
Culturizing Differential Evolution for Constrained Optimization

Ricardo Landa Becerra and Carlos A. Coello Coello
CINVESTAV-IPN

Evolutionary Computation Group
Dpto. de Ing. Elect./Secc. Computación

Av. IPN No. 2508, Col. San Pedro Zacatenco
México, D.F. 07300, MEXICO

rlanda@computacion.cs.cinvestav.mx
ccoello@cs.cinvestav.mx

Abstract

In this paper, we propose the use of differential evolution
as a population space of a cultural algorithm, applied to the
solution of constrained optimization problems. Differential
evolution is a relatively recent evolutionary algorithm that
has been found to be very robust as a search engine for
real parameter optimization. Adding different knowledge
sources to the variation operator of differential evolution it
is possible to improve the search and reduce the computa-
tional cost necessary to approximate the global optima of
different problems. The proposed technique is validated us-
ing a set of well-known constrained optimization problems
commonly adopted in the specializad literature. The ap-
proach is compared with respect to two techniques that are
representative of the state-of-the-art in the area.

1 Introduction

Cultural algorithms are evolutionary methods that ex-
tract information of the domain of the problem during the
evolutionary process itself [17]. This process of extraction
and use of the information, has shown to be very effec-
tive in decreasing computational cost while approximating
global optima, in unconstrained optimization, constrained
optimization, and dynamic optimization [19, 2, 10, 6, 21, 4].

A cultural algorithm contains two main parts: the pop-
ulation space, and the belief space [18]. The population
space consists of a set of possible solutions to the problem,
and can be modeled using any population based technique,
e.g. genetic algorithms [7].

The belief space is the information repository in which
the individuals can store their experiences for the other indi-
viduals to learn them indirectly. In cultural algorithms, the

Influence

Selection
Performance

Variation

Function

Acceptance

Adjust

Beliefs

Population

Figure 1. Spaces of a cultural algorithm

information acquired by an individual can be shared with
the entire population, unlike most evolutionary techniques,
where the information can be only shared with the individ-
ual’s offspring.

Both spaces (i.e., population space and belief space) are
linked through a communication protocol, which states the
rules about the individuals that can contribute to the belief
space with its experiences (the acceptance function), and
the way the belief space can influence to the new individuals
(the influence function). Those interactions are depicted in
Figure 1.

Originally, when cultural algorithms were applied to real
parameter optimization, genetic algorithms were used as
a population space [17]. Later on, evolutionary program-
ming [5] appeared as a better choice [2] for the popula-
tion space than genetic algorithms when dealing with con-
strained search spaces [3, 10]. Recently, particle swarm [11]

has also been proposed as a population space [9, 8], turning
the direction to use new evolutionary methods with better
performance in real parameter optimization.

Differential evolution [23] is a recently developed evolu-
tionary algorithm, focused on solving real paramenter opti-
mization problems. Differential evolution has been found to
be a very robust optimization technique [23, 16, 14]. How-
ever, to the authors’ best knowledge, this paper is the first to
propose the use of differential evolution as the population
space of a cultural algorithm.

The remainder of this paper is organized as follows. In
Section 2, we describe some previous related work. Sec-
tion 3 introduces the differential evolution algorithm and
describes the specific version adopted in this paper. In Sec-
tion 4, we describe our proposal to culturize differential
evolution, including a description of the four knowledge
sources adopted. Then, in Section 5, we compare our pro-
posed approach with respect to two algorithms that are rep-
resentative of the state-of-the-art in the area: the homomor-
phous maps [12] and stochastic ranking [20]. Finally, in
Section 6, we provide some conclusions and some possible
paths of future research.

2 Previous Work

Reynolds et al. [19] and Chung & Reynolds [2] have
explored the use of cultural algorithms for global optimiza-
tion with very encouraging results. Chung and Reynolds
use a hybrid of evolutionary programming and GENOCOP
in which they incorporate an interval constraint-network to
represent the constraints of the problem at hand. An in-
dividual is considered as “acceptable” when it satisfies all
the constraints of the problem. When that does not hap-
pen, then the belief space, i.e., the intervals associated with
the constraints, is adjusted. This approach is really a more
sophisticated version of a repair algorithm in which an in-
feasible solution is made feasible by replacing its genes by
a different value between its lower and upper bounds. Since
GENOCOP assumes a convex search space, it is relatively
easy to design operators that can exploit a search direction
towards the boundary between the feasible and infeasible
regions.

In more recent work, Jin and Reynolds [10] proposed an� -dimensional regional-based schema, called belief-cell, as
an explicit mechanism that supports the acquisition, stor-
age and integration of knowledge about non-linear con-
straints in a cultural algorithm, combined with evolution-
ary programming. This belief-cell can be used to guide
the search of an evolutionary computation technique (evolu-
tionary programming in this case) by pruning the instances
of infeasible individuals and promoting the exploration of
promising regions of the search space. The key aspect of
this work is precisely how to represent and save the knowl-

edge about the problem constraints in the belief space of the
cultural algorithm.

The idea of Jin and Reynolds’ approach is to build a map
of the search space similar to the “Divide-and-Label” ap-
proaches used for robot motion planning [13]. This map
is built using information derived from evaluating the con-
straints of each individual in the population of the evolution-
ary computation technique. This map is used to derive rules
about how to guide the search of the evolutionary algorithm
(avoiding infeasible regions and promoting the exploration
of feasible regions).

Using the same population space, evolutionary program-
ming, Saleem proposes a cultural algorithm for dealing with
dynamic environments [21, 22]. Saleem adds history and
domain knowledge, to the existing Chung’s situational and
normative knowledge, and Jin’s topographical knowledge.

In [9, 8], Iacoban et al. change the evolutionary pro-
gramming algorithm from the population space for a par-
ticle swarm optimizer [11]. They make an analysis of the
effects of the belief space over the evolutionary process,
showing the similarities with the approach in which evo-
lutionary programming is used as a population space.

3 Differential Evolution

Differential evolution is an evolutionary algorithm pro-
posed by Price and Storn [23, 16], whose main design em-
phasis is real parameter optimization. Differential evolution
is based on a mutation operator, which adds an amount ob-
tained by the difference of two randomly chosen individuals
of the current population. The basic algorithm of differen-
tial evolution is shown in Figure 2, where the problem to
solve has � decision variables,

�
and ��� are parameters

given by the user, and ���	�
 is the � -th decision variable of
the � -th individual in the population.

The authors of the differential evolution algorithm have
suggested that by computing the difference between two
randomly chosen individuals from the population, the algo-
rithm is actually estimating the gradient in that zone (rather
than in a point), and that is the reason why the population
is always moving towards better zones. This approach is
also rather efficient (computationally speaking) way to self-
adapt the mutation operator.

The version of differential evolution shown in Figure
2, is called DE/rand/1/bin, and is recommended to be the
first choice when trying to apply differential evolution [16].
Such version of differential evolution is the one adopted in
the approach proposed in this paper.

4 Our Proposed Approach

The proposed approach uses differential evolution as
population space. A pseudo-code of the cultured differen-

Generate initial population of size ������� ���	�
Do

For each individual � in the population
Generate three random integers,
�� ,
�
 and
������������������ ���	��� , with
�����
�
���
����� �
Generate a random integer �� �!#"�$��%�&��� � �
For each parameter �

��'�	�
 �)(� �	� *�,+ �.- � � � � #�0/ � �	� 1
2� if
�3 �54 �768�����09 ��� or � � �� �!#"�$
� �	�
 otherwise

End For
Replace �
 with the child �:'
 , if ��'
 is better

End For
Until the termination condition is achieved

Figure 2. Pseudo-code of the differential evolution algorithm adopted in this work (this version is
called DE/rand/1/bin).

Generate initial population
Evaluate initial population
Initialize the belief space
Do

For each individual in the population
Apply the variation operator influenced

by a randomly chosen knowledge source
Evaluate the child generated
Replace the individual with the child, if

the child is better
End for
Update the belief space with the accepted

individuals
Until the termination condition is achieved

Figure 3. Pseudo-code of the cultured differ-
ential evolution.

tial evolution is shown in Figure 3.
In the initial steps of the algorithm, a population of�����:� ���	� individuals is created, as well as a belief space. For

the children generation, the variation operator of the differ-
ential evolution is influenced by one (randomly chosen) of
the four possible knowledge sources.

Since we want to solve constrained optimization prob-
lems, the fitness function by itself does not provide enough
information as to guide the search properly. To determine if
a child is better than its parent, and it can replace it, we use
the following rules:

1. A feasible individual is always better than an infeasible

one.

2. If both are feasible, the individual with the best objec-
tive function value is better.

3. If both are infeasible, the individual with less amount
of constraint violations is better, measuring violations
with normalized constraints.

4.1 The Belief Space

In our approach, the belief space is divided in four
knowledge sources: situational, normative, topographical
and history knowledge. Next we will describe the structure
of each of the knowledge sources, as well as the influence
and update functions associated to each of them.

4.1.1 Situational Knowledge

Situational knowledge consists of the best exemplar ;
found along the evolutionary process. It represents a leader
for the other individuals to follow.

To initialize the situational knowledge it is necessary to
have an initial population, so we will be able to find the best
individual and store it.

The variation operators of differential evolution are in-
fluenced in the following way:

� '�	�
 � ; �:+ �<- � � � � #�0/ � �	� 1
2�
where ; � is the � -th component of the individual stored in
the situational knowledge. This way, we use the leader in-
stead a randomly chosen individual for the recombination,
getting the children closer to the best point found.

� � � � �
 ��
 ����� � " ��"� � � � �
 �
 ����� � " � "4�� � 4	�

�
�
 4	� "
Figure 4. Structure of the normative knowl-
edge

The update of the situational knowledge is done by re-
placing the stored individual, ; , by the best individual
found in the current population, ����
���� , only if ����
���� is better
than ; :

; � (����
���� if ����
���� is better than ;; otherwise

4.1.2 Normative Knowledge

The normative knowledge contains the intervals for the de-
cision variables where good solutions have been found, in
order to move new solutions towards those intervals. Thus,
the normative knowledge has the structure shown in Fig-
ure 4.

In Figure 4,
� � and � � are the lower and upper bounds,

respectively, for the � -th decision variable, and
� � and � �

are the values of the fitness function and the violations of
constraints associated with that bound.

Also, the normative knowledge includes a scaling factor,4	� � , to influence the mutation operator adopted in differen-
tial evolution.

To initialize the normative knowledge, all the bounds are
set to the intervals given as input data of the problem.

� �
and � � are set to +�� , assuming a minimization problem,
and 4�� � � � � / � � , for � � ����� ��
�
�
 � � .

The following expression shows the influence of the nor-
mative knowledge on the variation operators:

� '�	�
 �
�� � � �	� 1� + �<-�� � �	� �� / � �	� *
 � if � �	� 1� 9 � �
� �	� 1� / �<-�� � �	� �� / � �	� *
 � if � �	� 1��� ���
� �	� 1� +"!$#&%(')#$�* # - �<- � � �	� #� / � � � *
 � otherwise

We introduce the scaling factor ! # %(' #$�* # for the mutation to
be proportional to the interval of the normative knowledge
for the � -th decision variable. The values 4	� � are initialized
with ��� / � � to have a null influence at the first generation.

The update of the normative knowledge can reduce or
expand the intervals stored on it. An expansion takes place
when the accepted individuals do not fit in the current inter-
val, while a reduction occurs when all the accepted individ-
uals lie inside the current interval, and the extreme values
have a better fitness and are feasible.

The values 4	� � are updated with the greatest difference� � � � #� / � �	� 1
 � found during application of the variation op-
erators of the previous generation.

LIH N

GFB

J

K

E M O

CA

D

A

H I K L N OMJ

ED F G

B C

Figure 5. Example of the partition of a two
dimensional space by a + -d tree

4.1.3 Topographical Knowledge

The use of the topographical knowledge is to create a map
of the fitness landscape of the problem during the evolution-
ary process. It consists of a set of cells, and the best individ-
ual found on each cell. The topographical knowledge, also,
has an ordered list of the best , cells, based on the fitness
value of the best individual on each of them.

For the sake of a more efficient memory management, in
the presence of high dimensionality (i.e., too many decision
variables), we use an spatial data structure, called + -d tree,
or + -dimensional binary tree [1]. In + -d trees, each node
can only have two children (or none, if it is a leaf node),
and represents a division in half for any of the + dimensions
(see Figure 5).

To initialize the topographical knowledge, we only cre-
ate the root node, which represents the entire search space,
and contains the best solution found in the initial popula-
tion.

The influence function tries to move the children to any
of the , cells in the list:

� '�	�
 �
�� � � � � *�,+ � -�� � �	� #�0/ � � � *
 � if � �	� 1� 9 � �	� -
� � � *� / � -�� � �	� #�0/ � � � *
 � if � �	� 1� �.� � � -
� � � *�,+ � - �	� �	� �� / � � � *
�� otherwise

� � ����� � � ����� ���4 � � 4 �
 ����� 4 � "4
2� 4
�
 ����� 4
�"
Figure 6. Structure of the history knowledge

where
� � � - and ���	� - are the lower and upper bounds of the

cell � , randomly chosen from the list of the , best cells.
The update function splits a node if a better solution is

found in that cell, and if the tree has not reached its maxi-
mum depth. The dimension in which the division is done,
is the one that has a greater difference between the solution
stored and the new reference solution (i.e., the new solution
considered as the “best” found so far).

4.1.4 History Knowledge

This knowledge source was originally proposed for dy-
namic objective functions, and it was used to find patterns in
the environmental changes. As we use static objective func-
tions, we can use this knowledge source to find patterns of
the positions of local aptima. In its original form, history
knowledge records in a list, the location of the best individ-
ual found before each environmental change. That list has
a maximum size � . The history knowledge also contains
the average distance and direction of the changes for each
decision variable, as shown in Figure 6.

In Figure 6, � � is the best individual found before the � -
th environmental change, 4 � � is the average distance of the
changes for parameter � , and 4
 � is the average direction if
there are changes for parameter � . In our approach, instead
of detecting changes of the environment, we store a solu-
tion if it remains as the best one by the last � generations.
If this happens, we assume that we are trapped in a local
optimum. To initialize this part, the list of best individuals
is empty, and the average distances and directions is zero.
The influence function is divided in three parts, the first is
for trying to move the generated individual to the direction4
 � ; this is done the � � of the times. The second is for
trying to move the child a distance 4 � � ; this is done the � �
of the times. The third is only to inject diversity, keeping
in mind that this knowledge source must be useful when we
are trapped in local optima. The expression is:

� '�	�
 �
�������� �������
� �	�
	� + 4
 � - �<-�� � �	� ��0/ � �	� *
 �

if
�3 �54 �76 � �2�09
�
� �	�
 � + ���
��*$ � #$�* # - � � � � #� / � �	� 1
 �

if
�3 �54 �76 � �2�09��
�3 �54 � � , �&� � , ���
otherwise

where � �	�
 � is the � -th decision variable of the previous best��� stored in the list of the history knowledge, 4
 � and 4 � �

are the average direction and distance of the changes in the
� -th variable, 4�� � is the maximum difference for the � -th
variable, stored in the normative knowledge,

� , � and � , � are
the lower and upper bounds of the variable ��� , given as in-
put for the problem, and
23 �54 �73:� , � is a uniform distributed
random number between 3 and , .

To update the history knowledge, we add to the list any
local optimum found during the evolutionary process. If the
list has reached its maximum length � , the oldest element
in the list is discarded. The average distances and directions
of change are calculated by:

4 � � ��� � % ���� ���� � �	�
������ / � �	�
�� ���./ �
4
 � � ��� � � � % � ��� � ��� �"! � �	�
��#�$� / � �	�
��&%�'

where the function ��� � is defined by:

��� � ��3 � � �� � � if 3 � 6/�� if 3 9 66 otherwise

4.2 Acceptance Function

The number of individuals accepted for the update of the
belief space is computed according the design of a dynamic
acceptance function by Saleem [22]. The number of ac-
cepted individuals decreases while the number of genera-
tion increases.

Saleem [22] suggests to reset the number of accepted
individuals when an environmental change occurs. In our
case, all functions are static, but this mechanism is use-
ful also when the population converges to a local optimum.
Then, we reset the number of accepted individuals when the
best solution has not changed in the last � generations.

We get the number of accepted individuals, � ! -&-&
)(�
&$,
with the following expression:

� ! -&-&
*(�
�$ �,+ � � - ������� ���	� + � � - �:���:� ��� �� -
where � � is a parameter given by the user, in �76 �16
 .0/ ;
Saleem [22] suggests using 0.2. � is the generation counter,
but is reset to 1 when the best solution has no changed in
the last � generations.

5 Comparison of Results

To validate our approach, we have used the well-known
benchmark proposed in [15] and extended in [20] which has
been often used in the literature to validate new constraint-
handling techniques. The characteristics of the test func-
tions are sumarized in Table 1, similar to the table reported

Table 4. Results reported for the homomor-
phous maps [12]. N.A. = Not available

TF Optimal Best Mean Worst
g01 -15 -14.7864 -14.7082 -14.6154
g02 0.803619 0.79953 0.79671 0.79119
g03 1 0.9997 0.9989 0.9978
g04 -30665.539 -30664.5 -30655.3 -30645.9
g05 5126.4981 — — —
g06 -6961.8138 -6952.1 -6342.6 -5473.9
g07 24.3062091 24.620 24.826 25.069
g08 0.095825 0.095825 0.089157 0.029144
g09 680.6300573 680.91 681.16 683.18
g10 7049.330 7147.9 8163.6 9659.3
g11 0.75 0.75 0.75 0.75
g12 1 0.999999 0.999135 0.991950
g13 0.0539498 N.A. N.A. N.A.

in [12]. Table 1 shows, for each problem, the number of
variables � , the type of objective function � , the ratio � be-
tween the feasible region and the whole search space, the
number of linear inequalities

���
, the number of nonlinear

inequalities � � , the number of nonlinear equations � ; ,
and the number of active constraints at the optimum (or best
known) 3 . The ratio � is an estimation done by generating
10,000,000 random points in the search space, and checking
their feasibility. For a full description of the test functions
adopted, the reader should refer to [20].

The parameters used by our approach are the following:�����:� ���	� � ��6 6 , maximum number of generations = 1000,
the factors of differential evolution are

� � 6
 . and ��� �� , maximum depth of the + -d tree = 12, length of the best
cells list , � ��6 , the size of the list in the history knowledge� � . , � � � � 6
 ��. , and

� � � 6
 � . These parameters
were derived empirically after numerous experiments.

Our results are compared to the homomorphous maps
of Koziel & Michalewicz [12] and to stochastic ranking of
Runarsson & Yao [20] (these are the two best constraint-
handling techniques proposed for evolutionary algorithms
known to date). The results of Koziel & Michalewicz were
obtained with 1,400,000 fitness function evaluations. The
results of Runarsson & Yao were obtained with 350,000
evaluations. Our approach required only 100,100 evalua-
tions.

Our approach performs better than the homomorphous
maps in most of the problems. It is worth noticing that in
g05 the homomorphous maps were not able to find any fea-
sible solution, whereas our cultured differential evolution
algorithm found feasible solutions in all the runs performed.
Although our approach did not reach the global optimum in
this case, its best result is very close from it. Another good

example is g10, where our approach not only reached the
global optimum but systematically converged to solutions
very close to it. In contrast, the homomorphous maps were
not able to converge to the global optimum and it showed
a considerably higher variability of results from run to run.
Our approach showed its worst performance in g02, where
it was unable to reach the best known solution. This may
be due to the fact that g02 has a fairly large feasible region
and the number of iterations performed may had been in-
sufficient for allowing our approach to reach the global op-
timum. Note that the authors of the homomorphous maps
did not use g13 in their paper. That is the reason why no
results are reported for such problem.

Stochastic ranking is the most competitive constraint-
handling technique known to date as can be seen from the
results shown in Table 3. When compared with respect to
our approach, we can see that our cultured differential evo-
lution algorithm is very competitive. Our approach reached
the global optimum in seven problems, and stochastic rank-
ing did it in nine. However, with the exception of g02 and
g01 (where stochastic ranking was a clear winner), in all
the other problems the results obtained by our approach are
very close to the global optimum. An additional aspect that
we found quite interesting is that our approach presented in
most cases a low standard deviation. A remarkable example
is g10, where stochastic ranking was not able to reach the
global optimum and presented a high variability of results.
Another example is g06, where stochastic ranking also pre-
sented a higher variability than our approach. In contrast,
stochastic ranking showed a more robust behavior than our
approach in g01, g05, g11 and g13.

6 Conclusions and Future Work

We have presented the first attempt to use differential
evolution as a population space of a cultural algorithm. This
approach is applied in the solution of constrained numerical
optimization problems.

Differential evolution has been found before to be a very
succesful and robust search engine for optimization prob-
lems. As a consequence, and fulfilling our expectations,
the culturization of a differential evolution algorithm has
given rise to an approach that requires a low number of fit-
ness function evaluations. Our comparison of results with
respect to two approaches representative of the state-of-the-
art in the area has shown that such an approach produces
highly competitive results and is very robust.

One of the main limitations of our current version of the
algorithm presented in this paper has to do with the lack of
diversity that occurs due to the high selection pressure of
our approach. This occurs despite the fact that the knowl-
edge sources adopted by our cultural algorithm provide ad-
ditional diversity to the approach.

Table 1. Characteristics of the test functions
TF � Type of � � � � � � � ; 3
g01 13 quadratic 0.000235% 9 0 0 6
g02 20 nonlinear 99.996503% 1 1 0 1
g03 10 polynomial 0.000000% 0 0 1 1
g04 5 quadratic 26.962511% 0 6 0 2
g05 4 cubic 0.000000% 2 0 3 3
g06 2 cubic 0.006679% 0 2 0 2
g07 10 quadratic 0.000103% 3 5 0 2
g08 2 nonlinear 0.859082% 0 2 0 0
g09 7 polynomial 0.524450% 0 4 0 2
g10 8 linear 0.000522% 3 3 0 3
g11 2 quadratic 0.000000% 0 0 1 1
g12 3 quadratic 4.775265% 0 1 0 0
g13 5 nonlinear 0.000000% 0 0 3 3

Table 2. Results obtained by our cultured differential evolution approach
TF Optimal Best Mean Worst Std Dev
g01 -15 -14.996953 -13.214513 -5.999896 2.985388
g02 0.803619 0.616900 0.517901 0.419959 0.066237
g03 1 1.000000 0.821397 0.600900 0.144609
g04 -30665.539 -30665.539177 -30665.538824 -30665.538672 0.000244
g05 5126.4981 5126.563220 5136.862081 5184.827897 19.569988
g06 -6961.8138 -6961.813876 -6961.813876 -6961.813876 0.000000
g07 24.3062091 24.575671 24.585679 24.650253 0.023298
g08 0.095825 0.095825 0.095825 0.095825 0.000000
g09 680.6300573 680.630057 680.630057 680.630057 0.000000
g10 7049.25 7049.251189 7049.284777 7049.372205 0.040707
g11 0.75 0.757500 0.779440 0.854357 0.039593
g12 1 1.000000 1.000000 1.000000 0.000000
g13 0.0539498 0.054903 0.314341 0.426815 0.181099

Table 3. Results reported for stochastic ranking [20]
TF Optimal Best Mean Worst Std Dev
g01 -15 -15.000 -15.000 -15.000 0.0
g02 0.803619 0.803515 0.781975 0.726288 0.020
g03 1 1.000 1.000 1.000 0.00019
g04 -30665.539 -30665.539 -30665.539 -30665.539 0.00002
g05 5126.4981 5126.497 5128.881 5142.472 3.5
g06 -6961.8138 -6961.814 -6875.940 -6350.262 160
g07 24.3062091 24.307 24.374 24.642 0.066
g08 0.095825 0.095825 0.095825 0.095825 0.000000
g09 680.6300573 680.630 680.656 680.763 0.034
g10 7049.330 7054.316 7559.192 8835.655 530
g11 0.75 0.750 0.750 0.750 0.00008
g12 1 1.000000 1.000000 1.000000 0.0
g13 0.0539498 0.053957 0.057006 0.216915 0.031

As part of our future work, we are interested in inves-
tigating the specific role played by each of the knowledge
sources adopted. We want to measure the impact of each
of these knowledge sources on the evolutionary process as
to allow a more appropriate balance. We hypothesize that
such a balance will improve the quality of the results ob-
tained by our approach. Finally, we are also interested in
adopting additional diversity maintenance mechanisms to
counterbalance the high selection pressure of our approach.

Acknowledgements

The first author acknowledges support from CONA-
CyT through a scholarship to pursue graduate studies at
the Computer Science Section of the Electrical Engineer-
ing Department at CINVESTAV-IPN. The second author
gratefully acknowledges support from CONACyT through
project 42435-Y.

References

[1] J. L. Bentley and J. H. Friedman. Data Structures for Range
Searching. ACM Computing Surveys, 11(4):397–409, De-
cember 1979.

[2] C.-J. Chung and R. G. Reynolds. A Testbed for Solving Opti-
mization Problems using Cultural Algorithms. In L. J. Fogel,
P. J. Angeline, and T. Bäck, editors, Evolutionary Program-
ming V: Proceedings of the Fifth Annual Conference on Evo-
lutionary Programming, Cambridge, Massachusetts, 1996.
MIT Press.

[3] C. A. Coello Coello and R. Landa Becerra. Adding knowl-
edge and efficient data structures to evolutionary program-
ming: A cultural algorithm for constrained optimization. In
E. C.-P. et al., editor, Proceedings of the Genetic and Evo-
lutionary Computation Conference (GECCO’2002), pages
201–209, San Francisco, California, July 2002. Morgan
Kaufmann Publishers.

[4] C. A. Coello Coello and R. Landa Becerra. Evolution-
ary Multiobjective Optimization using a Cultural Algorithm.
In 2003 IEEE Swarm Intelligence Symposium Proceedings,
pages 6–13, Indianapolis, Indiana, USA, April 2003. IEEE
Service Center.

[5] L. J. Fogel. Artificial Intelligence through Simulated Evolu-
tion. Forty Years of Evolutionary Programming. John Wiley
& Sons, Inc., New York, 1999.

[6] B. Franklin and M. Bergerman. Cultural algorithms: Con-
cepts and experiments. In Proceedings of the 2000 Congress
on Evolutionary Computation, pages 1245–1251, Piscat-
away, New Jersey, 2000. IEEE Service Center.

[7] D. E. Goldberg. Genetic Algorithms in Search, Optimization
and Machine Learning. Addison-Wesley Publishing Com-
pany, Reading, Massachusetts, 1989.

[8] R. Iacoban, R. G. Reynolds, and J. Brewster. Cultural
Swarms: Assessing the Impact of Culture on Social Interac-
tion and Problem Solving. In 2003 IEEE Swarm Intelligence
Symposium Proceedings, pages 212–219, Indianapolis, Indi-
ana, USA, April 2003. IEEE Service Center.

[9] R. Iacoban, R. G. Reynolds, and J. Brewster. Cultural
Swarms: Modeling the Impact of Culture on Social Interac-
tion and Problem Solving. In 2003 IEEE Swarm Intelligence
Symposium Proceedings, pages 205–211, Indianapolis, Indi-
ana, USA, April 2003. IEEE Service Center.

[10] X. Jin and R. G. Reynolds. Using Knowledge-Based Evo-
lutionary Computation to Solve Nonlinear Constraint Opti-
mization Problems: a Cultural Algorithm Approach. In 1999
Congress on Evolutionary Computation, pages 1672–1678,
Washington, D.C., July 1999. IEEE Service Center.

[11] J. Kennedy and R. C. Eberhart. Particle swarm: Social
adaptation in information-processing systems. In D. Corne,
M. Dorigo, and F. Glover, editors, New Ideas in Optimiza-
tion, pages 379–387. McGraw-Hill, London, UK, 1999.

[12] S. Koziel and Z. Michalewicz. Evolutionary Algorithms,
Homomorphous Mappings, and Constrained Parameter Op-
timization. Evolutionary Computation, 7(1):19–44, 1999.

[13] J.-C. Latombe. Robot Motion Planning. Kluwer Academic
Publishers, Norwell, Massachusetts, 1993.

[14] E. Mezura-Montes, C. A. C. Coello, and E. I. Tun-Morales.
Simple Feasibility Rules and Differential Evolution for Con-
strained Optimization. In R. Monroy, G. Arroyo-Figueroa,
L. E. Sucar, and H. Sossa, editors, Proceedings of the Third
Mexican International Conference on Artificial Intelligence
(MICAI’2004), pages 707–716, Heidelberg, Germany, April
2004. M éxico City, M éxico, Springer Verlag. Lecture Notes
in Artificial Intelligence No. 2972.

[15] Z. Michalewicz and M. Schoenauer. Evolutionary Algo-
rithms for Constrained Parameter Optimization Problems.
Evolutionary Computation, 4(1):1–32, 1996.

[16] K. V. Price. An introduction to differential evolution. In
D. Corne, M. Dorigo, and F. Glover, editors, New Ideas
in Optimization, pages 79–108. McGraw-Hill, London, UK,
1999.

[17] R. G. Reynolds. An Introduction to Cultural Algorithms.
In A. V. Sebald and L. J. Fogel, editors, Proceedings of
the Third Annual Conference on Evolutionary Programming,
pages 131–139. World Scientific, River Edge, New Jersey,
1994.

[18] R. G. Reynolds. Cultural algorithms: Theory and applica-
tions. In D. Corne, M. Dorigo, and F. Glover, editors, New
Ideas in Optimization, pages 367–377. McGraw-Hill, Lon-
don, UK, 1999.

[19] R. G. Reynolds, Z. Michalewicz, and M. Cavaretta. Using
cultural algorithms for constraint handling in GENOCOP. In
J. R. McDonnell, R. G. Reynolds, and D. B. Fogel, editors,
Proceedings of the Fourth Annual Conference on Evolution-
ary Programming, pages 298–305. MIT Press, Cambridge,
Massachusetts, 1995.

[20] T. P. Runarsson and X. Yao. Stochastic Ranking for Con-
strained Evolutionary Optimization. IEEE Transactions on
Evolutionary Computation, 4(3):284–294, September 2000.

[21] S. Saleem and R. Reynolds. Cultural algorithms in dynamic
environments. In Proc. of the 2000 Congress on Evolution-
ary Computation, pages 1513–1520, Piscataway, NJ, July
2000. IEEE Service Center.

[22] S. M. Saleem. Knowledge-Based Solution to Dynamic Op-
timization Problems using Cultural Algorithms. PhD thesis,
Wayne State University, Detroit, Michigan, 2001.

[23] R. Storn. System Design by Constraint Adaptation and
Differential Evolution. IEEE Transactions on Evolutionary
Computation, 3(1):22–34, April 1999.

