
Adaptive Objective Space Partitioning Using

Conflict Information for Many-objective

Optimization
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Abstract. In a previous work we proposed a scheme for partitioning the
objective space using the conflict information of the current Pareto front
approximation found by an underlying multi-objective evolutionary algo-
rithm. Since that scheme introduced additional parameters that have to
be defined by the user, in this paper we propose important modifications
in order to automatically set those parameters. Such parameters con-
trol the number of solutions devoted to explore each objective subspace,
and the number of generations to create a new partition. Our experi-
mental results show that the new adaptive scheme performs as good as
the non-adaptive scheme, and in some cases it outperforms the original
scheme.

1 Introduction

Multi-objective Evolutionary Algorithm (MOEA) have been successfully applied
to solve many real world multi-objective problems (MOPs) (e.g.,[1]). However,
recent experimental [2–5] and analytical [6, 7] studies have pointed out that
MOEAs based on Pareto optimality have some drawbacks to solve problems with
a large number of objectives (these problems are usually called many-objective
problems). Approaches to deal with such problems have mainly focused on the
use of alternative optimality relations [8, 9], reduction of the number of objectives
of the problem, either during the search process [10, 11] or, at the decision making
process [12–14], and the incorporation of preference information [5].

A general scheme for partitioning the objective space in several subspaces in
order to deal with many-objective problems was introduced in [15]. In that ap-
proach, the solution ranking and parent selection are independently performed
in each subspace to emphasize the search within smaller regions of objective
function space. Later, in [16] we proposed a new partition strategy that creates
objective subspaces based on the analysis of the conflict information was pro-
posed. By grouping objectives in terms of the conflict among them, we aim to
separate the MOP into several subproblems in such a way that each subprob-
lem contains the information to preserve as much as possible the structure of
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the original problem. Since the conflict among objectives may change along the
search space, the search in the subspaces should be alternated with a search
in the entire objective space in order to update the conflict information. That
approach is more closely related to the objective reduction approaches, specially
those adopted during the search (e.g., [12, 10, 11]). However, its main difference
with respect to those approaches is that the partitioning scheme incorporates all
the objectives in order to cover the entire Pareto front.

Although the partitioning strategy based on conflict information produced
good results compared with NSGA-II and another partitioning strategy, the
strategy introduced some additional parameters which values need to be defined
by the user. These parameters are i) the number of generations to search on
the partition’s subspaces and on the whole objective space, and ii) the number
of solutions assigned to explore each subspace. This represents a problem since
the best values for those parameters may depend on each problem to be solved.
Additionally, some subspaces have greater degree of conflict than others. There-
fore, it seems reasonable to put more emphasis on them by assigning them more
resources (in our case, a larger population).

In this paper we present important modifications in order to automate the
determination of those parameters and to take advantage of the conflict informa-
tion to focus the search on some subspaces. In particular, the conflict information
is employed to assign the number of solutions according the contribution of each
subspace to the total conflict of the problem. To automatically define the pa-
rameter value described in ii), we use a convergence detection method based on
a statistical hypothesis tests applied on the values of a quality indicator.

The remainder of the paper is organized as follows. Section 2 presents the
main concepts and notation used through the paper. The basic objective space
partitioning framework is introduced in Section 3. The motivation and details
of the automatization of the partitioning parameters are described in Section 4.
In Section 5 is presented the experimental evaluation of the adaptive scheme.
Finally, in Section 6 we draw some conclusions about the new proposed scheme,
as well as some future research paths.

2 Basic Concepts and Notation

Definition 1 (Objective space Φ). The objective space of a MOP is the set
Φ = {f1, f2, . . . , fM} of the M objective functions to be optimized.

Definition 2 (Subspace ψ). A subspace ψ of Φ is a lower dimensional space
that includes some of the objective functions in Φ, i.e. ψ ⊂ Φ.

Definition 3 (Space partition Ψ). A space Φ is said to be partitioned into NS

subspaces, denoted as Ψ , if Ψ = {ψ1, ψ2, . . . , ψNS
| ∪NS

i=1 ψi = Φ ∧ ∩NS

i=1ψi = ∅}.

Definition 4 (Pareto dominance relation). A solution x1 is said to Pareto
dominate solution x2 in the objective space Φ, denoted by x1 ≺ x2, if and only if
(assuming minimization): ∀fi ∈ Φ : fi(x

1) ≤ fi(x
2) ∧ ∃fi ∈ Φ : fi(x

1) < fi(x
2).
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Definition 5 (Pareto optimal set). The Pareto optimal set, Popt, is defined
as: Popt = {x ∈ X |∄y ∈ X : y ≺ x}, where X ⊆ Rn is the feasible set in
decision variable space.

Definition 6 (Pareto front). For a Pareto optimal set Popt, the Pareto front,
PFopt, is defined as: PFopt = {z = (f1(x), . . . , fk(x)) | x ∈ Popt}. We will
denote by PFapprox the Pareto front approximation achieved by a MOEA.

Definition 7 (Pareto front approximation). A Pareto front approximation,
denoted by PFapprox, is a finite set composed of nondominated solutions.

Of course, in practice the goal of a MOEA is finding a PFapprox with the best
quality from all the possible approximation sets. The quality is usually defined
in terms of convergence and spread [17].

3 The Conflict-Based Partitioning Framework

3.1 General Idea of the Partitioning Framework

The basic idea of the partitioning framework is to divide the objective space into
several subspaces so that a different portion of the population focuses the search
in a different subspace. By partitioning the objective space into subspaces, we
aim to emphasize the search within smaller regions of objective space. Instead of
dividing the population into independent subpopulations, a fraction of the pool
of parents for the next generation is selected based on a different subspace. This
way, the pool of parents will be composed with individuals having a good perfor-
mance in each subspace. In our approach, we partition the M -dimensional space
Φ = {f1, f2, . . . , fM} into NS non-overlapping subspaces Ψ = {ψ1, ψ2, . . . , ψNS

}.
We selected NSGA-II to implement our proposed partitioning framework. Thus,
the nondominated sorting and truncation procedures of NSGA-II are modified
in the following way. The union of the parents and offspring, P ∪Q, is sorted NS

times using a different subspace each time. Then, from each mixed sorted popu-
lation, the best |P|/NS solutions are selected to form a new parent population of
size |P|. After this, the new population is generated by means of recombination
and mutation using binary tournaments.

3.2 Using Conflict Information to Partition the Objective Space

The number of all possible ways to partition Φ into NS subspaces is very large.
Therefore, it is not feasible to search in all the possible subspaces. Instead, we
can define a schedule of subspace sampling by using a partition strategy. In [15],
three strategies to partition Φ were investigated: random, fixed, and shift par-
tition. Later, we proposed a new strategy using the conflict information among
objectives [11]. In that strategy the first partition contains the least conflict-
ing objectives, the second one the next least conflicting objectives, and so on.
Therefore, instead of removing the least conflicting objectives, those objectives
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are integrated to form subspaces in such a way that all the objectives are op-
timized. By grouping objectives in terms of the conflict among them, we are
trying to separate the MOP into subproblems in such a way that each subspace
contains information to preserve most of the structure of the original problem.
The correlation among solutions in PFapprox is defined to estimate the conflict
among objectives in the sense defined by Carlson and Fullér [18]. A negative
correlation between a pair of objectives means that one objective increases while
the other decreases and vice versa. Thus, a negative correlation estimates the
conflict between a pair of objectives. On the other hand, if the correlation is
positive, then both objectives increase or decrease at the same time. That is, the
objectives support each other.

In order to implement the new partition strategy we should take into account
two issues: i) the conflict relation among the objectives may change during the
search, and ii) the tradeoffs between objectives in different subspaces are not
taken into account. In a sense, the vector evaluated algorithm (VEGA) [19] can
be thought as a particular case of the partitioning framework in which each ob-
jective is a partition. The issue ii) is related with the “speciation” phenomena
observed in VEGA in which some individuals excel in some objectives (some
subspaces in our case). To deal with both issues, in the final partitioning frame-
work the search is divided in several stages. Each of these stages is divided in
two phases, namely, an approximation phase followed by a partitioning phase.
In the approximation phase all the objectives are used to select the new parent
population (we can view this as a partition with a single partition formed by all
the objectives). The goal of this phase is finding a good approximation of the
current PFopt. The interested reader is referred to [16] to find the details of the
entire algorithm.

4 Automatic Setting of the Partitioning Parameters

As mentioned in the previous section, the conflict-based partitioning scheme
needs the definition of some important parameter values. That is, the number of
generations assigned to each phase of the strategy, and the number of total stages
during the search. In this section we will introduce some modifications aimed to
eliminate the need to define those values manually. In addition, as we will see
in this section, some subspaces have greater conflict contribution than others,
therefore it seems reasonable to put more emphasis on them by assigning them
more solutions. In a similar way, in some subspaces the search could stagnate
earlier than in others. Therefore it could be a good idea to stop searching them
and reassign those resources to other subspaces where progress can still continue.

4.1 Proportional Assignment of the Resources

One of the findings of our previous work was the fact that the conflict among
certain objectives is considerably larger than the conflict among others. In order
to measure the contribution of each subspace to the total conflict in the problem,
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we compute for each subspace its “conflict degree”, i.e., the sum of the conflict
between each pair of objectives. The ratio of the conflict degree of each subspace
and the total conflict is called the conflict contribution. In Fig. 1, we can clearly
see that subspace 3 has a larger conflict contribution with respect to the other
subspaces.

Fig. 1. Conflict contribution of each of the three subspaces generated using the conflict
partition strategy.

In the original strategy proposed in [16], each subspace receives an equal
number of parents regardless its conflict contribution. However, we can take
advantage of the conflict information in order to distribute the number of parents
accordingly. That is, the proportion of parents granted for each subspace should
be proportional to its contribution to the total conflict on the problem. In order
to illustrate this idea, let’s take as an example the conflict contribution obtained
for each of the 3 subspaces in the Knapsack problem (Fig. 2). Since subspace
3 contributes with 40% of the total contribution, then it will receive the same
percentage of the total number of parents. In turn, subspaces 1 and 2 will receive
29% and 31% of the parents, respectively. The motivation behind this idea is the
fact that the most conflicting objectives are the ones that change the most the
Pareto optimal front [10], and, therefore, they contribute with a larger tradeoff
surface to form the whole Pareto front. Thus, the most conflicting subspace
should have more solutions to cover larger areas of the Pareto front. The modified
procedure to carry out the non-dominated sorting taking into account the conflict
contribution is presented in Algorithm 1.

In extreme cases in which some objectives do not have conflict at all with
the other objectives, these objectives do not contribute at all to the structure of
the Pareto front, and, therefore, can be removed. Since these objectives do not
contribute to the total conflict of the problem, under the new proposed scheme,
they will receive no parents. Thus, in these extreme cases, the new scheme can
be regarded as a generalization of approaches that remove the least conflicting
objectives during the search (see e.g., [11] and [13]).
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Fig. 2. Proportional assignment of parents according to the conflict contribution of the
subspaces.

4.2 Automatic Transition Between Phases

In the scheme presented in [16], the number of generations in which the parti-
tioning and integration phases are used is determined by a parameter defined
by the user. However, the best value for this parameter might be different for
different MOPs. In order to free the user from the task of finding the optimal pa-
rameter value we propose to determine the transition between the partitioning
and integration phase automatically. In our approach we employ the progress
of the current PFapprox in order to decide if the stage should be changed. In
other words, if the search during the current phase does not have a significant
progress, then it is time to change to the other phase. We adopt an approach
similar to the convergence detection method proposed in [20]. That approach
applies a statistical hypothesis test on a sample of quality indicators values to
determine if a MOEA should be stopped. In our case, the convergence detection
method will not be used to stop the search, but to switch from one phase to
another.

The indicator that we propose to measure the progress of the search is based
on the additive ǫ-indicator, Iǫ+(A,B) [17]. This binary indicator is defined as

Iǫ+(A,B) = inf
ǫ∈R

{∀z2 ∈ B ∃z1 ∈ A : z1 ¹ǫ+ z2}

Algorithm 1 Non-dominated sorting with proportional assignment of parents.

procedure sort&Truncation(R,P, Ψ)
P∗ ← ∅
for i ← 1 until |Ψ | do

Fψi ← nonDominatedSort(R, ψi) ⊲ Sort using only the objectives in ψi

crowding(Fψi , ψi)
NP ← |P|× conflict contribution of subspace ψi

Pψi ← truncation(Fψi , NP ) ⊲ Select the best NP solutions wrt ψi

P∗ ← P∗ ∪ Pψi

return P∗
⊲ |P∗| = |P|
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for two nondominated sets A and B, where z1 ¹ǫ+ z2 iff ∀i : z1
i ≤ ǫ + z2

i , for a
given ǫ. In other words, Iǫ+(A,B) is the minimum value such that aggregated
to any objective vector in B, then A ¹ B.

The proposed indicator is intended to measure the improvement of the cur-
rent approximation set PFt with respect to the previous one, PFt−1. Thus, we
define this improvement as

Dǫ(PFt, PFt−1) = |Iǫ(PFt, PFt−1) − Iǫ(PFt−1, PFt)|.

If Dǫ(PFt, PFt−1) is close to zero, that implies that there is no significant
improvement from iteration t − 1 to generation t. In order to apply a hypothe-
sis test we need to record the values of this indicator through the optimization
process to get a sample of Dǫ values. The detailed process is described next. We
will use two different tests, from which one is adopted to detect if the search has
reached a certain threshold in terms of the Dǫ indicator. In some preliminary
experiments we realized that in some cases, the MOEA diverged (specially for
more than 5 objectives) making difficult to reach the desired threshold. There-
fore, we also employ a hypothesis test on the slope of the regression line obtained
from a sample of Dǫ values. The first test can be formulated as follows:

H0 : µDǫ
= µ0 vs. H1 : µDǫ

< µ0

where µ0 is the degree of improvement required. If H0 is rejected in support
of H1, we can consider that the search has no significant progress, and, therefore,
the phase should be changed. Since the type of distribution of the random vari-
able Dǫ is not known, we employ a non-parametric test, namely, the Wilcoxon
signed-rank test [21] to check that hypothesis.

The test for the analysis regression is formulated in the following manner:

H0 : βDǫ
= 0 vs. H1 : βDǫ

6= 0

In contrast to the previous test, in order to determine if there is a significant
descending linear trend of Dǫ, we need to check when the hypothesis H0 can no
longer be rejected. For this test we use a two-tailed t-test [21].

Since the integration phase is only intended to obtain a new approximation of
the Pareto front, and the goal of the partitioning phase is to improve the search
ability when the MOEA is stuck in a local optima, we only test the linear trend
during the integration phase. In addition, this helps us to determine the value
of µ0 automatically for the first test H0 : µDǫ

= µ0. In contrast, both tests are
used in the partitioning phase in the following manner. The test H0 : βDǫ

= 0 is
checked first, and if the null hypothesis H0 is rejected, then the partitioning phase
is maintained. If that hypothesis is not rejected, then we test H0 : µDǫ

= µ0. The
partitioning phase is changed only if H0 is rejected. Written as a pseudocode,
we get the following:

If H0 : βDǫ
= 0 is not rejected (i.e., search has stalled) and

H1 : µDǫ
< µ0 is supported (i.e., no significant improvement) then

Switch to the integration phase.
Otherwise

Stay in the partitioning phase.
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In this process, µ0 = µ̂Dǫ
, that is the mean of the sample of Dǫ taken in the

previous integration phase.

In a similar way to [20], a sample of Dǫ is taken from the last Sn observations
of the indicator values. At the beginning of each phase the first test is carried
out until Sn observations have been collected. After that, the test is checked
during each subsequent generation. Additionally, in the partitioning phase, we
manage the progress of each subspace independently to reallocate resources when
the search in some of the subspaces has no significant improvement. Therefore,
for each subspace in a partition, a sample of the last Sn observation of the Dǫ

indicator is stored. When the search in a certain subspace has stalled, then that
subspace is removed from the partition, so that in the next selection of parents,
only the remaining subspaces receive parents. This way all the resources are
focused on subspaces with a significant progress towards the Pareto front. Fig. 3
shows an example of this procedure applied on a partition with 3 subspaces,
i.e., Ψ = {ψ1, ψ2, ψ3}. Initially, the subspaces receive 30%, 20% and 50% of the
parents, respectively. After subspace ψ2 has been stopped, the proportion of
parents assigned to subspaces ψ1 and ψ3 is updated as it is shown in the figure.
Thus, it is expected to have a convergence speedup in the remaining subspaces.
Then, ψ1 subspace ends, and partition ψ3 receives all the parents. Finally, ψ3

is stopped signaling the end of the partitioning phase and the beginning of the
integration phase.

Fig. 3. Dynamic reallocation of the resources granted for each subspace.

5 Experimental Results

5.1 Algorithms, Metrics and Parameter Settings

In order to discover the advantages and disadvantages of the new adaptive par-
titioning scheme we compare 4 versions of the NSGA-II, i.e., the original version
and three other versions using different partitioning strategies: random, conflict
and adaptive-conflict. In all the algorithms we use a population of 200 individ-
uals running during 200 generations. The results presented are the average over
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30 runs of each NSGA-II variant. In the conflict-based strategy, the search is di-
vided into 10 stages, and the values for GΦ and GΨ represent the 30% and 70%
of the generations of each stage, respectively. For the adaptive-conflict strategy
we use a significance level α = 0.05. The sample size for Dǫ was experimentally
defined as 10.

In order to show how both conflict-based strategies work, we will use a test
problem in which the conflicting objectives can be defined a priori by the user.
Namely, the problem DTLZ5(I,M) [12], where M is the total number of ob-
jectives, and I is the number of objectives in conflict. Additionally, we employ
the 0/1 Knapsack with 300 items since the conflict relation among its objec-
tives is not known a priori. Unless specified otherwise, in our experiments we

Algorithm 2 Non-dominated sorting with proportional assignment of parents.

procedure checkConvergence(L, µ̂Dǫ
, α)

for each i ∈ {1, . . . , |Ψ |} do

pSlope ← slopeTest(Li) ⊲ Test using the sample of subspace ψi

pWilcoxon ← wilcoxonTest(Li, µ̂Dǫ
)

if pSlope > α and pWilcoxon ≤ α then

convergencei ← TRUE

else

convergencei ← FALSE

Return convergence

Algorithm 3 Adaptive Partitioning MOEA.

1: Ψ ← {{f1, .., fM}} ⊲ All the objectives in a single subspace.
2: phase ← integration

3: Li ← ∅ for all i ∈ {1, . . . , |Ψ |}
4: for t ← 1 until Gmax do

5: Qt ← newPop(Pt) ⊲ selection, crossover, mutation.
6: Rt ← Pt ∪ Qt

7: Pt+1 ← sort&Truncation(Rt, Ψ) ⊲ Using current Ψ .
8: for each ψi ∈ Ψ do

9: Li ← Li ∪ Dǫ(Pt+1,Pt, ψi)

10: if |L1| ≥ SN then

11: CheckConvergence(L, µ̂Dǫ
, α)

12: if all the subspaces in Ψ have converged then

13: if phase = integration then

14: Compute new µ̂Dǫ
from L1

15: Ψ ← createPartition(Pt+1, Φ, NS)
16: phase ← partitioning

17: else

18: Ψ ← {{f1, .., fM}}
19: phase ← integration

20: Li ← ∅ for all i ∈ {1, . . . , |Ψ |}
21: else if at least one subspace have converged then

22: Update conflict contribution in the current partition Ψ .
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use from 4 to 15 objectives in each test problem. For 4-9 objectives we use
2 subspaces, and for 10-15 objectives, we use 3 subspaces. In order to assess
convergence we adopt generational distance (GD). For DTZL5(I,M) we use

the exact generational distance, namely GD = 1
m

∑
z∈PFapprox

∑M

j=1(zj)
2 − 1,

where m = |PFapprox|. Additionally, to directly compare the convergence of the
MOEAs, we utilize the additive ǫ-indicator [17]. Finally, to assess both conver-
gence and diversity, we adopt the hypervolume indicator. For DTLZ5(I,M) the
reference point was zref = 1.5M . For the Knapsack problem, the reference point
was formed using the worst value in each objective of all the PFapprox generated
by all the algorithms.

5.2 Application of the New Adaptive Scheme

Fig. 4 shows the progress of Dǫ in the Knapsack problem for the partitions of
the integration and the partitioning phases. As can be seen, in the last two par-
titioning phases, the least conflicting subspace (ψ1) converges first, whereas the
most conflicting subspace (ψ3) converges at the end. This is somewhat expected
since the most conflicting subspace has a larger region of the Pareto front to
cover.

Fig. 4. Example of the convergence of the partitions {{f1, . . . , fM}} (integration phase)
and {ψ1, ψ2, ψ3} (partitioning phase) through the search process. Dashed lines mark
the end of the integration phase, while dotted lines that of the partitioning phase.

The assignment of parents for a 3-subspace partition is illustrated in Fig-
ure 5. We can observe that the most conflicting subspace receives about 50%
of the parents at the beginning of each partitioning phase. Additionally, we can
see that after the first subspace converges, the remaining subspaces converge
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faster than the most conflicting subspace. This can be explained because the re-
maining subspaces receive more parents to explore their corresponding objective
subspace.
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5.3 DTLZ5(I, M): Conflict Known a priori

With respect to DTLZ5(I,M), the experiments show that the adaptive-conflict
strategy only marginally outperforms to the conflict strategy in terms of both
generational distance and hypervolume (Figs. 6 and 7, resp.). One interesting
observation with respect to the hypervolume results is that for less than 5 ob-
jectives, NSGA-II performs better than any of the partitioning strategies. This
implies that for those number of objectives, NSGA-II still achieves a good per-
formance, and therefore there is no need to partitioning the objective space.
Although, of course, the number of objectives in which NSGA-II performs well
might depend on the given MOP. Regarding the ǫ-indicator (Fig. 8) the adaptive-
conflict strategy clearly outperforms NSGA-II and the conflict strategy. Iǫ+(A,B)
is the subplot located in row A and column B of the matrix. The performance
of both conflict-based strategies are very similar. From this experiment we can
conclude about the performance of the adaptive-conflict strategy is that the
proportional assignment of parents accelerates the convergence of the MOEA.
Additionally, the automatic transition between phases does not seem to affect
the search ability of NSGA-II.
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5.4 Knapsack Problem: Unknown Conflict a priori

One important difference between DTLZ5(I,M) and the Knapsack problem is
that none of the objectives of the Knapsack problem is totally redundant, i.e.,
there is conflict between every pair of objectives. However, as it was shown
in [16], the objectives have different conflict degrees among them. Analyzing the
boxplots of Fig. 9 we can realize that for a large number of objectives (e.g.,
12-15) the adaptive-conflict strategy outperforms the original conflict strategy
in terms of the ǫ-indicator 10. This could mean that as the problems get harder,
the proportional assignment of parents is more useful. The adaptive-conflict
strategy clearly outperforms the other variants of NSGA-II with respect to the
hypervolume. This suggests that the adaptive-conflict strategy also contributes
to get a better distribution of the solutions.

6 Conclusions and Future Work

In this paper we have introduced some improvements on a previously proposed
scheme intended for partitioning the objective space. The main goal of these
improvements is to automate the setting of some parameters of the original
scheme, namely: the assignment the individuals to explore each subspace, and
the transition between each phase of the scheme.

According to the experimental comparison, the new adaptive-conflict parti-
tioning scheme performs at least as well as the two previously defined schemes.
Furthermore, in some cases, the adaptive scheme outperformed those schemes.
This means that, besides freeing the user from setting the above mentioned
parameters, the adaptive scheme improves the search ability of the MOEA.
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Fig. 8. Comparison of NSGA-II and the variants of the partitioning scheme with re-
spect to Iǫ using the problem DTLZ5(I, M).
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Fig. 9. Comparison of NSGA-II and the variants of the partitioning scheme with re-
spect to Iǫ using the Knapsack problem.
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Fig. 10. Hypervolume obtained by NSGA-II and the three variants of the partitioning
scheme using the Knapsack problem.

As a future work, it would be interesting to study the correlation of the
transitions between phases and the number of objectives. Additionally, we plan to
use the conflict information to determine automatically the size of the subspaces
of the created partitions.
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