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Abstract. This paper presents a particle swarm optimizer for solving
constrained optimization problems which adopts a very small popula-
tion size (five particles). The proposed approach uses a reinitialization
process for preserving diversity, and does not use a penalty function nor
it requires feasible solutions in the initial population. The leader selec-
tion scheme adopted is based on the distance of a solution to the feasi-
ble region. In addition, a mutation operator is incorporated to improve
the exploratory capabilities of the algorithm. The approach is tested
with a well-know benchmark commonly adopted to validate constraint-
handling approaches for evolutionary algorithms. The results show that
the proposed algorithm is competitive with respect to state-of-the-art
constraint-handling techniques. The number of fitness function evalua-
tions that the proposed approach requires is almost the same (or lower)
than the number required by the techniques of the state-of-the-art in the
area.

1 Introduction

A wide variety of Evolutionary Algorithms (EAs) have been used to solve di-
fferent types of optimization problems. However, EAs are unconstrained search
techniques and thus require an additional mechanism to incorporate the cons-
traints of a problem into their fitness function [3]. Penalty functions are the
most commonly adopted approach to incorporate constraints into an EA. How-
ever, penalty functions have several drawbacks, from which the most important
are that they require a fine-tuning of the penalty factors (which are problem-
dependent), since both under- and over-penalizations may result in an unsuc-
cessful optimization [3].

Particle swarm optimization (PSO) is a population based optimization tech-
nique inspired on the movements of a flock of birds or fish. PSO has been success-
fully applied in a wide of variety of optimization tasks in which it has shown a
high convergence rate [10].

This paper is organized as follows. In section 2, we define the problem of
our interest and we introduce the Particle Swarm Optimization algorithm. The



previous related work is provided in Section 3. Section 4 describes our approach
including the reinitialization process, the constraint-handling mechanism and
the mutation operator adopted. In Section 5, we present our experimental setup
and the results obtained. Finally, Section 6 presents our conclusions and some
possible paths for future research.

2 Basic Concepts

We are interested in the general nonlinear programming problem in which we
want to:

Find −→x which optimizes f(−→x ) (1)

subject to:
gi(−→x ) ≤ 0, i = 1, ..., n (2)

hj(−→x ) = 0, j = 1, ..., p (3)

where −→x is the vector of solutions −→x = [x1, x2, ..., xr ]
T
, n is the number of

inequality constraints and p is the number of equality constraints (in both cases,
constraints could be linear or nonlinear). If we denote with F to the feasible
region (set of points which satisfy the inequality and equality constraints) and
with S to the search space then F ⊆ S. For an inequality constraint that satisfies
gi(x) = 0, the we will say that is active at −→x . All equality constraints hj

(regardless of the value of −→x used) are considered active at all points of F .

2.1 Particle Swarm Optimization

Our approach is based in The Particle Swarm Optimization (PSO) algorithm
which was introduced by Eberhart and Kennedy in 1995 [4]. PSO is a population-
based search algorithm based on the simulation of social behavior of birds within
a flock [10]. In PSO, each individual (particle) of the population (swarm) adjusts
its trajectory according to its own flying experience and the flying experience of
the other particles within its topological neighborhood in the search space. In
the PSO algorithm, the population and velocities are randomly initialized at the
beginning of the search, and then they are iteratively updated, based on their
previous positions and those of each particle’s neighbors. Our proposed approach
implements equations (4) and (5), proposed in [19] for computing the velocity
and the position of a particle.

vid = w × vid + c1r1(pbid − xid) + c2r2(lbid − xid) (4)

xid = xid + vid (5)

where c1 and c2 are both positive constants, r1 and r2 are random numbers
generated from a uniform distribution in the range [0,1], w is the inertia weight
that is generated in the range (0,1].



There are two versions of the PSO algorithm: the global version and the
local version. In the global version, the neighborhood consists of all the particles
of the swarm and the best particle of the population is called the “global best”
(gbest). In contrast, in the local version, the neighborhood is a subset of the
population and the best particle of the neighborhood is called “local best” (lbest).

3 Related Work

When incorporating constraints into the fitness function of an evolutionary al-
gorithm, it is particularly important to maintain diversity in the population and
to be able to keep solutions both inside and outside the feasible region [3, 14].
Several studies have shown that, despite their popularity, traditional (external)
penalty functions, even when used with dynamic penalty factors, tend to have
difficulties to deal with highly constrained search spaces and with problems in
which the constraints are active in the optimum [3, 11, 18]. Motivated by this
fact, a number of constraint-handling techniques have been proposed for evolu-
tionary algorithms [16, 3].

Remarkably, there has been relatively little work related to the incorporation
of constraints into the PSO algorithm, despite the fact that most real-world
applications have constraints. In previous work, some researchers have assumed
the possibility of being able to generate in a random way feasible solutions to
feed the population of a PSO algorithm [7, 8]. The problem with this approach
is that it may have a very high computational cost in some cases. For example,
in some of the test functions used in this paper, even the generation of one
million of random points was insufficient to produce a single feasible solution.
Evidently, such a high computational cost turns out to be prohibitive in real-
world applications.

Other approaches are applicable only to certain types of constraints (see for
example [17]). Some of them rely on relatively simple mechanisms to select a
leader, based on the closeness of a particle to the feasible region, and adopt a
mutation operator in order to maintain diversity during the search (see for ex-
ample [20]). Other approaches rely on carefully designed topologies and diversity
mechanisms (see for example [6]). However, a lot of work remains to be done
regarding the use of PSO for solving constrained optimization problems. For
example, the use of very small population sizes has not been addressed so far in
PSO, to the authors’ best knowledge, and this paper precisely aims to explore
this venue in the context of constrained optimization.

4 Our Proposed Approach

As indicated before, our proposed approach is based on the local version of PSO,
since there is evidence that such model is less prone to getting stuck in local
minima [10]. Despite the existence of a variety of population topologies [9], we
adopt a randomly generated neighborhood topology for our approach. It also uses
a reinitialization process in order to maintain diversity in the population, and it



adopts a mutation operator that aims to improve the exploratory capabilities of
PSO (see Algorithm 1).

Since our proposed approach uses a very small population size, we called it
Micro-PSO, since this is analogous to the micro genetic algorithms that have
been in use for several years (see for example [12, 2]). Its constraint-handling
mechanism, together with its reinitialization process and its mutation operator,
are all described next in more detail.

Algorithm 1: Pseudocode of our proposed Micro-PSO

begin

for i = 1 to Number of particles do
Initialize position and velocity randomly;
Initialize the neighborhood (randomly);

end

cont = 1;
repeat

if cont ==reinitialization generations number then
Reinitialization process;
cont = 1;

end

Compute the fitness value G(xi);
for i = 1 to Number of particles do

if G(xi) > G(xpbi) then

for d = 1 to number of dimensions do
xpbid = xid; // xpbi is the best position so far;

end

end

Select the local best position in the neighborhood lbi;
for d = 1 to number of dimensions do

w = rand(); // random(0,1];
vid = w × vid + c1r1(pbxid − xid) + c2r2(lbid − xid);
xid = xid + vid;

end

end

cont =cont +1;
Perform mutation;

until Maximum number of generations ;
Report the best solution found.

end

4.1 Constraint-Handling Mechanism

We adopted the mechanism proposed in [20] for selecting leaders. This mecha-
nism is based both on the feasible solutions and the fitness value of a particle.
When two feasible particles are compared, the particle that has the highest fit-
ness value wins. If one of the particles is infeasible and the other one is feasible,



then the feasible particle wins. When two infeasible particles are compared, the
particle that has the lowest fitness value wins. The idea is to select leaders that,
even when could be infeasible, lie close to the feasible region.

We used equation (6) for assigning fitness to a solution:

fit(−→x ) =

{

fi(−→x ) if feasible
∑n

j=1 gj(−→x ) +
∑p

k=1 |hk(−→x )| otherwise
(6)

4.2 Reinitialization Process

The use of a small population size accelerates the loss of diversity at each itera-
tion, and therefore, it is uncommon practice to use population sizes that are too
small. However, in the genetic algorithms literature, it is known that it is possi-
ble, from a theoretical point of view, to use very small population sizes (no more
than 5 individuals) if appropriate reinitialization processes are implemented [12,
2]. In this paper, we incorporate one of these reinitialization processes taken
from the literature on micro genetic algorithms. Our mechanism is the follow-
ing: after certain number of iterations (replacement generations), the swarm is
sorted based on fitness value, but placing the feasible solutions on top. Then,
we replace the rp particles (replacement particles) by randomly generated parti-
cles (position and velocity), but allow the rp particles to hold their best position
(pbest). The idea of mixing evolved and randomly generated particles is to avoid
premature convergence.

4.3 Mutation Operator

Although the original PSO algorithm had no mutation operator, the addition
of such mutation operator is a relatively common practice nowadays. The main
motivation for adding this operator is to improve the performance of PSO as an
optimizer, and to improve the overall exploratory capabilities of this heuristic
[1]. In our proposed approach, we implemented the mutation operator developed
by Michalewicz for Genetic Algorithms [15]. It is worth noticing that this muta-
tion operator has been used before in PSO, but in the context of unconstrained
multimodal optimization [5]. This operator varies the magnitude added or sub-
stracted to a solution during the actual mutation, depending on the current
iteration number (at the beginning of the search, large changes are allowed, and
they become very small towards the end of the search). We apply the mutation
operator in the particle’s position, for all of its dimensions:

xid =

{

xid + ∆(t, UB − xid) if R = 0
xid − ∆(t, xid − LB) if R = 1

(7)

where t is the current iteration number, UB is the upper bound on the value
of the particle dimension, LB is the lower bound on the particle dimension value,
R is a randomly generated bit (zero and one both have a 50% probability of being
generated) and δ(t, y) returns a value in the range [0, y] . δ(t, y) is defined by:



∆(t, y) = y ∗ (1 − r1−( t

T
)b

) (8)

where r is a random number generated from a uniform distribution in the
range[0,1], T is the maximum number of iterations and b is a tunable parameter
that defines the non-uniformity level of the operator. In this approach, the b

parameter is set to 5 as suggested in [15].

5 Experiments and Results

For evaluating the performance of our proposed approach, we used the thirteen
test functions described in [18]. These test functions contain characteristics that
make them difficult to solve using evolutionary algorithms. We performed fifty
independent runs for each test function and we compared our results with respect
to three algorithms representative of the state-of-the-art in the area: Stochastic
Ranking (SR) [18], the Simple Multimembered Evolution Strategy (SMES) [14],
and the Constraint-Handling Mechanism for PSO (CHM-PSO) [20]. Stochastic
Ranking uses a multimembered evolution strategy with a static penalty function
and a selection based on a stochastic ranking process, in which the stochastic
component allows infeasible solutions to be given priority a few times during
the selection process. The idea is to balance the influence of the objective and
penalty function. This approach requires a user-defined parameter called Pf

wich determines this balance [18]. The Simple Multimembered Evolution Strat-
egy (SMES) is based on a (µ + λ) evolution strategy, and it has three main
mechanisms: a diversity mechanism, a combined recombination operator and a
dynamic step size that defines the smoothness of the movements performed by
the evolution strategy [14].

In all our experiments, we adopted the following parameters:

– W = random number from a uniform distribution in the range [0,1].
– C1 = C2 = 1.8.
– population size = 5 particles;
– number of generations = 48,000;
– number of replacement generations = 100;
– number of replacement particles = 2;
– mutation percent = 0.1;
– ǫ = 0.0001, except for g04, g05, g06, g07, in which we used ǫ = 0.00001.

The statistical results of our Micro-PSO are summarized in Table 1. Our
approach was able to find the global optimum in five test functions (g02, g04,
g06, g08, g09, g12) and it found solutions very close to the global optimum in the
remaining test functions, with the exception of g10. We compare the population
size, the tolerance value and the number of evaluations of the objective function
of our approach with respect to SR, CHM-PSO, and SMES in Table 2.

When comparing our approach with respect to SR, we can see that ours found
a better solution for g02 and similar results in other eleven problems, except for



Table 1. Results obtained by our Micro-PSO over 50 independent runs.

Statistical Results of our Micro-PSO
TF Optimal Best Mean Median Worst St.Dev.

g01 -15.000 -15.0001 -13.2734 -13.0001 -9.7012 1.41E+00

g02 0.803619 0.803620 0.777143 0.778481 0.711603 1.91E-02

g03 1.000 1.0004 0.9936 1.0004 0.6674 4.71E-02

g04 -30665.539 -30665.5398 -30665.5397 -30665.5398 -30665.5338 6.83E-04

g05 5126.4981 5126.6467 5495.2389 5261.7675 6272.7423 4.05E+02

g06 -6961.81388 -6961.8371 -6961.8370 -6961.8371 -6961.8355 2.61E-04

g07 24.3062 24.3278 24.6996 24.6455 25.2962 2.52E-01

g08 0.095825 0.095825 0.095825 0.095825 0.095825 0.00E+00

g09 680.630 680.6307 680.6391 680.6378 680.6671 6.68E-03

g10 7049.250 7090.4524 7747.6298 7557.4314 10533.6658 5.52E+02

g11 0.750 0.7499 0.7673 0.7499 0.9925 6.00E-02

g12 1.000 1.0000 1.0000 1.0000 1.0000 0.00E+00

g13 0.05395 0.05941 0.81335 0.90953 2.44415 3.81E-01

g10, in which our approach does not perform well (see Table 3). Note however
that SR performs 350,000 objective function evaluations and our approach only
performs 240,000.

Table 2. Comparison of the population size, the tolerance value and the number of
evaluations of the objective function of our approach with respect to SR, CHM-PSO
and SMES.

Constraint-Handling Population Size Tolerance Value (ǫ) Number of Evaluations
Technique of the Objective Function

SR 200 0.001 350,000

CHMPSO 40 - 340,000

SMES 100 0.0004 240,000

Micro-PSO 5 0.0001 240,000

Compared with respect to CHM-PSO, our approach found a better solution
for g02, g03, g04, g06, g07, g09, and g13 and the same or similar results in
other five problems (except for g10) (see Table 4). Note again that CMPSO
performs 340,000 objective function evaluations, and our approach performs only
240,000. It is also worth indicating that CHMOPSO is one of the best PSO-based
constraint-handling methods known to date.

When comparing our proposed approach against the SMES, ours found bet-
ter solutions for g02 and g09 and the same or similar results in other ten prob-



lems, except for g10 (see Table 5). Both approaches performed 240,000 objective
function evaluations.

Table 3. Comparison of our approach with respect the Stochastic Ranking (SR).

Best Result Mean Result Worst Result
TF Optimal Micro-PSO SR Micro-PSO SR Micro-PSO SR

g01 -15.0000 -15.0001 -15.000 -13.2734 -15.000 -9.7012 -15.000

g02 0.803619 0.803620 0.803515 0.777143 0.781975 0.711603 0.726288

g03 1.0000 1.0004 1.000 0.9936 1.000 0.6674 1.000

g04 -30665.539 -30665.539 -30665.539 -30665.539 -30665.539 -30665.534 -30665.539

g05 5126.4981 5126.6467 5126.497 5495.2389 5128.881 6272.7423 5142.472

g06 -6961.81388 -6961.8371 -6961.814 -6961.8370 -6875.940 -6961.8355 -6350.262

g07 24.3062 24.3278 24.307 24.6996 24.374 25.2962 24.642

g08 0.095825 0.095825 0.095825 0.095825 0.095825 0.095825 0.095825

g09 680.630 680.6307 680.630 680.6391 680.656 680.6671 680.763

g10 7049.250 7090.4524 7054.316 7747.6298 7559.192 10533.6658 8835.655

g11 0.750 0.7499 0.750 0.7673 0.750 0.9925 0.750

g12 1.000 1.0000 1.000 1.0000 1.000 1.0000 1.000

g13 0.05395 0.05941 0.053957 0.81335 0.067543 2.44415 0.216915

6 Conclusions and Future Work

We have proposed the use of a PSO algorithm with a very small population
size (only five particles) for solving constrained optimization problems. The pro-
posed technique adopts a constraint-handling mechanism during the selection
of leaders, it performs a reinitialization process and it implements a mutation
operator. The proposed approach is easy to implement, since its main additions
are a sorting and a reinitialization process. The computational cost (measured
in terms of the number of evaluation of the objective function) that our Micro-
PSO requires is almost the same (or lower) than the number required by the
techniques with respect to which it was compared, which are representative of
the state-of-the-art in the area. The results obtained show that our approach is
competitive and could then, be a viable alternative for using PSO for solving
constrained optimization problems.

As part of our future work, we are interested in comparing our approach with
the extended benchmark for constrained evolutionary optimization [13]. We are
also interested in comparing our results with respect to more recent constraint-
handling methods that use PSO as their search engine (see for example [6]). We
will also study the sensitivity of our Micro-PSO to its parameters, aiming to find
a set of parameters (or a self-adaptation mechanism) that improves its robustness
(i.e., that reduces the standard deviations obtained). Finally, we are also inter-
ested in experimenting with other neighborhood topologies and other types of



Table 4. Comparison of our approach with respect the Constraint-Handling Mecha-
nism for PSO (CHM-PSO).

Best Result Mean Result Worst Result
TF Optimal Micro-PSO CHM-PSO Micro-PSO CHM-PSO Micro-PSO CHM-PSO

g01 -15.0000 -15.0001 -15.000 -13.2734 -15.000 -9.7012 -15.000

g02 0.803619 0.803620 0.803432 0.777143 0.790406 0.711603 0.755039

g03 1.000 1.0004 1.004720 0.9936 1.003814 0.6674 1.000249

g04 -30665.539 -30665.539 -30665.500 -30665.539 -30665.500 -30665.534 -30665.500

g05 5126.4981 5126.6467 5126.6400 5495.2389 5461.08133 6272.7423 6104.7500

g06 -6961.8138 -6961.837 -6961.810 -6961.837 -6961.810 -6961.835 -6961.810

g07 24.3062 24.3278 24.3511 24.6996 24.35577 25.2962 27.3168

g08 0.095825 0.095825 0.095825 0.095825 0.095825 0.095825 0.095825

g09 680.6300 680.6307 680.638 680.6391 680.85239 680.6671 681.553

g10 7049.2500 7090.4524 7057.5900 7747.6298 7560.04785 10533.6658 8104.3100

g11 0.7500 0.7499 0.7499 0.7673 0.7501 0.9925 0.75288

g12 1.0000 1.0000 1.000 1.0000 1.000 1.0000 1.000

g13 0.05395 0.05941 0.068665 0.81335 1.71642 2.44415 13.6695

Table 5. Comparison of our approach with respect the Simple Multimembered Evo-
lution Strategy (SMES).

Best Result Mean Result Worst Result
TF Optimal Micro-PSO SMES Micro-PSO SMES Micro-PSO SMES

g01 -15.0000 -15.0001 -15.000 -13.2734 -15.000 -9.7012 -15.000

g02 0.803619 0.803620 0.803601 0.777143 0.785238 0.711603 0.751322

g03 1.0000 1.0004 1.000 0.9936 1.000 0.6674 1.000

g04 -30665.5390 -30665.5398 -30665.539 -30665.5397 -30665.539 -30665.5338 -30665.539

g05 5126.4980 5126.6467 5126.599 5495.2389 5174.492 6272.7423 5304.167

g06 -6961.8140 -6961.8371 -6961.814 -6961.8370 -6961.284 -6961.8355 -6952.482

g07 24.3062 24.3278 24.327 24.6996 24.475 25.2962 24.843

g08 0.095825 0.095825 0.095825 0.095825 0.095825 0.095825 0.095825

g09 680.6300 680.6307 680.632 680.6391 680.643 680.6671 680.719

g10 7049.2500 7090.4524 7051.903 7747.6298 7253.047 10533.6658 7638.366

g11 0.7500 0.7499 0.75 0.7673 0.75 0.9925 0.75

g12 1.0000 1.0000 1.000 1.0000 1.000 1.0000 1.000

g13 0.05395 0.05941 0.053986 0.81335 0.166385 2.44415 0.468294



reinitialization processes, since they could improve our algorithm’s convergence
capabilities (i.e., we could reduce the number of objective function evaluations
performed) as well as the quality of the results achieved.
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