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Abstract. Here, we present a partition strategy to generate objective
subspaces based on the analysis of the conflict information obtained from
the Pareto front approximation found by an underlying multi-objective
evolutionary algorithm. By grouping objectives in terms of the conflict
among them, we aim to separate the multi-objective optimization into
several subproblems in such a way that each of them contains the in-
formation to preserve as much as possible the structure of the original
problem. The ranking and parent selection is independently performed in
each subspace. Our experimental results show that the proposed conflict-
based partition strategy outperforms NSGA-II in all the test problems
considered in this study. In problems in which the degree of conflict
among the objectives is significantly different, the conflict-based strat-
egy achieves its best performance.

1 Introduction

Since the first implementation of a Multi-objective Evolutionary Algorithm
(MOEA) in the mid 1980s, a wide variety of approaches have been proposed,
gradually improving in both their effectiveness and their efficiency to solve multi-
objective problems (MOPs) [1]. However, recent experimental and analytical
studies have shown that MOEAs based on Pareto optimality scale poorly when
the number of objectives is increased (this is called a many-objective problem) [2].
Approaches to deal with such problem have mainly focused on the use of alter-
native optimality relations [3, 4], reduction of the number of objectives of the
problem, either during the search process [5, 6] or, at the decision making pro-
cess [7–9], and the incorporation of preference information [2].

A general scheme for partitioning the objective space in several subspaces
in order to deal with many-objective problems was introduced in [10]. In this
approach the solution ranking and parent selection are independently performed
in each subspace to emphasize the search within smaller regions of objective
function space. Here, we propose a new partition strategy that creates objective
subspaces based on the analysis of the conflict information obtained from the
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Pareto front approximation found by the underlying MOEA. By grouping ob-
jectives in terms of the conflict among them, we aim to separate the MOP into
several subproblems in such a way that each subproblem contains the informa-
tion to preserve as much as possible the structure of the original problem.

Our approach is more closely related to the objective reduction approaches,
specially those adopted during the search. However, its main difference with re-
spect to them is the incorporation of all the objectives in order to cover the entire
Pareto front. Deb and Saxena [7] proposed a method for reducing the number of
objectives based on principal component analysis. Although some modifications
can be made to this method in order to use it during the search, this method
was designed as an a posteriori method. Brockhoff and Zitzler [5], and López
Jaimes et al. [6] used similar objective reductions algorithms incorporated into
a MOEA. However, in both cases, the non-conflicting objectives were discarded
or aggregated to form a single objective.

2 Basic Concepts and Notation

Definition 1 (Objective space Φ). The objective space of a MOP is the set
Φ = {f1, f2, . . . , fM} of the M objective functions to be optimized.

Definition 2 (Subspace ψ). A subspace ψ of Φ is a lower dimensional space
that includes some of the objective functions in Φ, i.e. ψ ⊂ Φ.

Definition 3 (Space partition Ψ). A space Φ is said to be partitioned into NS
subspaces, denoted as Ψ , if Ψ = {ψ1, ψ2, . . . , ψNS | ∪

NS
i=1 ψi = Φ ∧ ∩NSi=1ψi = ∅}.

Definition 4 (Pareto dominance relation). A solution x1 is said to Pareto
dominate solution x2 in the objective space Φ, denoted by x1 ≺ x2, if and only if
(assuming minimization): ∀fi ∈ Φ : fi(x

1) ≤ fi(x
2) ∧ ∃fi ∈ Φ : fi(x

1) < fi(x
2).

Definition 5 (Pareto optimal set). The Pareto optimal set, Popt, is defined
as: Popt = {x ∈ X | ∄y ∈ X : y ≺ x}, where X ∈ Rn is the variable space.

Definition 6 (Pareto front). For a Pareto optimal set Popt, the Pareto front,
PFopt, is defined as: PFopt = {z = (f1(x), . . . , fk(x)) | x ∈ Popt}. We will
denote by PFapprox the Pareto front approximation achieved by a MOEA.

Definition 7 (Sample Correlation coefficient). The sample correlation co-
efficient, rXY , is defined by rXY =

∑m
i=1(Xi− X̄)(Yi − Ȳ )/(m− 1)sXsY , where

sX > 0 and sY > 0 denote the sample standard deviations for the data sets X
and Y , respectively, and m is the number of elements of each data set.

3 The Conflict-Based Partitioning Framework

3.1 General Idea of the Partitioning Framework

The basic idea of the partitioning framework is to divide the objective space into
several subspaces so that a different portion of the population focuses the search
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in a different subspace. By partitioning the objective space into subspaces, we
aim to emphasize the search within smaller regions of objective space. Instead of
dividing the population into independent subpopulations, a fraction of the pool
of parents for the next generation is selected based on a different subspace. This
way, the pool of parents will be composed with individuals having a good perfor-
mance in each subspace. In our approach, we partition the M -dimensional space
Φ = {f1, f2, . . . , fM} into NS non-overlapping subspaces Ψ = {ψ1, ψ2, . . . , ψNS}.
We selected NSGA-II to implement our proposed partitioning framework. Thus,
the nondominated sorting and truncation procedures of NSGA-II are modified
in the following way. The union of the parents and offspring, P ∪Q, is sorted NS
times using a different subspace each time. Then, from each mixed sorted popu-
lation, the best |P|/NS solutions are selected to form a new parent population of
size |P|. After this, the new population is generated by means of recombination
and mutation using binary tournaments. Algorithm 1 shows this procedure.

3.2 A New Partition Strategy

The number of all possible ways to partition Φ into NS subspaces is very large.
Therefore, it is not feasible to search in all the possible subspaces. Instead, we
can define a schedule of subspace sampling by using a partition strategy. In [10]
three strategies to partition Φ were investigated: random, fixed, and shift parti-
tion. Here, we investigate a new strategy using the conflict information among
objectives. Namely, the first partition would contain the least conflicting objec-
tives, the second one the next least conflicting objectives, and so on. Therefore,
instead of removing the least conflicting objectives, we integrate those objectives
to form subspaces in such a way that all the objectives are optimized. By group-
ing objectives in terms of the conflict among them, we are trying to separate the
MOP into subproblems in such a way that each subspace contains information to
preserve most of the structure of the original problem. We propose using the cor-
relation among solutions in PFapprox to estimate the conflict among objectives.
A negative correlation between a pair of objectives means that one objective
increases while the other decreases and vice versa. Thus, a negative correlation
estimates the conflict between a pair of objectives. On the other hand, if the cor-
relation is positive, then both objectives increase or decrease at the same time.
That is, the objectives support each other.

In order to implement the new partition strategy we should take into account
that the conflict relation among the objectives changes during the search. To deal

Algorithm 1 Procedure of non-dominated sort and truncation.

procedure sort&Truncation(R,P, Ψ)
P∗ ← ∅
for i← 1 until |Ψ | do

Fψi ← nonDominatedSort(R, ψi)

crowding(Fψi , ψi)

Pψi ← truncation(Fψi , |P|/|Ψ |) ⊲ |Pψi | = |P|/|Ψ |

P∗ ← P∗ ∪ Pψi

return P∗
⊲ |P∗| = |P|
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Algorithm 2 Pseudocode of our proposed partitioning MOEA.

Input: Evolutionary operators values, NS (Num. of subspaces).
Output: Pareto front approximation.

P0 ← randomPopulation()
evaluate(P0)
crowding(P0)
integrationPhase = TRUE
for t← 1 until Gmax do

Qt ← newPop(Pt) ⊲ selection, crossover and mutation.
evaluate(Qt)
Rt ← Pt ∪Qt
if integrationPhase = TRUE then

Pt+1 ← sort&Truncation(Rt,Pt, {Φ})
if g ≥ GΦ then

integrationPhase = FALSE
g ← 0

else

if g = 1 then

Ψ ← conflictPartition(P, Φ,NS)

Pt+1 ← sort&Truncation(Rt,Pt, Ψ)
if g ≥ GΨ then

integrationPhase = TRUE
g ← 0

g ← g + 1

Algorithm 3 Partitioning Using Conflict Information.

procedure conflictPartition(P, Φ,NS)
cMatrix← computeConflictMatrix(P)
k ← (|Φ|/NS)− 1
Φ′ ← Φ = {f1, . . . , fM}
for 1 until NS − 1 do

for each objective fi in Φ′ do

Vfi ← Ascending ordered list of k-nearest neighbors of fi wrt conflict.

V ⋆ ← Vfi ∪ {fi} : ∀fj ∈ Φ
′, Vfi [k] ≤ Vfj [k]

ΨNS ← ΨNS ∪ V
⋆

Φ′ ← Φ′ − V ⋆.
ΨNS ← ΨNS ∪ Φ

′.

with this situation we suggest a new partitioning framework in which the search
is divided in several stages. Each of these stages is divided in two phases, namely,
an approximation phase followed by a partitioning phase. In the approximation
phase all the objectives are used to select the new parent population. The goal of
this phase is finding a good approximation of the current PFopt. The proposed
procedure is described in Algorithm 2.

3.3 Partitioning Using Conflict Information

Since we are interested in measuring the negative correlation between objectives,
the correlation matrix was modified so that each entry, rfi,fj , contains the value
1− rfi,fj . Thus, each value of this new “conflict matrix” is in the range [0, 2]. A
value of zero indicates that objectives fi and fj are not in conflict at all, and a
value of 2 indicates that they are completely in conflict. The procedure to create
the subspaces is presented in Algorithm 3.
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4 Experimental Results

4.1 Algorithms, Metrics and Parameter Settings

Since we wish to investigate the advantages and disadvantages of the conflict-
based strategy with respect to a random strategy which creates the partitions at
random, we compare the original NSGA-II with the NSGA-II using the conflict-
based strategy and the random strategy. In all the algorithms we use a population
of 200 individuals running during 200 generations. The results presented are the
average over 30 runs of each MOEA. In the conflict-based strategy, the search is
divided in 10 stages, and the values for GΦ and GΨ represent the 30% and 70%
of the generations of each stage, respectively.

In order to show how the conflict-based strategy works, we will use a test
problem in which the conflicting objectives can be defined a priori by the user.
Namely, the problem DTLZ5(I,M) [7], where M is the total number of objec-
tives, and I is the number of objectives in conflict. Additionally, we employ the
0/1 Knapsack with 300 items since the conflict relation among its objectives is
not known a priori. Unless specified otherwise, in our experiments we use from
4 to 15 objectives in each test problem. For 4-9 objectives we use 2 subspaces,
and for 10-15 objectives, we use 3 subspaces. In order to assess convergence we
adopt generational distance (GD). In the case of DTZL5(I,M) we use the ex-

act generational distance, namely GD = 1
m

∑
z∈PFapprox

∑M
j=1(zj)

2 − 1, where

m = |PFapprox|. In the case of the Knapsack problem, the generational distance
is computed using as our reference Pareto front, the non-dominated set resulting
of the union of the PFapprox sets obtained by the three algorithms in all the runs.
Additionally, to directly compare the convergence of the MOEAs, we utilize the
additive ǫ-indicator [11]. In order to evaluate diversity, we adopt the inverted
generational distance (IGD). Finally, to assess both convergence and diversity,
we adopt the hypervolume indicator. For DTLZ5(I,M) the reference point was
zref = 1.5M . For the Knapsack problem, the reference point was formed using the
worst value in each objective of all the PFapprox generated by all the algorithms.

4.2 DTLZ5(I, M): Conflict Known a priori

In these experiments we use I = 4 conflicting objectives from a total of
M = 4, . . . , 15 objectives. For 4-9 objectives, 2 subspaces are used, whereas for
10-15 objectives, we employ 3 subspaces. First, we show that the conflict-based
strategy is able to identify the conflicting objectives in most of the partitions
generated during the search process. Fig. 1 shows the subspaces generated by
the conflict-based and the random partition strategies during the search process.
In this example, there is a total of M = 8 objectives. The conflicting objectives
are objectives 6-8 and any other objective. The objectives in the most conflicting
subspace are denoted by squares, and the other subspace is denoted by circles.

As the search progresses, the input PFapprox used to estimate the conflict
approaches the true Pareto front. Therefore, as can be seen in Fig. 1(a), in the
last stages of the search, the conflict-based strategy was able to create the correct
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(a) Conflict-based partition strategy. (b) Random partition strategy.

Fig. 1. Subspaces generated using the conflict and random partition strategies in
DTLZ5(I = 4, M = 8). Objectives 6-8 and any other are the conflicting objectives.

partition. On the other hand, by using the random strategy (Fig. 1(b)), only
one of the generated partitions contains the correct subspaces. Consequently, in
most of the generations of the search, the selected parents emphasize objective
subspaces that do not maximize the contribution to form the true Pareto front.
By inspecting the parallel coordinate plot presented in Fig. 2 we realize that
NSGA-II with the random strategy converges to the extremes of the Pareto
front. That is, most of the solutions are close to 0 or 1 in one objective, but very
few solutions are in the middle. In contrast, the conflict-based strategy covers
all the trade-offs among the objectives. In order to quantify this situation, we
compute the IGD. Fig. 3 shows that the conflict-based partition strategy achieves
better values in terms of IGD.

Fig. 2. Parallel coordinate plot of the
PFapprox obtained with the random and
the conflict partition strategies.

Fig. 3. IGD for DTLZ5(I=4,M). For 4-
9 objs. we used a partition with 2 sub-
spaces, and for 10-15 objs., one with 3.

This indicates a better distribution using the conflict-based partition strat-
egy. In addition, the convergence of NSGA-II degrades dramatically when the
number of objectives is more than 6. A possible reason of this behavior is the
generation of dominance resistant solutions in DTLZ5(I,M). In contrast, the
IGD values using any of the partition strategies, are not affected by the num-
ber of objectives. In particular, we can see that the convergence obtained by
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using the conflict-based partition strategy is better than the one achieved by the
random strategy.

Fig. 4. ǫ-indicator results. The horizontal
axis denotes the number of objectives.

Fig. 5. Normalized hypervolume results
on DTLZ5(I, M).

The results of the ǫ-indicator are presented in the matrices of subplots of
Fig. 4. Iǫ+(A,B) is the subplot located in row A and column B of the matrix.
As we can see, NSGA-II is clearly outperformed by the NSGA-II using any of
the partition strategies. In turn, we can observe that the conflict-based strategy
is better than the random strategy, specially for 6 or more objectives. Since
the hypervolume considers both convergence and distribution, as we can see
in Fig. 5, the conflict-based partition strategy outperforms the random strategy.
For less than 5 or 6 objectives, NSGA-II presents a better or similar performance
than that achieved by using a partition strategy. There are two causes for this
behavior. Firstly, that the NSGA-II is still able to deal with that lower number
of objectives. Second, since there are 4 conflicting objectives for 4-6 objectives,
using 2 subspaces is not possible that all the conflicting objectives are grouped in
one subspace. This suggests that is convenient to assign all the highly correlated
objectives to a single subspace. However, a large subspace might surpass the
capacities of the underlying MOEA.

4.3 Effect of the Size of the Subspaces

In this section we analyze if it is better to have all the conflicting objectives
together in a large subspace, or small subspaces in which the conflicting objec-
tives are in different subspaces. To this end, we used DTLZ5(I = 12,M = 24)
to compare two partitions, namely, one with two subspaces with 12 objectives
each, and another one with 6 subspaces with 4 objectives each. Fig. 6 shows the
progress of GD during all the search process. We want to emphasize the fact that
each partition strategy achieved a better convergence using 6 subspaces with 4
objectives. This suggests that is preferable to have subspaces of moderate size,
even if highly conflicting objectives have to be assigned to different subspaces.
The optimal size of the subspaces depends on the capacities of the underlying
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MOEA. For example, based on the experimental results, an appropriate size of
the subspaces for NSGA-II would be between 4 and 6 objectives.

Fig. 6. Online GD using a partition with 2 subspaces and another one with 6 subspaces.

As in previous experiments, using parallel coordinate plots we realized that
the solutions using the random strategy converge to the extremes of some objec-
tives. To quantitatively assess the distribution, we compare the algorithms using
IGD (Table 1). Although the obtained GD of the conflict and random strategies
are similar using 6 subspaces (Fig. 6), the results of IGD suggest that the conflict
strategy with 6 subspaces achieved a better distribution of the solutions than
the random strategy with 6 subspaces.

Table 1. IGD values for using 2 and 6 subspaces in each of the partitioning strategies,
namely, random- and conflict-based partitions.

NSGA-II Conflict Random

NS = 2 NS = 6 NS = 2 NS = 6
Average 0.18005 0.00838 0.00570 0.00682 0.00769
Std. Dev. 0.04695 0.00010 0.00047 0.00092 0.00029

4.4 Knapsack Problem: Unknown Conflict a priori

In the Knapsack problem there is an interesting conflict relation among the
objectives that allows the conflict-based strategy performing better than the
random strategy. Fig. 7 shows the subspaces generated by the conflict strategy
in the Knapsack problem. As we can see, as the search progresses, a particular
partition is formed repeatedly, namely Ψ3 = {{4, 5, 8}, {1, 3, 9}, {2, 6, 7}}. This
suggests that the conflict among certain objectives is considerably larger than
the conflict among others. In order to measure the contribution of each subspace
to the total conflict in the problem, we compute for each subspace its “conflict
degree”, i.e., the sum of the conflict between each pair of objectives.

The ratio of the conflict degree of each subspace and the total conflict is
called the conflict contribution. In Fig. 8, we can clearly see that subspace 3 has a
larger conflict contribution with respect to the other subspaces. From the results
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Fig. 7. Generated subspaces by the
conflict-based partition strategy on the
Knapsack problem.

Fig. 8. Conflict contribution of each of
the three subspaces generated using the
conflict partition strategy.

obtained in GD and IGD (see Fig. 9) we can say that the conflict-based partition
strategy achieved better Pareto front approximations than the random-based
strategy both in terms of convergence and distribution. The results obtained
with the hypervolume indicator (Fig. 10) confirm that the conflict-based strategy
outperformed the random strategy. We can conclude that the differences in the
degrees of conflict between each pair objectives was used by the conflict-based
strategy to obtain better results than those obtained using a random partition.

Fig. 9. Inverted generational distance in
the Knapsack problem.

Fig. 10. Normalized Hypervolume wrt
the one achieved by the NSGA-II.

5 Conclusions and Future Work

The experimental results showed that both the conflict-based and random parti-
tion strategies outperformed NSGA-II in all the test problems considered in this
study. While NSGA-II diverges in some test problems, the NSGA-II using any
of the partition strategies maintains a good convergence despite the number of
objectives. Regarding the two partition strategies, the conflict-based partition
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strategy achieved a better distribution of the solutions than the random strat-
egy. In some problems, by using the random strategy, the solutions converged
to the extremes of the Pareto front. In problems in which the degree of conflict
among the objectives was different, the conflict-based strategy presented a bet-
ter performance. It is important to note that in the Knapsack problem, where
the conflict relation among the objectives is not known a priori, the conflict-
based strategy was able to detect important dependencies among the objectives
in terms of the conflict. Another finding is that the best size of the subspaces
considerably depends on the scalability of the underlying MOEA. As part of our
future work, we plan to exploit the conflict information to automatically adapt
the proportion of resources granted to each subspace.

Acknowledgements. The first author acknowledges support from conacyt
to pursue graduate studies in Computer Science at cinvestav-ipn. The fourth
author acknowledges support from conacyt project no. 103570.

References

1. Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving
Multi-Objective Problems. Second edn. Springer, New York (September 2007) ISBN 978-0-387-
33254-3.

2. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimization: A short
review. In: CEC 2008, Hong Kong, IEEE Service Center (June 2008) 2424–2431

3. Farina, M., Amato, P.: On the Optimal Solution Definition for Many-criteria Optimization
Problems. In: Proceedings of the NAFIPS-FLINT International Conference’2002, Piscataway,
New Jersey, IEEE Service Center (June 2002) 233–238

4. Sato, H., Aguirre, H.E., Tanaka, K.: Controlling Dominance Area of Solutions and Its Impact
on the Performance of MOEAs. In Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T.,
eds.: EMO 2007, Matshushima, Japan, Springer. Lecture Notes in Computer Science Vol. 4403
(March 2007) 5–20

5. Brockhoff, D., Zitzler, E.: Improving Hypervolume-based Multiobjective Evolutionary Algo-
rithms by Using Objective Reduction Methods. In: CEC 2007, Singapore, IEEE Press (Septem-
ber 2007) 2086–2093
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