. No-
tice that even though the fittest individuals have
a higher probability of being selected, individuals
with lower fitness can also eventually be selected.

2. Tournament: In this approach, the population
is shuffled and then is divided into groups of
k elements from which the best individual (i.e.,
the fittest) will be chosen. This process has
to be repeated k times because on each itera-
tion only m parents are selected, where m =
(population size)/k. For example, if we use bi-
nary tournament selection (k = 2), then we have
to shuffle the population twice, since in each stage
half of the parents required will be selected. The
interesting property of this selection scheme is that
we can guarantee multiple copies of the fittest in-
dividual among the parents of the next generation.

After selection, reproduction takes place. The oper-
ator called crossover produces an exchange of genetic
material of a pair of individuals, so that a—presumably
fittest—population is created. The two main ways of
performing crossover are:

1. Single-point crossover: In this approach, a posi-
tion of the chromosome is randomly selected as
the crossover point, and the genes from that point
to the end of the string are swapped between the
two selected chromosomes.

2. Two-point crossover: In this approach, two posi-
tions are selected randomly along the chromosome
length, and the genes between them are swapped
between the two selected chromosomes.

Another important genetic operator is mutation.
This operator randomly changes a gene of a chromo-
some. If we use a binary representation, a mutation
changes a 0 to 1 and vice-versa. If we represent genes
with integers, a mutation changes a gene to a random
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Figure 1: The four qualitatively distinct orientations of
the cup part.
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Figure 2: The track design presented in [Boothroyd 1992].

integer in the valid range of integers. This operator al-
lows the introduction of new genetic material to the
population and, from the theoretical perspective, it
assures that—given any population—the entire search
space is connected [Buckles and Petry 1992].

Since the GA is a heuristic technique, we cannot
guarantee that the optimum solution will always be
found, and we cannot even guarantee convergence. Be-
cause of this, we normally run several tests to fine tune
the GA’s parameters. To stop any run, two main cri-
teria are used: either stop after a specified number of
generations, or verify when the population has stabi-
lized (i.e., all or most of the individuals have the same
fitness).

3 Design of Gate Sequences

The design of a gate sequence can best be seen through
an example (taken from [Boothroyd 1992]). Figure 1
illustrates four distinct orientations of a cup-shaped
part, which we desire to feed. Orientation (1), with the
open end of the cup up, is the desired output orienta-
tion for the feeder. Other possible orientations include
the cup open end down (4) and the cup on its side
with the open end either trailing with respect to the
feed direction (2) or leading with respect to the feed
direction (3). Boothroyd presents the example of the
track design of Figure 2.

There are three gates in this design, in the sequence
“step”, “scallop”, and then “ledge”. The purpose of
the step is to increase the proportion of parts in orien-
tation (1). The purpose of the scallop is to eliminate
(reject back in to the bottom of the bowl) parts in ori-

entation (4). The purpose of the ledge is to reject parts
in orientations (2) and (3). Thus, since (4) was elim-
inated by the preceding scallop, the net effect of the
scallop-ledge sequence is to filter out all orientations
except (1), the desired output.

Boothroyd models the effects of gates on parts by
stochastic matrices. For example, for a step height of
7 mm on a cup part with a diameter of 12.7 mm and
a height-to-diameter ratio of 1.132, the step gate is
modeled by the matrix

0.50 0 0.50 0
1.00 O 0 0
0.30 0 0.64 0.06

0.80 0.20 0 0

This matrix indicates that a part in orientation (1) has
an equal likelihood (50% each) of exiting in orienta-
tion (1) or (3). This is seen from the top row of the
matrix. Similarly, the second row says that a part in
orientation (2) will exit in orientation (1). The third
row indicates that a part in orientation (3) will exit in
either (1) (30%) or (3) (64%) or (4) (6%). The last row
indicates that a part in orientation (4) will exit either
in orientation (1) (80%) or (2) (20%).

The net effect of a sequence of gates is naturally
modeled by a matrix multiplication of the gate models.
For the step-scallop-ledge sequence, the result is

050 0 050 0
.00 0 0 0
030 0 064 006
0.80 0.2
.00 0 0 0
0 050 0 0
0 0 050 0
0o 0 0 o0
1.00 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
050 0 0 0
| 100 0 0 0
|03 0 0 0
08 0 0 0

The resulting matrix indicates that all parts exit in
orientation (1). Note that the rows of this matrix do
not all sum to 1 because some parts are rejected back
into the bowl. If we knew the probability distribu-
tion of orientations of parts first encountering the gate
sequence, we could estimate the fraction of such parts
that will exit the sequence in the desired orientation by
multiplying a row vector representing the initial distri-
bution times the resultant matrix above. This fraction



is termed the efficiency e of the feeder. A high ef-
ficiency is desirable because the effective feed rate of
parts exiting the device is e times f, where f is the
nominal feed rate of parts climbing the feeder track.

Boothroyd gives an empirically derived esti-
mate of the initial distribution of cup parts as
[0.27 0.35 0.35 0.03]. Hence the step-scallop-ledge sys-
tem matrix results in an efficiency of 61.4%.

The design problem of interest to us is how to choose
the gate sequence, given a desired output orientation
and a set of gate models which can be used (possi-
bly multiple copies of the same gate) in the sequence.
For a design to be acceptable, the sequence must al-
low only parts in the desired orientation to exit. A
“good” design is one which further has a high efficiency.
Boothroyd assumes that this design process is left to
a human expert, but the primary result of the present
paper is that this design problem can be automated.

3.1 Implementation as a Genetic Algorithm

The track layout design problem is basically a search
over a large multidimensional space of possible designs.
Each design corresponds to a sequence of gates, each
modeled by a stochastic matrix. Some sequences of
matrices produce valid designs (all parts exiting in the
desired orientation) and some valid designs are better
than others in terms of their efficiency. Thus the prob-
lem requires searching for near-optimal solutions in a
large multidimensional space, which is the hallmark of
a problem well-suited to a genetic algorithm approach.

Our desired solution is a sequence of matrices, which
when multiplied together yields a result with all zeros
in the columns other than the desired output column,
and which when multiplied by the initial distribution
gives a high efficiency. Thus, the individuals in the
GA population encode a sequence of gate labels (inte-
gers), and the fitness of an individual is the efficiency
computed by multiplying the initial distribution times
the product of the matrices represented by the labels.
Given the matrix models of the available gates, the
design process is a straightforward application of the
genetic algorithm framework.

Our program produces gate sequences based on the
following inputs: (a) the matrices modeling the avail-
able gates, (b) the initial probability distribution of
part orientations, (c) the desired output orientation,
(d) some parameters for the genetic algorithm (which
can be left to their default values given below), and
(e) a length upper bound for the desired gate sequence.
In the experiments reported below, we use binary tour-
nament selection, two-point crossover, a population
size of 100, a mutation rate of 1%, a crossover proba-

bility of 80%, and we stop the GA after 50 generations.
All of these parameters were empirically determined to
give acceptable results. Our system is implemented in
the C programming language, and it is very fast. The
designs reported in Section 4 below were produced by

the program in less than five seconds each on a Sun
SPARCstation 5.

3.2 Relationship to Manipulation Planning

Designing a sequence of gates along a feeder track is
analogous to designing a sequence of manipulation ac-
tions for a robot to apply to an object. Both robot
plans and feeder tracks apply a goal-oriented sequence
of transformations to the position and orientation of
the part. Thus much of the literature on motion plan-
ning under uncertainty is relevant to the problem dis-
cussed in the present paper.

Our methods are most closely related to manipu-
lation planning methods that use explicit probabilis-
tic models [Goldberg 1990; Christiansen and Goldberg
1995; Brost and Christiansen 1996), although other
methods (e.g., [Lozano-Pérez et al. 1984]) are also
appropriate for this problem. In [Christiansen and
Goldberg 1995] an explicit, exhaustive search method
(called Method I in that paper) was described. When
applied to the current problem, Method I finds optimal
sequences of gates, given a sequence length bound k,
but its computational complexity is exponential in k,
making the method practical only for small values of k.
The new GA approach reported in the present paper
does not guarantee optimal designs, but its complexity
is directly proportional to k (because it must multiply
sequences of k matrices in order to evaluate the fitness
function).

4 Experimental Results

We have applied our program to several part feeding
scenarios, which we report below.

4.1 Orienting a Cup-Shaped Part (I)

Our program, when given the three gate models dis-
cussed above, reproduced Boothroyd’s design sequence.
This is interesting, but not remarkable, as there are
only 3% = 27 distinct sequences of gates, assuming that
we can use multiple copies of the gates.?

We investigated using a longer sequence of gates, but
for this particular set of three gate choices, the optimal
result is of length three.

21f we can only use one copy of each gate, then there are
only six distinct sequences. We will assume from here on
that we can use as many copies of a gate as we desire.



4.2 Orienting a Cup-Shaped Part (II)

Boothroyd [1992] gives data for steps of varying
heights. For a step of height 3 mm and the same cup-
shaped part, the matrix is

1.00 0O 0 0
0.85 0.15 0 0
0 0 1.0 0
0 06 O 0.4

Given a length bound of three, and substituting
this step model for the previous 7 mm step, our pro-
gram came up with the same sequence as before (step-
scallop-ledge), but the reported efficiency of 56.75%
was slightly worse than for the previous case. How-
ever, if we allow the program to use a longer sequence
of gates, it chooses a sequence with many copies of
the step, followed by the scallop and ledge. For a se-
quence length bound of 10, our program found a length
9 design with efficiency 64.96%, which is better than
Boothroyd’s 61.4%.

In this situation, there is a stochastic benefit to using
multiple step gates in sequence, as there is a tendency
to move orientations toward (1), which is the only ori-
entation not rejected by the scallop-ledge sequence.

4.3 Orienting a Cup-Shaped Part (III)

We increased the set of gates that can be used in the
design, including steps of every height from 1 to 7 mm
in 1 mm increments along with the scallop (sc), ledge
(1), and wiper (w). Also included were a slope (slp)
(i-e., a gentler version of a step) and a hole (h) that
passes through only orientations (1) and (4). Each of
these 12 gates has a matrix representation, but because
of space limitations in this paper, these matrices are
not listed. Allowing length 10 designs gives us a search
space of size 12!°, which is too large for a practical
exhaustive search.

Our program finds the design s7-slp-s4-s3-s2-slp-h-
sc-1-s3,% which has an efficiency of 74.5%. As in the
previous example, multiple copies of steps are used
to encourage the parts to enter orientation (1) be-
fore other orientations are filtered out by the scallop
and ledge. This result is substantially better than the
original 61.4% efficiency design reported in [Boothroyd
1992]. However, Boothroyd never claimed that his re-
ported design was near optimal.

4.4 Orienting a Screw-Like Fastener

Our final example is taken from [Murch and Boothroyd
1971], where a design for a screw-like fastener was pre-

3The notation sk means a step with height & mm.
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Figure 3: The five qualitatively distinct orientations of the
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Figure 4: The track design presented in [Murch and
Boothroyd 1971].

sented. Figure 3 shows the five qualitatively distinct
part orientations: on-head (1), head-trailing (2), head-
leading (3), perpendicular (4), and on-point (5).

The four gate design reported in [Murch and
Boothroyd 1971] is given by

0 0O 0 0 0
0 1.00 O 0 0
0 0 1.00 O 0
0 0O 0 1.00 O
0 0 0 0 0
1.00 O 0 0 0
0 1.00 O 0 0
0 0 1.00 O 0 |-
0 0.256 0.25 0.50 O
0 0 0 0 0
1.00 O 0 0 0
0 1.00 O 0 0
0 0 1.00 0 O
0 0 0 0 0
0 0 0 0 0
1.00 0 0 0 O
0 0 0 0 1.00
0 0 0 0 1.00
0 0 0 0 O
0 0 0 0 O
0 0 0 0 O
0 0 0 0 1.00
=(0 0 0O 0 1.00
0 0 0 0 0.0
0 0 0 0 O

and is illustrated in Figure 4. It begins with a wiper to
eliminate on-head orientations (and on-point orienta-
tions, although none are expected). It is followed by a
pressure break which allows orientations (2) and (3) to
pass while half of orientations (4) are passed through



and one quarter each are converted into orientations
(2) and (3). Following this is a narrowed track reject-
ing (4). The final gate is a slotted track which turns
the parts on-point (i.e., point-down) if they are in ori-
entations (2) or (3). This on-point orientation is the
desired output.

The initial probability distribution for the screw part
was reported to be [0.40 0.20 0.20 0.20 0.00] in [Murch
and Boothroyd 1971]. Hence this design has an effi-
ciency of 50%.

When a length bound of four was used, our program
found the following design: a wiper (w), followed by
two pressure breaks (pb-pb), and finally ending with
(the required) slotted track (st), for an efficiency of
55%. In this case the GA result indicates that the
“narrow track” gate is better replaced by another copy
of the pressure break. When a length bound of three
was used, the GA found the sequence w-pb-st, with an
efficiency of 50%, again indicating that the narrowed
track is redundant.

Using a length bound of 10, our program found the
design pb-pb-pb-pb-pb-w-pb-pb-pb-st, for an efficiency
of 59.92%. This is almost 10% better than the design
given in [Murch and Boothroyd 1971]. Note that using
the wiper in the middle of the sequence has the same
effect as using it at the beginning—the difference is
solely aesthetic.

5 Summary

We have presented a new method, based on a genetic
algorithm, for the automated gate layout of a vibratory
bowl feeder. We have demonstrated how this method is
applied to design problems for realistic parts. Our au-
tomated system finds designs which are at least as good
as the previously published designs [Boothroyd 1992;
Murch and Boothroyd 1971]. In cases where longer
sequences of gates can be used, our system finds sig-
nificantly better designs. Our approach is a practical
and fast method for automating the gate layout design
problem.

In the future we intend to augment our system to
include on-line modeling of gates (i.e., automatically
learning stochastic matrix representations through ob-
servation). We are also very interested in physically
accurate dynamic simulations which could allow us to
design appropriate gates from CAD models of parts.
We believe that the automated design method reported
here, when coupled with this future work, has the po-
tential to make a marked change in the way vibratory
part feeders are designed.
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