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ABSTRACT


This paper presents a quantitative analysis of different pref-
erence relations proposed to deal with problems with a high
number of objectives. Since the relations stress different
subsets of the Pareto front, we based the comparison on the
Tchebycheff distance of the approximation set to the “knee”
of the Pareto front. Additionally, the convergence induced
by the preference relations is studied by analyzing the gen-
erational distance observed at each generation of the search.
The results show that some preference relations contribute
to converge quickly to the Pareto front, but they promote
the generation of solutions far from the knee region. More-
over, even if a preference relation generates solutions near
the knee, there exists a trade-off between convergence and
the extension of the Pareto front covered.


Categories and Subject Descriptors


I.2.8 [Computing Methodologies]: Artificial Intelligence—
Problem Solving, Control Methods and Search


General Terms


Algorithms, Performance, Experimentation


Keywords


Multiobjective optimization, many-objective optimization,
preference relations


1. INTRODUCTION
Multiobjective evolutionary algorithms (MOEAs) rely on


preference relations to identify high-potential regions of the
search space in order to converge to the optimal set. A pref-
erence relation is the mechanism to decide if a solution x is
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preferable over y in the search space. In single-objective op-
timization, the determination of the optimum among a set
of given solutions is clear. However, in the absence of prefer-
ence information, in multiobjective optimization there does
not exist a unique or straightforward preference relation to
determine if a solution is better than other. The preference
relation most commonly adopted is the one called Pareto


dominance relation [13], which leads to trade-offs among
the objectives. Thus, by using this relation, it is not pos-
sible to obtain a single optimal solution, but instead, we
produce a set of them. This set is called the Pareto optimal


set (Popt) and its image in objective space is known as the
Pareto front (PFopt). Formally, we say that a solution x
Pareto-dominates solution y, denoted by x ≺pareto y, if and
only if:


∀ i : fi(x) ≤ fi(y) and ∃ i : fi(x) < fi(y)


Nowadays, MOEAs have shown a remarkable performance
in many real-life problems with 2 or 3 objectives. However,
recent experimental [10, 18, 14] and analytical [11] studies
have shown that MOEAs based on the Pareto dominance re-
lation scale poorly in multiobjective optimization problems
(MOPs) with a high number of objectives (4 or more).


One of the reasons for this limitation is that the pro-
portion of nondominated solutions (i.e., incomparable solu-
tions regarding Pareto dominance) in a population increases
rapidly with the number of objectives (see e.g., [9]). As a
result, in MOPs with a large number of objectives (known
as many-objective optimization problems) the Pareto domi-
nance relation is incapable of providing the necessary infor-
mation to select the correct solutions in order to steer the
search towards the Pareto optimal set. Although this limi-
tation seems to affect only to Pareto-based MOEAs, many-
objective problems pose some other difficulties common to
any other multiobjective optimizer. For instance, the expo-
nential growth of the number of points required to represent
accurately a Pareto front with respect to the number of ob-
jectives, and the difficulty to visualize the Pareto front in
more than 3 dimensions.


In the current literature, we can identify two approaches
commonly adopted to cope with many-objectives problems,
namely: i) adopt or propose a preference relation that in-
duces a finer grain order on the solutions than that induced
by the Pareto dominance relation [7, 9, 16, 15], and ii) re-
duce the number of objectives of the problem during the
search process [3] or, a posteriori, during the decision mak-
ing process [6, 2, 12].
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Current works in many-objective optimization have ana-
lyzed some preference relations qualitatively by using dis-
tribution of solutions’ ranks (i.e., the number of possible
ranks and the number of solutions in each rank), or quan-
titatively by adopting quality indicators commonly used in
the field of evolutionary multiobjective optimization (i.e.,
hypervolume, coverage, or generational distance). However,
we believe that using directly standard quality indicators is
not appropriate to compare preference relations since their
optimal sets are, roughly speaking, different subsets of the
Pareto optimal set. In other words, the preference relations
prefer different regions of the Pareto optimal front.


In the absence of particular decision maker’s preferences,
the generally accepted assumption is that the most interest-
ing solution is the “knee” of the Pareto front, i.e., the region
of maximum bulge on the Pareto curve [5]. For this reason,
a Pareto front approximation (PFapprox) generated using
a preference relation should be preferred over another ap-
proximation if it generates more solutions around the knee
than the other approximation. Therefore, in this paper we
present a comparative study that analyzes the performance
of some preference relations based on the distance of their
approximation sets to the knee of the Pareto front. The goal
of this study is to reveal the advantages and disadvantages
of the preference relations incorporated into a MOEA.


The remainder of this paper has the following structure.
The preference relations included in this study are described
in Section 2. In Section 3 we describe the methodology to
compare the preference relations, and the results obtained
in the comparison are also presented and discussed. Finally,
in Section 4 we draw some conclusions about the preference
relations studied, as well as some paths for future research.


2. PREFERENCE RELATIONS STUDIED


2.1 Average and Maximum Ranking Methods
Although without a specific interest in many-objective


problems, Bentley and Wakefield [1] proposed the average


ranking (AR) and the maximum ranking (MR) preference
relations. The AR relation computes for each solution a dif-
ferent rank considering each objective independently. The
final rank of a solution is obtained by summing all theirs
ranks on each objective. Let Ravg(x) =


P


1≤i≤k
rankfi


(x)
be the average rank assigned to solution x, where k is the
number of objectives. Then, a solution x dominates solution
y with respect to the average relation, denoted by x ≺avg y,
if and only if Ravg(x) < Ravg(y).


Table 1 illustrates the AR method with a small example
considering 3-objective solutions.


Table 1: An example of the Average (AR) and Max-
imum (MR) preference relations.


(f1, f2, f3) rank 1 rank 2 rank 3 AR MR
(4, 3, 5) 3 3 4 10 3
(1, 4, 7) 1 4 6 11 1
(6, 2, 2) 4 2 1 7 1
(7, 7, 6) 5 5 5 15 5
(8, 1, 3) 6 1 2 9 1
(3, 8, 4) 2 6 3 11 2


In turn, the MR relation takes the best rank as the global
rank for each solution (see Table 1). Clearly this method fa-


vors extreme solutions, i.e., solutions with high performance
in some of the objectives, although with poor overall per-
formance. Let Rmax(x) = min1≤i≤k{rankfi


(x)} be the best
rank assigned to solution x. Then, a solution x dominates
solution y with respect to the MR, denoted by x ≺max y, if
and only if Rmax(x) < Rmax(y).


In the same way as in the study by Corne and Knowles [4],
we apply the AR and MR methods on the PFapprox set of
the current population only. The final rank of the dominated
solutions will be the sum of its Pareto rank and the worst
rank assigned to the nondominated solutions according to
AR or MR, respectively.


2.2 Favour Ranking
In the favour relation (FR), proposed by Drechsler et


al. [8], a solution x dominates solution y with respect to
the favour relation, denoted by x ≺favour y, if an only if:


|{i : fi(x) < fi(y), 1 ≤ i ≤ k}| >


|{j : fj(x) > fj(y), 1 ≤ j ≤ k}|


This means that x is favoured to y iff it outperforms y in
more objectives than those in which y outperforms x. For
example, given f(x(1)) = (5, 3, 1) and f(x(2)) = (1, 1, 2),


then we have that x(2) ≺favour x(1).


2.3 Preference Order Ranking
The preference order relation (POR), developed by di


Pierro [7], is based on the concept of efficiency of order,
which states that:


A solution x∗ is considered efficient of order q if it is not


dominated by any other solution considering all the
`


k


q


´


ob-


jective subsets of size q, where k is the number of objectives.


The process for assigning ranks to a set of solutions is
based on nondominated sorting. First, the solutions in the
first nondominated front are ranked according to a strategy
based on the preference order relation (see [7] for details);
let w be the worst given rank is this process. Next, the
solutions in subsequent nondominated fronts receive a rank
equal to w + s, where s is the number of the nondominated
front.


2.4 Expansion relation
Sato et al. [15] proposed a preference relation to control


the dominance area of solutions. This method can control
the degree of expansion or contraction of the dominance area
adopting a user-defined vector S = [Si, . . . , Sk]. To do so,
the value for each objective function is modified using the
values Si in the following manner:


f ′
i(x) =


r · sin(ωi + Si · π)


sin(Si · π)
∀ i = 1, 2, . . . , k


where r is the norm of f(x), fi(x) is the evaluation of the
i-th objective, and ωi is the angle between f(x) and fi(x),
i.e., ωi = cos−1(fi(x)/r).


The possible values for Si range from 0.25 to 0.75. If
the user adopts values Si < 0.5, the dominance area is ex-
panded and produces a more fine grained ranking of solu-
tions and would strengthen selection. On the other hand,
if the user sets Si > 0.5, the dominance area is contracted
and produces a coarser ranking of solutions, weakening the
selection procedure. By setting Si = 0.5 the usual Pareto
dominance relation is obtained. Since we are interested in
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producing a fine grained order of the solutions we will use
only values between 0.25 ≤ Si < 0.5. We will refer to this
configuration as the expansion relation (ER). Thus, we can
say that solution x dominates solution y with respect to the
expansion relation, denoted by x ≺expansion y, if and only
if ∀i : f ′


i(x) ≤ f ′
i(y) and ∃i : f ′


i(x) < f ′
i(y).


3. QUANTITATIVE ANALYSIS OF THE


PREFERENCE RELATIONS


3.1 Quality Indicators and Methods Used
As noticed earlier, the optimal solution set of each prefer-


ence relation is, roughly speaking, a subset of PFopt. As a
consequence, although a preference relation is only applied
on the current PFapprox and the archive is maintained using
Pareto dominance, the preferred solutions by the preference
relation in the primary population belong to a portion of
PFopt. Thus, in spite of the fact that the final PFapprox


set may contain solutions over all the Pareto optimal front,
the solutions included in the optimal solution set of the given
preference relation are constantly exploited, and the remain-
der of the solutions may be suboptimal. We can see this
situation by comparing the two PFapprox sets presented in
Figure 1. These sets were obtained using the relations ER
and AR. Clearly, these preference relations promote solu-
tions in different regions of the Pareto front.


0


0.5


1


0


0.5


1


0


0.2


0.4


0.6


0.8


1


Expansion


Average


knee


Figure 1: Pareto front approximations obtained by
the expansion and the average ranking relations.


This poses a challenge to compare Pareto front approx-
imations achieved using different preference relations. For
instance, let us suppose we want to compare two preference
relations, one that finds solutions in a small region in the
middle of the Pareto front, and another that finds solutions
in a larger region, but in extreme regions of the Pareto front.
If we use, for example, the hypervolume indicator, the pref-
erence relation with the larger region will have an inherent
advantage over the other relation.


It is commonly accepted that decision makers often se-
lect a solution located in the middle of the Pareto front [5],
i.e., the knee of the Pareto front. Therefore, we believe that
one natural criterion to evaluate preference relations is mea-
suring the distance between the knee and the points in the
PFapprox set generated using the preference relation. There
exist different characterizations of the knee in the literature.
Nonetheless, in this paper we will consider that the knee of
the Pareto front is the point with the minimum Tchebycheff
distance to the ideal point, z∗, or an approximation of it.


The weighted Tchebycheff distance to z∗ is defined in the
following way:


d(z, z∗, λ) = max
1≤j≤k


{λj |z
∗
j − zj |},


where k is the number of objectives. Defined this way, the
knee of the Pareto front is the point in the feasible objective
space, Λ, which corresponds to minz∈Λ d(z, z∗, λ). Here, we
assume that λi = 1


Ri


, where Ri is the range of the i-th


objective in PFopt. Figure 1 shows the knee for the problem
DTLZ2, which is located at the point ( 1√


3
, 1√


3
, 1√


3
).


This way, a preference relation is better than other rela-
tion if its PFapprox set contains more solutions around the
knee than the PFapprox set achieved by the other relation.
In order to evaluate this situation we will plot the distri-
bution of the Tchebycheff distance from the ideal point to
the points in a given PFapprox. The desired distribution is
one with a peak near zero and that decays slowly towards
the right since it will indicate that most of the solutions are
situated near the knee.


Similar to the approach followed by Corne and Knowles [4],
we employed a simple MOEA to evaluate the preference re-
lations included in this study. This way, we try to minimize
the effect of some specialized techniques in such a way that
the performance of the MOEA can be mainly attributed to
the preference relation. Accordingly, the MOEA uses bi-
nary encoding, two point crossover, and uniform mutation.
To select the parents we used a binary tournament based
on the ranks assigned by the given preference relation. The
MOEA is equipped with an archive that is truncated by re-
moving a solution selected at random to introduce a new
Pareto nondominated solution when the archive is full.


Additionally, for each preference relation we will plot the
online generational distance achieved by the current non-
dominated set generated by the MOEA using the given re-
lation. This way, we can figure out how fast the MOEA
converges towards the Pareto front regardless of the spread
of the solutions. This information can be useful if we want,
for instance, to use a relaxed preference relation to quickly
reach the Pareto front and, afterwards, to employ other pref-
erence relation to cover a broader extension of the Pareto
front. The generational distance (GD) [17] is defined by


GD =
“


p


Pn


i=1 d2
i


”


/n, where n is the size of PFapprox and


di is the Euclidian distance between each vector in PFapprox


and the nearest member of PFopt. Finally, to assess the dis-
tribution of the nondominated set obtained by the MOEA
we use the inverted generational distance (IGD), which is
obtained by interchanging the roles of PFopt and PFapprox


in the GD’s definition.


3.2 Experimental Settings
We adopt the problems DTLZ2 and DTLZ7 to evaluate


the performance of the preference relation. The problem
DTLZ7 was selected to test the ability of the preference
relations to converge towards the knee on problems with a
non-convex and disconnected Pareto front1. We used 3, 5, 8,
10 and 15 objectives in each problem. Regarding the MOEA,
in all the simulations we employed a crossover probability
of 0.9 and a mutation probability of 1/ℓ, where ℓ is the


1Objectives in DTLZ2 have the same range, however for
DTLZ7 we needed to normalize its objectives using the min-
imum and maximum values of PFopt.
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length of the binary string needed to encode solutions with
5 digits of precision. For each preference relation the MOEA
was run 30 times. In each run we used a population of 200
individuals during 300 generations, and an archive of size
300. The reported values of GD and IGD correspond to
the average of the 30 runs, whereas the distributions of the
Tchebycheff distance were calculated using the union of the
PFapprox sets achieved by each preference relation.


Since the expansion relation requires a user-defined pa-
rameter, S, in the next section we present a preliminary
analysis to investigate the influence of that parameter on
the performance of ER.


3.3 Analysis of the Expansion Preference Re-
lation


In order to investigate the influence of the parameter S on
the expansion relation we solve DTLZ2 using three different
values of S, namely S = 0.3, S = 0.35, S = 0.4. Among
these values, S = 0.3 is the one that expands more the dom-
inance area, and, therefore, it may allow the MOEA to reach
faster the Pareto front. In each run of these experiments we
used a population of 200 individuals during 200 generations,
and an archive size of 200.


For the sake of clarity, the online GD values presented in
Figures 2-4 are plotted on a semi-logarithmic scale. From
these plots it is clear that with S = 0.3 it is obtained the
fastest convergence to the Pareto front, while with S = 0.4
it is obtained the slowest one. Nevertheless, we have to note
that the smaller the S value, the smaller the Pareto region
covered by the MOEA using the expansion relation.


In order to study the distribution of the solutions around
the knee region, we use the distribution of the Tchebycheff
distances with respect to the origin. Figure 5 shows that for
5 objectives, the larger peak of the distributions for S = 0.3
and S = 0.35 is around 1. That is, most of the solutions are
clustered in extreme regions of the Pareto front. However,
with S = 0.35 there is a considerable number of solutions
near the knee of the front. In fact, this is the value that
achieves the largest number of solutions around the knee.
With respect to 10 and 15 objectives (see Figure 6), for the
three values of S, the solutions are concentrated at simi-
lar distances from the knee. Since from the three values
considered, S = 0.35 represents the best trade-off between
convergence and distribution around the knee, we used this
value for the rest of the experiments.
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Figure 2: Online GD achieved with the expansion
relation using different values for S in DTLZ2 with
5 objectives.
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Figure 3: Online GD achieved with the expansion
relation using different values for S in DTLZ2 with
10 objectives.
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Figure 4: Online GD achieved with the expansion
relation using different values for S in DTLZ2 with
15 objectives.
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Figure 5: Distribution of the Tchebycheff distance
obtained with the expansion relation and using dif-
ferent values of S in DTLZ2 with 5 objectives.


3.4 Analysis of All the Preference Relations
Like in the previous analysis, in the experiments of this


section we used the online generational distance and the
distribution of the Tchebycheff distances. However, we also
used the inverted generational distance to measure both the
spread and convergence to the Pareto front.
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Figure 6: Distribution of the Tchebycheff distance
obtained with the expansion relation and using dif-
ferent values of S in DTLZ2 with 15 objectives.


The results of the online generational distance on problem
DTLZ2 are presented in Figures 7-10. From these plots we
can clearly see that, on the one hand, the MOEA with the
Pareto relation achieves the worst convergence to the Pareto
front during all the search (except for the favour relation).
On the other hand, by employing the expansion relation,
the MOEA converges very fast during the first 50 and 150
generations for 10 and 15, and 5 objectives, respectively.
Then, AR, POR, and FR achieve a closer approximation to
the Pareto front.


The second best convergence is obtained using AR, which
at the end of the search achieves a better convergence than
the expansion relation. The convergence obtained by the
favour relation presents an interesting behavior. In the first
half of the optimization it achieves a poor convergence. How-
ever in the second half, it improves dramatically the conver-
gence and towards the end of the search it produces the
best convergence. This behavior is explained by analyzing
the IGD results presented in Figure 11 and the distribution
of the Tchebycheff distance shown in Figures 12-15. That
is to say, Tchebycheff distances show that most of the solu-
tions generated by the MOEA using the favour relation are
located far from the knee region (solutions with a Tcheby-
cheff distance of 1). In addition, the IGD value for every
number of objectives is very poor on problem DTLZ2 (see
Fig. 11). These two facts suggest that the solutions pro-
moted by the favour relation are concentrated in a small
region of the Pareto front and, consequently, after a certain
number of generations the solutions overexploit that region
achieving very small values on the GD indicator but large
values on IGD. This behavior, which is worsened with the
number of objectives, is also presented using AR and POR.


On the other hand, MR, ER and the Pareto dominance
relations present a wider distribution of the Tchebycheff dis-
tances for any number of objectives. It is noticeable, though,
that the MOEA with the expansion relation finds the closest
solutions to the front’s knee for any number of objectives.
This can be checked by observing that the left tail of its
distribution is closer to zero.


With respect to the problem DTLZ2 we can conclude that
the best preference relation is the expansion relation since it
helps the MOEA to converge quickly to the Pareto front and
to maintain more solutions near to the knee of the Pareto


front. Although AR and POR provide good convergence
they promote solutions away from the knee.
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Figure 7: Online GD achieved by the preference re-
lations in DTLZ2 with 3 objectives.
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Figure 8: Online GD achieved by the preference re-
lations in DTLZ2 with 5 objectives.


In the problem DTLZ7 we only analyzed the distribution
of the Tchebycheff distances and the results of the IGD indi-
cator. With 3 objectives, the distribution of the Tchebycheff
distances achieved by the expansion relation (Fig. 16) shows
that most of the solutions are located around a distance
of 0.8, which is far from the knee of the front. The other
preference relations present similar distributions where the
solutions are concentrated around 0.75.


Nevertheless, for more than 3 objectives (Figs. 17-19),
most solutions achieved by the expansion relation are near
the knee of the Pareto front and they are the closest so-
lutions to the knee. On the other hand, the MOEA with
the maximum ranking and Pareto dominance relations gen-
erates solutions far away from the true Pareto front (the
extreme solutions remain at a distance of 1 since the Tcheby-
cheff distance is normalized). As it can be seen, with these
two relations the convergence is worsened as the number of
objectives is increased. The results of the IGD indicator
shown in Figure 20 confirm this observation since the max-
imum ranking and Pareto dominance relations obtain the
worst values in this indicator. Since most of the solutions
obtained by ER are clustered around the knee region, it ob-
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Figure 9: Online generational distance achieved by
the preference relations in the problem DTLZ2 with
10 objectives.
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Figure 10: Online generational distance achieved by
the preference relations in the problem DTLZ2 with
15 objectives.
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Figure 11: IGD achieved using the preference rela-
tions on DTLZ2.
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Figure 12: Distribution of the Tchebycheff distance
over the solutions generated using each preference
relation in the problem DTLZ2 with 3 objectives.
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Figure 13: Distribution of the Tchebycheff distance
over the solutions generated using each preference
relation in the problem DTLZ2 with 5 objectives.
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Figure 14: Distribution of the Tchebycheff distance
over the solutions generated using each preference
relation in the problem DTLZ2 with 10 objectives.
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Figure 15: Distribution of the Tchebycheff distance
over the solutions generated using each preference
relation in the problem DTLZ2 with 15 objectives.
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Figure 16: Distribution of the Tchebycheff distance
over the solutions generated using each preference
relation in the problem DTLZ7 with 3 objectives.
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Figure 17: Distribution of the Tchebycheff distance
over the solutions generated using each preference
relation in the problem DTLZ7 with 5 objectives.


tained poor values in IGD. In turn, AR and POR obtained
the best values in IGD.


In the distribution of the Tchebycheff distance from these
two relations we can see that there are three peaks in their
distributions (specially in Figs. 18 and 19), one close the
knee, another in the middle of the distribution, and a third
one on the right of the distribution. This suggests that AR
and POR yielded a diverse approximation set concentrated
in three regions of the Pareto front, and hence their good
performance with respect to IGD.


4. CONCLUSIONS AND FUTURE WORK
This paper presented a quantitative analysis of different


preference relations proposed to solve many-objective pro-
blems. The analysis was mainly based on the distribu-
tion of the Tchebycheff distances between the ideal solution
and each solution generated using a given preference rela-
tion. This distribution reveals the closeness of the solutions
achieved to the knee of the Pareto front.


The study revealed that, in spite of the fact that some
preference relations contribute to converge faster to the Pa-
reto front than the Pareto dominance relation, they also
stress the generation of solutions far from the knee region.
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Figure 18: Distribution of the Tchebycheff distance
over the solutions generated using each preference
relation in the problem DTLZ7 with 10 objectives.
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Figure 19: Distribution of the Tchebycheff distance
over the solutions generated using each preference
relation in the problem DTLZ7 with 15 objectives.
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Figure 20: IGD achieved using the preference rela-
tions on DTLZ7.


This behavior was observed, for example, in the average
ranking and preference order relations in problem DTLZ2.
This fact limits the applicability of these relations since, in
the general case, it is commonly assumed that the decision
maker prefers solutions on the knee region. The expansion
relation, on the other hand, presented a remarkable per-
formance. In both problems this relation produced a fast
convergence to the Pareto front and, in both problems, it
achieved solutions very close to the knee region. The second
best preference relation was the average ranking relation fol-
lowed by the preference order and the favour relations. In
terms of convergence this result agrees with the conclusions
obtained in [4].


Although, the expansion relation helped to produce solu-
tions near the knee of the Pareto front, in problem DTLZ7,
the solutions were concentrated in a small region around the
knee. This introduces a trade-off between convergence and
the size of the region covered. The parameter of the ex-
pansion preference relation opens interesting applications to
the relation in MOEAs. For instance, it can be incremented
gradually during the search in order to approach quickly the
Pareto front during the first half of the search and then cover
the rest of the Pareto front in the second half of the search.


We believe that this preliminary study introduced an in-
teresting methodology to compare preference relations that
find subsets of the Pareto front. Nonetheless, as part of
our future work, we plan to incorporate more test prob-
lems to the study, specially real-life many-objective prob-
lems. Furthermore, we want to investigate the k-optimality
relation [9], which is another preference relation with a user-
defined parameter to control the relaxation of the relation.
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