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Abstract

This study addresses the solution of Jobshop Schedul-
ing Problems using Differential Evolution (DE). The issue
of representing permutations through real numbers consti-
tutes the key issue for developing an efficient implementa-
tion. Several techniques are empirically validated on prob-
lem instances traditionally adopted in the specialized liter-
ature. We also present a simple hybridization of DE with
tabu search, which produces significant performance gains.

1. Introduction

Among the wide diversity of techniques developed in the
last decades for the solution of hard optimization problems,
Differential Evolution (DE) has attracted a lot of attention
from the continuous optimization community. The specific
mutation operator introduced by Storn and Price [16] in the
mid-1990s indeed constituted a breakthrough in the evolu-
tionary computation area, combining great efficiency and
simplicity. The efficacy and efficiency of this optimization
technique have been shown in a wide variety of continu-
ous optimization problems. However, the lack of studies
on the use of DE in permutation-based problems (i.e., for
which the decision variables must represent a permutation
of integers) is remarkable. In fact, the representation of per-
mutations using real numbers is still an ongoing task, with
a lot of room for improvement.

The classical Jobshop Scheduling Problem (JSP) pro-
vides, in this perspective, a very good framework for the
above-mentioned task. Due to its inherent complexity, JSP
has been widely used in order to test the development
of new optimization techniques. Exact methods such as
branch-and-bound [10] or shifting-bottleneck based heuris-
tics [1, 3] have been applied to it, but, more recently, a lot of
effort has been devoted to the use of metaheuristics in this
problem: simulated annealing [17], genetic algorithms [5]
or GRASP [2] only represent a few examples among the
pletora of available solution strategies. Currently, the most
powerful approach available for this problem is still Now-
icki and Smutnicki’s TSAB algorithm [14], subsequently
improved with the i-TSAB algorithm [15].

However, almost no mention of applications of simple
DE to JSP appears in the literature. Thus, the aim of this
paper is to provide some insights about the use of real num-
bers encodings for permutation problems with DE, adopt-
ing the JSP as a framework. The remainder of this paper
is organized as follows. The problem framework, includ-
ing a short presentation of the DE method and of JSP, is
defined in Section 2. Section 3 proposes various strategies
for the permutations representation inside DE, as well as
two versions of the schedule builder, needed for the objec-
tive evaluation. Computational experiments are discussed
in Section 4, while Section 5 shows how the former results
can be significantly improved through hybridization with a
local search method. Finally, some conclusions and per-
spectives are drawn in Section 6.



2. Study framework

2.1. Outline of the DE method

Differential Evolution is a very recent Evolutionary Al-
gorithm (EA), developed by Storn and Price [16]. Its basic
principle relies on the design of a simple mutation operator
based on the linear combination of three different individu-
als x1j , x2j , x3j , to obtain a mutant uij as shown in Equation
(1):

uij = x1j + F (x2j − x3j),∀j = 1, ..., N (1)

Then, a crossover step mixes the initial and mutated solu-
tions, according to probability CR. The typical termination
criterion is to reach a given number of generations NG. F
(amplification factor) and CR (crossover rate) are control
parameters that, with NP (population size) and NG, must be
appropriately tuned. Among the existing DE versions, the
DE/rand/1/bin one will be used next (see [16] for details).

2.2. Statement of the JSP

The classical Jobshop Scheduling Problem consists in
assigning m (scarce) resources, i.e. machines, to O oper-
ations belonging to n jobs. The operations of each job j
must follow a specific sequence and must be processed ex-
actly once on each machine i. One machine cannot process
simultaneously more than one operation. The objective is
to minimize the makespan.

Many formal representations of the JSP exist but the
most traditional model is a disjunctive graph [10], whose
nodes stand for the operations. These nodes are connected
by conjunctive arcs that denote the operation sequence of a
job, while disjunctive arcs represent the permutation of the
different jobs’ operations on a given machine. Therefore,
the resulting complexity of the problem can be formulated
as (n!)m.

2.3. Aims of this study

The key issue, when trying to solve JSP with DE, is to
determine a representation scheme that allows the use of
real numbers to encode (feasible) permutations. Several
techniques, implemented in the framework of this study, fo-
cus on viable transformation methods from the real numbers
space to the space of permutations.

A further issue concerns the construction of a feasible
schedule, since the only determination of a job permutation
on each machine does not allow computing the makespan
objective. Actually, for a defined multi-permutation (i.e., a
set of permutations associated to each machine), an infinity
of schedules might be built. Among them, the active sched-
ules are those for which no operations can be brought for-
ward without delaying another operation. It is well known

that optimal schedules belong to the active class [12]. An-
other relevant schedule class is the non-delayed one, for
which an operation is sequenced as soon as a machine be-
comes free. This latter class constitutes a sub-group of the
former that may not contain the optimal solution.

Extensive computations will be carried out on a selection
of widely used instances, in order to determine which pro-
cedures might be implemented within DE in order to treat
both issues. Some conclusions about the quality of the re-
sults achieved will finally lead us to propose a hybridization
of DE with a local optimizer.

3. Adapting DE to JSP

This section presents the modifications that must be in-
tegrated into DE in order to solve the JSP. All the other fea-
tures of the DE algorithm remain unchanged.

3.1. Permutation representation modes

Among the existing versions of permutation representa-
tions available in the literature, only few of them can be
adapted to the real-numbers encoding DE:

• Random keys.

This technique, initially proposed in [4], uses for each op-
eration a real number, bounded between 0 and 1. The op-
erations on a machine are sequenced according to the in-
creasing order of their associated variable. For instance,
consider five jobs with the following variable vector on ma-
chine i: [0.41 0.68 0.02 0.85 0.37]. The lowest value is 0.02
in position 2 so job 2 will be sequenced first; the second
lowest value is 0.37 in position 4 so job 4 will be sequenced
in second place; etc. The final sequencing order is: [2 4 0 1
3]. For a n×m-JSP, nm variables are needed to represent a
complete multi-permutation.

• Dispatching rules.

Dispatching rules are widely used in scheduling problems
and have been found to achieve good results for simple ma-
chine configurations. So, [6] introduced the idea of evolv-
ing a set of dispatching rules, which will be subsequently
used during the schedule building process in order to solve
conflict cases (i.e. cases when several operations are valid
candidates for the processing on a machine). We refer the
reader to [12] for a complete description of the most com-
monly used dispatching rules. In this study, the following
ones are accounted for:
- SPT: shortest processing time first;
- LST: least work remaining first;
- FCFS: first come first served;
- FOFO: first off first on;



- MS: minimum slack time first;
- COVERT: parameterized combination of SPT/MS;
- MS/OPN: min. slack time per remaining operation. A
variable must, in this sense, identify a rule that would set-
tle a conflict in iteration j of the schedule building process.
Since seven rules are taken into account, the continuous
variables are bracketed between 0 and 7 and the real value is
truncated in order to obtain a rule identifier. There may be
at most n-1 conflicts on one machine, and thus this encoding
technique needs (n-1)m variables for a n×m-JSP.

• Binary priorities.

This encoding technique was initially proposed in [13] to
solve the JSP with genetic algorithms (GAs). It is based on
the disjunctive graph representation mentioned in Section
2.2. A binary variable xijk is associated to each disjunctive
arc and enforces the priority of two operations j and k on
machine i: xijk=0 if k is scheduled before j and xijk=1,
otherwise. The drawback is that a feasible schedule is not
implicitly produced. Indeed, two kinds of infeasibilities can
appear:

(i) Local infeasibilty occurs when an operation cycle is
obtained on a single machine (j→k→l→j), leading to an
invalid permutation. Nakano and Yamada [13] designed a
local harmonization procedure that repairs the inconsistent
permutation by computing a priority matrix Mi for machine
i. Each term (j,k) of this matrix represents the variable xijk.
The sum Sj of each matrix row j is an integer that actually
constitutes the global job sequencing priority on the ma-
chine. Thus, the vector [Sj , j=1,...,n] should constitute a
valid permutation. If not, one randomly chosen matrix term
is replaced by its complementary value to get a valid per-
mutation The process starts from the row with the highest
Sj value and is repeated for each row, in the decreasing or-
der of Sj , to obtain a valid permutation.

(ii) Global infeasibility occurs when a discrepancy ap-
pears between local machine permutations and job operat-
ing sequences. This issue is fixed during the schedule build-
ing process (although the final schedule does not always re-
spect the encoded permutation).

In this study, a similar method is applied by rounding off
the real variables, bounded by 0 and 1, to the closest inte-
ger value, i.e. xijk=0 if xijk<0.5 and xijk=1, otherwise. In
case of local infeasibility, a modified local harmonization
procedure is carried out, taking advantage of the continu-
ous nature of the DE variables. When various terms, on
different rows or not, are candidates for the complementary
value swapping, we choose the one whose value is closest
to 0.5 instead of randomly. For instance, let us consider a
5×m-JSP. The priority matrix for machine i and its binary
interpretation are shown in Figure 1. The associated vector
Sj is [4 2 2 2 0], which is clearly not a valid permutation.
A term among rows 1, 2 or 3 must be replaced by its com-
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Figure 1. Priority matrix example

plementary value and xi12 is chosen since it has the value
closest to 0.5. Rows 1 and 2 of the interpreted matrix are
now respectively (0 - 1 1 1) and (0 0 - 0 1), leading to the
consistent permutation Sj = [4 3 1 2 0]. To conclude, notice
that the number of variables is greater than those of the for-
mer cases: for a n×m-JSP, n(n-1)m/2 variables are needed.

3.2. Schedule builder

• Giffler and Thompson’s parameterized algorithm.

This option is one of the most classical ones in order to build
active schedules [8]. Rather than the initial version, its mod-
ified variant was adapted here to produce schedules in a re-
gion intermediate to the non-delay and the active classes, by
introducing a tunable parameter δ. When δ=0, the algorithm
designs a schedule restricted only to the non-delay region;
conversely, when δ=1, the whole active schedule class can
be described; 0<δ<1 refers to an intermediate case. The δ
parameter will be tuned for each treated instance.

Note that Giffler and Thompson’s (GT) algorithm needs
a variable that settles a conflict at each iteration. For the
dispatching rules representation mode, this information is
obtained by applying the selected rule. For the two other
cases, the computed permutations determine the priority op-
eration.

• Manual schedule builder.

This option was designed in the framework of this study.
The working mode simply consists in scheduling the opera-
tions of each machine according to the order of their defined
job permutation. If several operations can be scheduled on
different machines, then the one with the lowest comple-
tion time is selected. When no operation can be scheduled
(because the next operations to be scheduled on each ma-
chine do not respect the job sequences), the next operations
of the permutation of each machine are considered. The se-
lected operation is scheduled as soon as possible, resulting



Table 1. Computational results for small instances (distance to the optimum, %)

Instance Size Optimum (or Giffler and Thompson’s algorithm Manual Schedule Builder
best known solution) Rnd. keys Disp. rules Bin. prior. Rnd. keys Bin. prior.

FT10 10×10 930 1.40 2.47 1.40 3.76 4.96
FT20 20×5 1165 1.29 3.00 1.12 5.06 6.98
ABZ5 10×10 1234 0.41 0.41 0.41 1.78 2.31
ABZ6 10×10 943 0.53 0.53 0.53 3.71 4.65

in an active schedule. This ”manual schedule builder” is
obviously adapted for the random keys and binary priorities
representations but it is impossible to apply the dispatching
rules scheme in this case.

4. Computational experiments

Computational experiments are executed for selected in-
stances drawn from the (abundant) JSP literature. Exper-
iments are divided into two steps: the first one is carried
out on simple examples to rule out one schedule’s builder
version. A second set evaluates the DE efficiency on inter-
mediate/difficult instances.

The set of simple problems is composed of two in-
stances due to [7] (FT10, FT20) and two instances due
to [1] (ABZ5, ABZ6). The set of intermediate problems
is composed of six instances due to [3] (ORB01-ORB06)
and seven instances due to [11] (denoted LAi). Finally, four
instances due to [19] (YN1-YN4) constitute the set of diffi-
cult problems.

4.1. Results for small examples

All the above permutation encodings and schedule
builder versions were tested on this set of problems. For
each instance, 20 trials were executed. The DE working
parameters mentioned in Section 2.1 were tuned through a
preliminary sensitivity analysis phase (not presented here).
For all the examples, F and CR were randomly generated
in the intervals [0.3,0.9] and [0.8,1.0]. NP and NG were
set as 250 and 600; the resulting number of 150,000 func-
tion evaluations is considerably lower than the values usu-
ally adopted in the literature. However, it was noted that
increasing NG did not provide significant improvements.

The obtained solutions, presented in Table 1, are not
compared with respect to any other algorithm, since the aim
of this first experiment is to draw some preliminary conclu-
sions about the behavior of DE according to its internal pro-
cedures. In fact, state-of-the-art algorithms always find the
optimal solutions for these problems.

Columns 4 to 8 indicate, for each DE version, the dis-
tance (in %) of the best found solution to the optimum (or

best known Upper Bound) provided in column 2. With re-
gard to the choice of a schedule builder, Table 1 clearly
shows that the GT algorithm is the best option. Note that
the δ parameter implemented in the algorithm was, for the
four instances, bracketed betwen 0.15 and 0.3, cutting an
important region of the active schedule space. On the one
hand, this means that this method might prevent us from
finding the optimum (that would explain the distance to the
optimal value, between 0.53 and 3.00). On the other hand,
additional tests (not shown here) proved that considering a
larger part of the active schedules class does not improve
the results: for higher δ values, DE seems to drift within
this huge search space. Indeed, the manual schedule builder
(which describes the entire active schedule class) obtains
poor results, far from the optimal values.

In terms of repeatability, the mean value (for 20 tri-
als) distance to the optimum lies in the interval [0.83,2.04]
with random keys; [0.53,5.87] with dispatching rules;
[0.75,3.16] with binary priorities. So, DE with the GT
schedule builder does not work so badly, although it can-
not reach the optimum.

Concerning the permutation representations, the random
keys and the binary priority version are better than the re-
maining option, albeit without huge differences. In terms
of computational cost, the binary priority representation is
much slower than the former ones: the higher number of
variables used with this strategy needs computational times
that are about twice higher than those needed by the other
versions. So, considering both solutions quality and com-
putational cost, the random keys encoding seems to present
a slight advantage over the other two. The second instance
set will try to confirm this first trend.

4.2. Results for harder instances

For the second set of experiments, the three permutation
encodings were evaluated only using the GT algorithm as
a schedule builder. The distances to the optimum/upper
bound of the best solutions obtained with 20 trials exe-
cuted for each instance are shown in Table 2. These re-
sults are compared, for similar numbers of function evalu-
ations, with respect to: GRASP [2], Hybrid Genetic Algo-
rithm [9] and Nowicki and Smutnicki’s tabu search based



Table 2. Computational results for harder instances (distance to the optimum, %)

Instance Size Optimum (or Giffler and Thompson’s algorithm Other algorithms
best known solution) Rnd. keys Disp. rules Bin. prior. GRASP HGA TSAB

ORB01 10×10 1059 1.04 1.04 1.04 0.00 - -
ORB02 10×10 888 0.79 0.79 0.90 0.00 - -
ORB03 10×10 1005 1.59 3.58 1.99 0.00 - -
ORB04 10×10 1005 1.29 2.19 1.29 0.60 - -
ORB05 10×10 887 1.01 2.48 1.80 0.23 - -
ORB06 10×10 1010 0.89 1.88 1.29 0.20 - -
LA22 15×10 927 1.40 2.59 2.16 0.00 0.86 0.00
LA24 15×10 935 2.14 3.10 2.78 2.03 1.93 0.43
LA25 15×10 977 2.56 2.76 4.09 0.72 0.92 0.00
LA27 20×10 1235 4.78 4.85 4.78 2.75 1.70 0.08
LA37 15×15 1397 2.08 4.58 4.44 0.93 0.79 0.72
LA38 15×15 1196 2.59 4.68 4.18 1.84 1.92 0.00
LA40 15×15 1222 1.96 1.96 1.96 1.80 1.55 0.57
YN1 20×20 885 6.89 7.46 7.91 - - Mean
YN2 20×20 909 8.80 7.15 9.13 - - Value
YN3 20×20 892 7.74 5.94 7.51 - - =
YN4 20×20 968 9.19 7.64 9.50 - - 1.18

algorithms [14, 15]. Empty cells mean that no solution is
available.

The results shown in Table 2 confirm the global superi-
ority of the random keys encoding, although the difference
with the binary priorities is not significant. However, a re-
verse behavior is noticed for more complex instances: the
dispatching rules method provides the best solutions. Re-
garding the global quality, the DE’s best solution lies at a
distance to the optimum/UB that remains almost steady for
intermediate instances, but increases drastically for harder
instances. With regard to the other algorithms, DE results
are not so far from GRASP and HGA, but cannot compete
with those of tabu search.

4.3. Discussion

The proposed experiments highlighted the GT algorithm
as the best schedule builder. Concerning encoding tech-
niques, the random keys method has advantages over the
other two, although with minor differences. With regard to
the simple DE performances for the JSP, compared to other
algorithms, the first point is that its working mode obviously
does not produce values competitive with those achieved by
state-of-the-art approaches such as the i-TSAB algorithm.
This is not so surprising since i-TSAB is carefully tailored
for the JSP, particularly because of its adapted neighbor-
hood and its heuristic-based initialization technique. How-
ever, except for some harder instances, DE does not provide
results so different from the other stochastic approaches
(note that HGA also uses a local search process based on

the i-TSAB neighborhood). This induces the idea of hy-
bridizing DE with a local optimizer in order to improve its
performance.

5. Hybridization with a local optimizer

Watson et al. [18] identified i-TSAB’s most relevant in-
novations: the N5 neighborhood, a long-term memory and
a sequence of diversification-intensification steps. We thus
added tabu search (TS) with the N5 neighborhood [14] to
our DE-based scheme but without i-TSAB long-term mem-
ory and diversification-intensification processes. Every 10
generations, a ratio of the DE population (from 2% to 10%)
was chosen among the best solutions and sent to TS. In or-
der to avoid premature convergence, the solutions modified
by TS are not injected back into the DE population. The DE
parameters are kept unchanged but the search is cut when a
number of function evaluations similar to that of the previ-
ous section is reached. The results from Table 3 show that
the proposed hybrid obtains very good results compared to
GRASP and HGA.

However, the question might be raised of how impor-
tant is the DE’s influence in such results, i.e. if TS might
achieve by itself solutions of equal quality. So, additional
experiments were carried out: TS was randomly initialized
and run for all the examples. The process is repeated a
sufficient number of times to reach the number of function
evaluations used by the hybridized DE-TS. The results (not
presented here) underline that, especially for the harder in-
stances, the randomly initialized TS results are much worse



Table 3. Computational results obtained by the DE-TS hybrid (distance to the optimum, %)

Instance Dist. to Instance Dist. to Instance Dist. to
Optimum Optimum Optimum

FT10 0.00 ORB04 0.00 LA37 1.29
FT20 0.00 ORB05 0.22 LA38 0.50
ABZ5 0.00 ORB06 0.30 LA40 0.33
ABZ6 0.00 LA22 0.00 YN1 1.58
ORB01 0.00 LA24 0.96 YN2 1.10
ORB02 0.00 LA25 0.10 YN3 0.90
ORB03 0.00 LA27 0.32 YN4 2.07

than the DE-TS algorithm solutions (on average, solutions
are 5.32% above the optimum for the YN instances).

6. Conclusions

Three kinds of permutation encodings and two schedule
builders were applied to the JSP in this paper. The compu-
tational experiments allowed us to determine the most suit-
able choices for both mechanisms. However, a comparative
study showed that, in its current state, this technique can-
not compete with other algorithms, leaving plenty of room
for the design of more efficient permutation representation
methods. Nevertheless, a hybridization with a local opti-
mizer, produced a drastic improvement on the quality of the
solutions obtained. This suggests an interesting path for fu-
ture research, which are currently exploring.
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