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Abstract. This paper introduces a new constraint-handling method called Inverted-
Shrinkable PAES (IS-PAES), which focuses the search effort of an evolutionary
algorithm on specific areas of the feasible region by shrinking the constrained
space of single-objective optimization problems. IS-PAES uses an adaptive grid
as the original PAES (Pareto Archived Evolution Strategy). However, the adap-
tive grid of IS-PAES does not have the serious scalability problems of the original
PAES. The proposed constraint-handling approach is validated with several ex-
amples taken from the standard literature on evolutionary optimization.


1 Introduction


Evolutionary Algorithms (EAs) in general (i.e., genetic algorithms, evolution strategies
and evolutionary programming) lack a mechanism able to bias efficiently the search
towards the feasible region in constrained search spaces. Such a mechanism is highly
desirable since most real-world problems have constraints which could be of any type
(equality, inequality, linear and nonlinear). The success of EAs in global optimiza-
tion has triggered a considerable amount of research regarding the development of
mechanisms able to incorporate information about the constraints of a problem into
the fitness function of the EA used to optimize it [4, 17]. So far, the most common
approach adopted in the evolutionary optimization literature to deal with constrained
search spaces is the use of penalty functions. When using a penalty function, the amount
of constraint violation is used to punish or “penalize” an infeasible solution so that fea-
sible solutions are favored by the selection process. Despite the popularity of penalty
functions, they have several drawbacks from which the main one is that they require
a careful fine tuning of the penalty factors that indicates the degree of penalization to







be applied [4]. Recently, some researchers have suggested the use of multiobjective
optimization concepts to handle constraints in EAs (see for example [4]). This paper
introduces a new approach that is based on an evolution strategy that was originally pro-
posed for multiobjective optimization: the Pareto Archived Evolution Strategy (PAES)
[14]. Our approach can be used to handle constraints both of single- and multiobjec-
tive optimization problems and does not present the scalability problems of the original
PAES. The remainder of this paper is organized as follows. Section 2 gives a formal
description of the general problem that we want to solve. Section 3 describes the previ-
ous work related to our own. In Section 4, we describe the main algorithm of IS-PAES.
Section 5 provides a comparison of results and Section 6 draws our conclusions and
provides some paths of future research.


2 Problem Statement


We are interested in the general non-linear programming problem in which we want to:


Find � which optimizes
��� ��� (1)


subject to:


��� � �	��
��������������������� (2)��� � �	�	����� �!�"�#�������$�&% (3)


where � is the vector of solutions �'�)( * � �+* � �������$�+*-,/.10 , � is the number of inequality
constraints and % is the number of equality constraints (in both cases, constraints could
be linear or non-linear).


If we denote with 2 to the feasible region and with 3 to the whole search space,
then it should be clear that 25463 .


For an inequality constaint that satisfies �#� � �	�	�7� , then we will say that is active at
� . All equality constraints


� �
(regardless of the value of � used) are considered active


at all points of 2 .


3 Related Work


Since our approach belongs to the group of techniques in which multiobjective opti-
mization concepts are adopted to handle constraints, we will briefly discuss some of
the most relevant work done in this area. The main idea of adopting multiobjective
optimization concepts to handle constraints is to redefine the single-objective optimiza-
tion of


��� �	� as a multiobjective optimization problem in which we will have 8:9��
objectives, where 8 is the total number of constraints. Then, we can apply any multi-
objective optimization technique [9] to the new vector ;< � �=��� �	�/� � �


� �	�$��������� �?>!� �	��� ,
where


�
�
� �	�$��������� �?>!� �	� are the original constraints of the problem. An ideal solution �


would thus have
� � � �	� =0 for �@
A�	
A8 and


��� �	��
 ���&B � for all feasible
B


(assuming
minimization).


Three are the mechanisms taken from evolutionary multiobjective optimization that
are more frequently incorporated into constraint-handling techniques:







1. Use of Pareto dominance as a selection criterion.
2. Use of Pareto ranking [12] to assign fitness in such a way that nondominated indi-


viduals (i.e., feasible individuals in this case) are assigned a higher fitness value.
3. Split the population in subpopulations that are evaluated either with respect to the


objective function or with respect to a single constraint of the problem. This is the
selection mechanism adopted in the Vector Evaluated Genetic Algorithm (VEGA)
[23].


We will now provide a brief discussion of the different approaches that have been
proposed in the literature adopting the three main ideas previously indicated.


3.1 COMOGA


Surry & Radcliffe [24] used a combination of the Vector Evaluated Genetic Algo-
rithm (VEGA) [23] and Pareto Ranking to handle constraints in an approach called
COMOGA (Constrained Optimization by Multi-Objective Genetic Algorithms).


In this technique, individuals are ranked depending of their sum of constraint vio-
lation (number of individuals dominated by a solution). However, the selection process
is based not only on ranks, but also on the fitness of each solution. COMOGA uses a
non-generational GA and extra parameters defined by the user (e.g., a parameter called
� is used to define the change rate of


�������	�
). One of these parameters is


�
�����	�
, that sets


the rate of selection based on fitness. The remaining ��� ������	�
individuals are selected


based on ranking values.
�
����	�


is defined by the user at the begining of the process and
it is adapted during evolution using as a basis the percentage of feasible individuals that
one wishes to have in the population.


COMOGA was applied on a gas network design problem and it was compared
against a penalty function approach. Although COMOGA showed a slight improve-
ment in the results with respect to a penalty function, its main advantage is that it does
not requiere a fine tuning of penalty factors or any other additional parameter. The main
drawback of COMOGA is that it requires several extra parameters, although its authors
argue that the technique is not particularly sensitive to their values [24].


3.2 VEGA


Parmee & Purchase [18] proposed to use VEGA [23] to guide the search of an evolu-
tionary algorithm to the feasible region of an optimal gas turbine design problem with
a heavily constrained search space. After having a feasible point, they generated an op-
timal hypercube around it in order to avoid leaving the feasible region after applying
the genetic operators. Note that this approach does not really use Pareto dominance or
any other multiobjective optimization concepts to exploit the search space. Instead, it
uses VEGA just to reach the feasible region. The use of special operators that preserve
feasibility makes this approach highly specific to one application domain rather than
providing a general methodology to handle constraints.


Coello [7] used a population-based approach similar to VEGA [23] to handle con-
straints in single-objective optimization problems. At each generation, the population







was split into 8 96� subpopulations of equal fixed size, where 8 is the number of con-
straints of the problem. The additional subpopulation handles the objective function of
the problem and the individuals contained within it are selected based on the uncon-
strained objective function value. The 8 remaining subpopulations take one constraint
of the problem each as their fitness function. The aim is that each of the subpopulations
tries to reach the feasible region corresponding to one individual constraint. By com-
bining these different subpopulations, the approach will reach the feasible region of the
problem considering all of its constraints simultaneously.


This approach was tested with some engineering problems [7] in which it produced
competitive results. It has also been successfully used to solve combinational circuit
design problems [8]. The main drawback of this approach is that the number of subpop-
ulations required increases linearly with the number of constraints of the problem. This
has some obvious scalability problems. Furthermore, it is not clear how to determine
appropriate sizes for each of the subpopulations used.


3.3 MOGA


Coello [6] proposed the use of Pareto dominance selection to handle constraints in
EAs. This is an application of Fonseca and Fleming’s Pareto ranking process [11]
(called Multi-Objective Genetic Algorithm, or MOGA) to constraint-handling. In this
approach, feasible individuals are always ranked higher than infeasible ones. Based on
this rank, a fitness value is assigned to each individual. This technique also includes
a self-adaptation mechanism that avoids the usual empirical fine-tuning of the main
genetic operators. Coello’s approach uses a real-coded GA with universal stochastic
sampling selection (to reduce the selection pressure caused by the Pareto ranking pro-
cess).


This approach has been used to solve some engineering design problems [6] in
which it produced very good results. Furthermore, the approach showed great robust-
ness and required a relatively low number of fitness function evaluations with respect
to traditional penalty functions. Additionally, it does not require any extra parameters.
Its main drawback is the computational cost ( � ��� � � , where


�
is the population size)


derived from the Pareto ranking process.


3.4 NPGA


Coello and Mezura [5] implemented a version of the Niched-Pareto Genetic Algo-
rithm (NPGA) [13] to handle constraints in single-objective optimization problems.
The NPGA is a multiobjective optimization approach in which individuals are selected
through a tournament based on Pareto dominance. However, unlike the NPGA, Coello
and Mezura’s approach does not require niches (or fitness sharing [10]) to maintain
diversity in the population. The NPGA is a more efficient technique than traditional
multiobjective optimization algorithms, since it does not compare every individual in
the population with respect to each other (as in traditional Pareto ranking), but uses
only a sample of the population to estimate Pareto dominance. This is the main advan-
tage of this approach with respect to Coello’s proposal [6]. Note however that Coello
and Mezura’s approach requires an additional parameter called � , that controls the







diversity of the population. � , indicates the proportion of parents selected by four com-
parison criteria described below. The remaining � � � , parents will be selected by a
pure probabilistic approach. Thus, this mechanism is responsible for keeping infeasible
individuals in the population (i.e., the source of diversity that keeps the algorithm from
converging to a local optimum too early in the evolutionary process).


This approach has been tested with several benchmark problems and was compared
against several types of penalty functions. Results indicated that the approach was ro-
bust, efficient and effective. However, it was also found that the approach had scalability
problems (its performance degrades as the number of decision variables increases).


3.5 Pareto Set and Line Search


Camponogara & Talukdar [3] proposed an approach in which a global optimization
problem was transformed into a bi-objective problem where the first objective is to
optimize the original objective function and the second is to minimize:


� ��� � �
��
��� �


max
� ��� � � ��� ��� (4)


Equation (4) tries to minimize the total amount of constraint violation of a solution
(i.e., it tries to make it feasible). At each generation of the process, several Pareto sets
are generated. An operator that substitutes crossover takes two Pareto sets � � and � � ,
where �	��� , and two solutions * ��
 � � and * � 
 � � , where * � dominates * � . With
these two points a search direction is defined using:


� �
� * � � * � � * � � * �  (5)


Line search begins by projecting
�


over one variable axis on decision variable space
in order to find a new solution * which dominates both * � and * � . At pre-defined in-
tervals, the worst half of the population is replaced with new random solutions to avoid
premature convergence. This indicates some of the problems of the approach to main-
tain diversity. Additionally, the use of line search within a GA adds some extra compu-
tational cost.


The authors of this approach validated it using a benchmark consisting of five test
functions. The results obtained were either optimal or very close to it. The main draw-
back of this approach is its additional computational cost. Also, it is not clear what is
the impact of the segment chosen to search on the overall performance of the algorithm.


3.6 Pareto Ranking and Domain Knowledge


Ray et al. [19] proposed the use of a Pareto ranking approach that operates on three
spaces: objective space, constraint space and the combination of the two previous spaces.
This approach also uses mating restrictions to ensure better constraint satisfaction in the
offspring generated and a selection process that eliminates weaknesses in any of these
spaces. To maintain diversity, a niche mechanism based on Euclidean distances is used.







This approach can solve both constrained or unconstrained optimization problems with
one or several objective functions.


The main advantage of this approach is that it requires a very low number of fitness
function evaluations (between 2% and 10% of the number of evaluations required by
the homomorphous maps of Koziel and Michalewicz [15], which is one of the best
constraint-handling techniques known to date). The technique has some problems to
reach the global optima, but it produces very good approximations considering its low
computation cost. The main drawback of the approach is that its implementation is
considerably more complex than any of the other techniques previously discussed.


3.7 Pareto Ranking and Robust Optimization


Ray [20] explored an extension of his previous work on constraint-handling [19] in
which the emphasis was robustness. A robust optimized solution is not sensitive to
parametric variations due to incomplete information of the problem or to changes on it.
This approach is capable of handling constraints and finds feasible solutions that are ro-
bust to parametric variations produced over time. This is achieved using the individual’s
self-feasibility and its neighborhood feasibility. The results reported in two well-known
design problems [20] showed that the proposed approach did not reach solutions as
good as the other techniques with which it was compared, but it turned out to be less
sensitive to parametric variations, which was the main goal of the approach. In con-
strast, the other techniques analyzed showed significant changes when the parameters
were perturbed. The main drawback of this approach is, again, its relative complexity
(i.e., its difficulty to implement it), and it would also be desirable that the approach is
further refined so that it can get closer to the global optimum than the current available
version.


4 IS-PAES Algorithm


All of the approaches discussed in the previous section have drawbacks that keep them
from producing competitive results with respect to the constraint-handling techniques
that represent the state-of-the-art in evolutionary optimization. In a recent technical re-
port [16], four of the previous techniques (i.e., COMOGA [24], VEGA [7], MOGA [6]
and NPGA [5]) have been compared using Michalewicz’s benchmark [17] and some
additional engineering optimization problems. Although inconclusive, the results indi-
cate that the use of Pareto dominance as a selection criterion gives better results than
Pareto ranking or the use of a population-based approach. However, in all cases, the
approaches analyzed are unable to reach the global optimum of problems with either
high dimensionality, large feasible regions or many nonlinear equality constraints [16].


In contrast, the approach proposed in this paper uses Pareto dominance as the crite-
rion selection, but unlike the previous work in the area, a secondary population is used
in this case. The approach, which is a relatively simple extension of PAES [14] provides,
however, very good results, which are highly competitive with those generated with an
approach that represents the state-of-the-art in constrained evolutionary optimization.







IS-PAES has been implemented as an extension of the Pareto Archived Evolution
Strategy (PAES) proposed by Knowles and Corne [14] for multiobjective optimization.
PAES’s main feature is the use of an adaptive grid on which objective function space is
located using a coordinate system. Such a grid is the diversity maintenance mechanism
of PAES and it’s the main feature of this algorithm. The grid is created by bisecting �
times the function space of dimension


� � � 9 � . The control of ����� grid cells means the
allocation of a large amount of physical memory for even small problems. For instance,
10 functions and 5 bisections of the space produce ���	� cells. Thus, the first feature
introduced in IS-PAES is the “inverted” part of the algorithm that deals with this space
usage problem. IS-PAES’s fitness function is mainly driven by a feasibility criterion.
Global information carried by the individuals surrounding the feasible region is used to
concentrate the search effort on smaller areas as the evolutionary process takes place.
In consequence, the search space being explored is “shrunk” over time. Eventually,
upon termination, the size of the search space being inspected will be very small and
will contain the solution desired (in the case of single-objective problems. For multi-
objective problems, it will contain the feasible region). The main algorithm of IS-PAES
is shown in Figure 1.


maxsize: max size of file
 : current parent �� (decision variable space)�
:child of c �� , ��� : individual in file that dominates h
��� : individual in file dominated by h
	����������� : current number of individuals in file
cnew: number of individuals generated thus far
	����������� = 1; cnew=0; c = newindividual() ; add(c)
While cnew � MaxNew do


h = mutate(c); cnew ��� 1;
if (c  h) then exit loop
else if (h  c) then ! remove(c); add(g); c=h; "
else if ( # a �$� file % a �$ h) then exit loop
else if ( # a � � file % h  a � ) then


add( h ); & a �'! remove(a � ); current ()� 1 "
else test(h,c,file)
if (cnew * g==0) then c = individual in less densely populated region
if (cnew * r==0) then shrinkspace(file)


End While


Fig. 1. Main algorithm of IS-PAES


The function test(h,c,file) determines if an individual can be added to the external
memory or not. Here we introduce the following notation: * ��+ * � means * � is located in
a less populated region of the grid than * � . The pseudo-code of this function is depicted
in Figure 2.







if (current � maxsize) then add(h)
if (h � c) then c = h


else if ( # ����� file % h � ��� ) then ! remove( ��� ); add(h) "
if (h � c) then c = h;


Fig. 2. Pseudo-code of test(h,c,file)


4.1 Inverted “ownership”


IS-PAES handles the population as part of a grid location relationship, whereas PAES
handles a grid location contains population relationship. In other words, PAES keeps
a list of individuals on either grid location, but in IS-PAES either individual knows its
position on the grid. Therefore, building a sorted list of the most dense populated areas
of the grid only requires to sort the � elements of the external memory. In PAES, this
procedure needs to inspect every location of the grid in order to produce an unsorted list,
there after the list is sorted. The advantage of the inverted relationship is clear when the
optimization problem has many functions (more than 10), and/or the granularity of the
grid is fine, for in this case only IS-PAES is able to deal with any number of functions
and granularity level.


4.2 Shrinking the objective space


� ����� : vector containing the smallest value of either 	�
 ��� ����� : vector containing the largest value of either 	 
 � �
select(file); getMinMax( file, � ����� , � ����� )
trim( � ����� , � ����� )
adjustparameters(file);


Fig. 3. Pseudo-code of Shrinkspace(file)


Shrinkspace(file) is the most important function of IS-PAES since its task is the
reduction of the search space. The pseudo-code of Shrinkspace(file) is shown in Fig-
ure 3.


The function select(file) returns a list whose elements are the best individuals found
in file. The size of the list is ���� of maxsize. Since individuals could be feasible, infea-
sible or only partially feasible, the list is generated by discarding from the file the worst
elements based on constraint violation. Notice that select(file) does not use a greedy
approach (e.g., searching for the best feasible individuals at once). Instead, individuals
with the highest amount of constraint violation are removed from the file. Thus, the







resulting list contains: 1) only the best feasible individuals, 2) a combination of feasi-
ble and partially feasible individuals, or 3) the “best” infeasible individuals. Function
trim( � � ��� , ��� ��� ) shrinks the feasible space around the potential solutions enclosed in
the hypervolume defined by the vectors � � ��� and � � ��� . Thus, the function trim() (see
Figure 4) determines the new boundaries for the decision variables.


n: size of decision vector;
	 
 : actual upper bound of the ��� � decision variable
	 
 : actual lower bound of the ��� � decision variable
	 ������� 
 : upper bound of �	� � decision variable in population
	 ������� 
 : lower bound of � � � decision variable in population
&
� : i �! 1, . . . , n "�� � 
�� 
 ����� ������� 	 ������� 
 ( 	 ������� 
 )� ��� � � � �"! 
 � 	 ������� 
 ( 	 ��� ��� 
 ; � ��� � � �
 � 	 �
 ( 	 �



� �#� � �%$�� � 
 �'&)(�* 
 �+� �,-/. * 
 �+� � ����� -�


delta 
 = max(slack 
 , deltaMin 
 );
	 �10 �

 � 	 ������� 
 �2� �#� � � 
 ; 	 �30 �



 � 	 ������� 
 (�� �#� � � 
 ;
if ( 	 �30 �



 4 	 �/5 
76�
98;:<=� 
 ) then
	 �30 �

 ( � 	 �30 �



 ( 	 �/5 
76�
98;:<=� 
 ; 	 �30 �

 � 	 �/5�
76 
>8":<=� 
 ;


if ( 	 �30 �

 � 	 �/5 
76�
98;:<=� 
 ) then 	 �30 �



 � � 	 �/5 
96 
>8":<=� 
 ( 	 �30 �

 ;


	 �30 �

 � 	 �/5�
76 
>8":<=� 
 ;


if ( 	 �30 � 4 	 �/5 
76�
98;:<=� 
 ) then 	 �30 �

 � 	 �/5 
96 
>8":<=� 
 ;


Fig. 4. Pseudo-code of trim


The value of ? is the percentage by which the boundary values of either * � 
A@
must be reduced such that the resulting hypervolume is a fraction B of its initial value. In
our experiments, B� ��� C�� worked well in all cases. Clearly, B controls the shrinking
speed, hence the algorithm is sensitive to this parameter and it can prevent it from
finding the optimum solution if small values are chosen. In our experiments, values in
the range [ D  � , C� � ] were tested with no visible effect in the performance. Of course, B
values near to ����� � slow down the convergence speed. The last step of shrinkspace()
is a call to adjustparameters(file). The goal is to re-start the control variable E using:
E � � � * � � * � �+FHG � � 
 � ������������� � This expression is also used during the generation
of the initial population. In that case, the upper and lower bounds take the initial values
of the search space indicated by the problem. The variation of the mutation probability
follows the exponential behavior suggested by Bäck [1].


5 Comparison of Results


We have validated our approach with several problems used as a benchmark for evolu-
tionary algorithms (see [17]) and with several engineering optimization problems taken







from the standard literature. In the first case, our results are compared against a tech-
nique called “stochastic ranking” [22], which is representative of the state-of-the-art in
constrained evolutionary optimization. This approach has been found to be equally good
or even better in some cases than the homomorphous maps of Koziel and Michalewicz
[15].


5.1 Examples


The following parameters were adopted for IS-PAES in all the experiments reported
next: 8�� *�������� � ����� , � �	��
 � � � � < � �� ����� � �� � , ���������'�5��� �� , � ���#�#� . The max-
imum number of fitness function evaluations was set to 350,000, which is the number
of evaluations used in [22]. We used ten (out of 13) of the test functions described in
[22], due to time limitations to perform the experiments. The test functions chosen,
however, contain characteristics that are representative of what can be considered “dif-
ficult” global optimization problems for an evolutionary algorithm.


TF n Type of function � LI NI NE


g01 13 quadratic ��� �;� ��� * 9 0 0
g02 20 non linear ���)� ������� * 2 0 0
g03 10 non linear ��� �;����� * 0 0 1
g04 5 quadratic ��� � �;����� * 4 2 0
g06 2 non linear ��� �;������* 0 2 0
g07 10 quadratic ��� �;� � � * 3 5 0
g08 2 non linear ��� � ��� �* 0 2 0
g09 7 non linear ��� �	 !��� * 0 4 0
g10 8 linear ��� � ���;� * 6 0 0
g11 2 quadratic ��� ������� * 0 0 1


Table 1. Values of � for the ten test problems chosen.


To get a better idea of the difficulty of solving each of these problems, a " met-
ric (as suggested by Koziel and Michalewicz [15]) was computed using the following
expression:


"!�  #  F  �  (6)


where
 # 


is the number of feasible solutions and

�

is the total number of solutions


randomly generated. In this work, we generated �'�)���+�#�����+���#� random solutions. The
different values of " for each of the test functions chosen are shown in Table 1, where
� is the number of decision variables, LI is the number of linear inequalities, NI the
number of nonlinear inequalities and NE is the number of nonlinear equalities.


From Tables 2 and 3 we can see that the proposed approach is highly competitive.
The discussion of results for each test function is provided next:


For g01 the best solution found by IS-PAES was:
�


= $ 1, 0.999999939809,
0.999997901977, 1, 0.999981406123, 1, 1, 0.999999242667, 0.999981194574,







TF optimal Best Mean Median Worst Std Dev
g01 -15.0 -14.9997 -14.494 -14.997 -12.446 9.3 �  �� . �


g02 -0.803619 -0.803376 -0.793281 -0.793342 -0.768291 9.0 �  �� . �
g03 -1.0 -1.000 -1.000 -1.000 -1.000 9.7 �  �� .��
g04 -30665.539 -30665.539 -30665.539 -30665.539 -30665.539 0.0
g06 -6961.814 -6961.814 -6961.813 -6961.814 -6961.810 8.5 �  �� .��
g07 24.306 24.338 24.527 24.467 24.995 1.7 �  � . �


g08 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 0.0
g09 680.630 680.630 680.631 680.631 680.634 8.1 �  �� .��
g10 7049.331 7062.019 7342.944 7448.014 7588.054 1.4 �  ��


�


g11 0.750 0.750 0.750 0.750 0.751 2.6 �  � .��
Table 2. Results produced by our IS-PAES algorithm.


2.99987534752, 2.99995011286, 2.99993014684, 0.999982112914
�


with
# ��� � �


�@����� C�CHC��HD�D
	�	 . In this case, IS-PAES was less consistent than stochastic ranking in
finding the global optimum, mainly because the approach was trapped in a local opti-
mum in which


# ��� � � �@�� during 20% of the runs.


TF optimal Best Mean Median Worst Std Dev
g01 -15.0 -15.0 -15.0 -15.0 -15.0 0.0
g02 -0.803619 -0.803515 -0.781975 -0.785800 -0.726288 2 �  � .


�


g03 -1.0 -1.000 -1.000 -1.000 -1.000 1.9 �  �� .��
g04 -30665.539 -30665.539 -30665.539 -30665.539 -30665.539 2.0 �  � .��
g06 -6961.814 -6961.814 -6875.940 -6961.814 -6350.262 1.6 �  �


�


g07 24.306 24.307 24.374 24.357 24.642 6.6 �  � .
�


g08 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 2.6 �  � . ���


g09 680.630 680.630 680.656 680.641 680.763 3.4 �  �� .
�


g10 7049.331 7054.316 7559.192 7372.613 8835.655 5.3 �  ��
�


g11 0.750 0.750 0.750 0.750 0.750 8.0 �  � .��
Table 3. Results produced by the stochastic ranking algorithm [22].


For g02 the best solution found by IS-PAES was:
�


= $ 3.14860401788,
3.10915903011, 3.08909341555, 3.05835689132, 3.04000196011, 3.00100530894,
2.94955289769, 2.94207158769, 0.49907406319, 0.486231653274, 0.49055938302,
0.492879188045,0.481722447567,0.471623533316,0.452037376504,0.442565813637,
0.451211591495, 0.437863945589, 0.444359423833, 0.437834075871


�
with


# � � � �
� ��� D������
	  ���� . As we can see, the best result found by stochastic ranking was better
than the best result found by IS-PAES. However, the statistical performance measures of
IS-PAES were better (particularly the standard deviation which is significantly lower),
which seems to indicate that our approach had more robustness in this problem.


The best solution found by IS-PAES for g03 was:
�


= $ 0.316965968, 0.315664596,
0.314608242, 0.315958975, 0.315915392, 0.317873891, 0.316867036, 0.314518512,







0.314381436, 0.319636209
�


with
# ��� � � �@��� ���#� ���������)C . In can be clearly seen in


this case that both IS-PAES and stochastic ranking had an excellent performance.
The best solution found by IS-PAES for g04 was:


�
= $ 78, 33.00000002,29.99525605,


45, 36.77581285
�


with
# ��� � � � ������� �� ���D���	 . The behavior of IS-PAES in this test


function was practically the same as stochastic ranking.
For g06, the best solution found by IS-PAES was:


�
= $ 14.0950000092,


0.842960808844
�


with
# � � � = -6961.813854. Note that both approaches reach the


global optimum in this case, but IS-PAES is more consistent, with very small varia-
tions in the results and a much lower standard deviation than stochastic ranking.


Stochastic ranking was clearly better in all aspects than IS-PAES for g07. The best
solution found by IS-PAES was:


�
= $ 2.16996489702,2.36701436984,8.76882720318,


5.07418756668, 0.943992761955, 1.32027308617, 1.31870032997, 9.82673763033,
8.26988778617, 8.36187863755


�
with


# ��� � � � ��� ����D�� 	����)D .
For g08, the best solution found by IS-PAES was:


�
= $ 1.227971353, 4.245373368


�


with
# � � � � � ��� ��C�)D��  ���� . Both algorithms had the same performance in this test


function.
Both algorithms reached the global optimum for g09, but IS-PAES had better statis-


tical measures. The best solution found by IS-PAEs was:
�


= $ 2.326603718,1.957743917,
-0.468352679, 4.349668424, -0.621354832, 1.047882344, 1.590801921


�
with


# ��� � �
��D���� �������	?��	 .


Except for the best solution found (which is better for stochastic ranking), the sta-
tistical measures of IS-PAES are better than those of stochastic ranking for g10. The
best solution found by IS-PAEs was:


�
= $ 105.6345328, 1179.227593, 6070.09281,


122.497943, 257.1979828, 277.4889774, 265.2967614, 357.197398
�


with
# ��� � �


	?����� � ��� C���� 	 .
Finally, for g11 both algorithms had a very good performance. The best solution


found by IS-PAES was:
�


= $ 2.326603718, 1.957743917, -0.468352679, 4.349668424,
-0.621354832, 1.047882344, 1.590801921


�
with


# ��� � ����� 		�HC�C�� ����	 � .


5.2 Optimization of a 49-bar plane truss


The engineering optimization problem chosen is the optimization of the 49-bar plane
truss shown in Figure 5. The goal is to find the cross-sectional area of each member of
the truss, such that the overall weight is minimized, subject to stress and displacement
constraints. The weight of the truss is given by


# ��� � � ������ � ���	� ��
�� , where � � is the
cross-sectional area of the � �� member,



��
is the corresponding length of the bar, and �


is the volumetric density of the material. We used a catalog of Altos Hornos de México,
S.A., with 65 entries for the cross-sectional areas available for the design. Other relevant
data are the following: Young modulus � ��� ���#����� kg/cm � , maximum allowable stress
= 3500.00 kg/cm


�
, � � 	 � ��� ����#� ����� , and a horizontal load of 4994.00 kg applied to


the nodes: 3, 5, 7, 9, 12, 14, 16, 19, 21, 23, 25 y 27. We solved this problem for two
cases:


1. Case 1. Stress and displacement constraints: Maximum allowable stress = 3500.00
kg/cm


�
, maximum displacement per node � ��� �/8 A total of 72 constraints, thus


73 objective functions.







Fig. 5. 49-bar plane truss used as an engineering optimization example.


2. Case 2. Real-world problem: The design problem considers traction and com-
pression stress on the bars, as well as their proper weight. Maximum allowable
stress = 3500.00 kg/cm


�
, maximum displacement per node =10 cm. A total of 72


constraints, thus 73 objective functions.


The average result of 30 runs for each case are shown in Table 4. We compare IS-
PAES with previous results reported by Botello [2] using other heuristics with a penalty
function [21] (SA: Simulated Annealing, GA50: Genetic Algorithm with a population
of 50, and GSSA: General Stochastic Search Algorithm with populations of 50 and 5).


We can see in this case that IS-PAES produced the lowest average weight for CASE
1, and the second best for CASE 2.


Algorithm CASE 1: Avg. Weight (Kg) CASE 2: Avg. Weight (Kg)
IS-PAES 725 2603


SA 737 2724
GA50 817 2784


GSSA50 748 2570
GSSA5 769 2716


Table 4. Comparison of different algorithms on the 49-bar struss, cases 1 and 2.







6 Conclusions and Future Work


We have introduced a constraint-handling approach that combines multiobjective op-
timization concepts with an efficient reduction mechanism of the search space and
a secondary population. We have shown how our approach overcomes the scalability
problem of the original PAES from which it was derived, and we also showed that the
approach is highly competitive with respect to the state-of-the-art technique in the area.


As part of our future work, we want to refine the mechanism adopted for reducing
the search space being explored, since in our current version of the algorithm, con-
vergence to local optima may occur in some cases due to the high selection pressure
introduced by such mechanism.


The elimination of the parameters required by our approach is another goal of our
current research. Finally, we also intend to couple the mechanisms proposed in this
paper to other evolutionary multiobjective optimization approaches.
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