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Abstract—Cooperative coevolution is an approach for evolving
solutions from different populations which are evaluated based
on how well they perform together. The advantage of cooperative
coevolutionary algorithms is the decomposition of the problem
which allows us to learn different parts of the problem instead of
the whole problem at once. However, previous research within the
field of global optimization has shown that cooperative coevolu-
tionary algorithms are biased towards equilibrium states. Since
studies concerning cooperative coevolutionary algorithms used
for solving multi-objective optimization problems were initiated,
no attention has been paid to this issue. In this paper, we show
empirical evidence of the existence of these problems within the
multi-objective optimization field and present a novel cooperative
coevolution framework which, through the use of the concept of
Nash equilibrium, alleviates some of those optimization-related
pathologies present in cooperative coevolutionary algorithms. We
compare our proposed algorithm with respect to two algorithms
that make use of the cooperative coevolutionary model to multi-
objective optimization, NSCCGA (that makes use of Potter’s
coevolutionary model) and GCEA (a game theory based coevo-
lutionary algorithm). The computational effort required by each
algorithm (measured in terms of the number of fitness function
evaluations) is also analyzed. Our preliminary results indicate
that the proposed framework clearly outperforms the results
of the aforementioned algorithms when using the Deb-Thiele-
Laumanns-Zitzler (DTLZ) and the Zitzler-Deb-Thiele (ZDT) test
suites.


I. INTRODUCTION


Coevolutionary algorithms (CAs) are extensions of tradi-
tional evolutionary algorithms (EAs). The main difference
between CAs and EAs is the adaptive nature of the fit-
ness evaluation for the members of coevolutionary systems.
Individuals are assigned with fitness values based on the
interactions that they have with other individuals from other
species. Coevolution then refers to a reciprocal evolutionary
change between species that interact with each other. Such
models have been historically categorized as competitive or
cooperative. In this work, our interest is in the second category,
the so-called cooperative coevolutionary algorithms (CCAs),
which are able to exploit the compositional nature of problems.
CCAs use individuals which belong to different species that
represent a component of a larger problem. Each of these
components receive a fitness value based on how well it
performs in conjunction with individuals from other species.
The first framework of cooperative coevolution (CC) utilized
within evolutionary algorithms was originally introduced by
Potter and De Jong [1], in their Cooperative Coevolutionary


Genetic Algorithm (CCGA). They found that CCGA has a
significant improvement in performance over the traditional
GA when optimizing functions with 30 decision variables.
This framework uses a divide-and-conquer approach to split
the decision variables into subpopulations of smaller size, so
that each of these subpopulations is optimized with a separate
EA. The main idea is to decompose a problem into several
subcomponents and evolve these subcomponents cooperatively
for a predefined number of cycles.


Since the cooperative coevolutionary framework can be ex-
tended in a relatively easy way to multi-objective optimization,
a number of approaches have been proposed which incorporate
it to improve the performance of multi-objective EAs [2], [3].
However, CCAs have some issues among which premature
convergence to equilibrium states stands out [4], [5]. This
pathology emerges since in CCAs, each species population
is searching in its subcomponent of the problem, and that
projection is constantly changing. So, it is highly likely for
CCAs to get misleading information that leads them to prefer
individuals in one population which do well with most of the
individuals from other populations, even if these combinations
are not optimal. This work treats this phenomenon from the
multi-objective cooperative coevolutionary point of view and
proposes a novel cooperative coevolutionary framework that
makes use of the concept of Nash equilibrium to alleviate the
relative overgeneralization [4] present in coevolution.


The remainder of this paper is organized as follows. In
Section II, we provide some basic concepts related to multi-
objective optimization, which are included to make the paper
self-contained. The previous related work is discussed in
Section III. Section IV is devoted to present our proposed
approach and the experiments carried out. Finally, our conclu-
sions and some possible paths for future work are drawn in
Section V.


II. THE MULTI-OBJECTIVE OPTIMIZATION PROBLEM


The Multi-objective Optimization Problem (MOP) can be
defined as the problem of finding a vector of decision variables
which satisfies constraints and optimizes a vector function
whose elements represent the objective functions. Hence, the
term “optimize” means finding such a solution which would
give the values of all the objective functions acceptable to
the decision maker [6]. In the following definitions we are
assuming, without loss of generality, the minimization of all







the objectives. Mathematically, we can write MOPs as:


minimize~f(~x) = [f1(~x), f2(~x), . . . , fk(~x)]T (1)


subject to:


gi(~x) ≤ 0 i = 1, 2, . . . ,m (2)


hi(~x) = 0 i = 1, 2, . . . , p (3)


where k is the number of objective functions fi : Rn → R,
gi, hj : Rn → R, i = 1, ...,m, j = 1, ..., p are the constraint
functions of the problem and ~x = [x1, x2, . . . , xn]T the
vector of decision variables. We thus wish to determine from
the set Ω (where Ω is the feasible region) of all the vectors
that satisfy (2) and (3) to the vector ~x∗ = [x∗1, x


∗
2, . . . , x


∗
n]T


of solutions that are Pareto optimal. To describe the concept
of optimality that we will adopt, we need to introduce a few
additional definitions.


Pareto Optimality: We say that a vector of decision variables
~x∗ ∈ Ω (where Ω is the feasible region) is Pareto Optimal
with respect to Ω if and only if ∀~x ∈ Ω ∧ ∀i ∈ {1, . . . , k}:


fi(~x) = fi(~x
∗) ∨ @i ∈ {1, . . . , k} : fi(~x) < fi(~x


∗) (4)


Pareto Dominance: A vector ~u = [u1, . . . , uk]T is said to
dominate another vector ~v = [v1, . . . , vk]T (denoted by ~u �
~v) if and only if ~u is partially less than ~v, i.e.,:


∀i ∈ {1, . . . , k}, ui ≤ vi ∧ ∃i ∈ {1, . . . , k} : ui < vi (5)


Pareto Optimal Set: For a given MOP ~f(~x), the Pareto
Optimal Set P ∗ is defined by:


P ∗ := {~x ∈ Ω | @~x′ ∈ Ω, ~f(~x′) � ~f(~x)} (6)


Pareto Front: For a given MOP ~f(~x) and its Pareto optimal
set P ∗, the Pareto Front PF ∗ is defined by:


PF ∗ := {~f(~x) | ~x ∈ P ∗} (7)


When plotted in objective space, the non-dominated vectors
are collectively known as the Pareto front.


III. COOPERATIVE COEVOLUTION


In nature, coevolution is the process of reciprocal genetic
change in one species, or group, in response to another. The
original framework of cooperative coevolution (CC) utilized
within evolutionary algorithms was originally introduced by
Potter and De Jong [1]. This framework uses a divide-and-
conquer approach to split the decision variables into subpop-
ulations of smaller size, so that each of these subpopulations
is optimized with a separate EA. The original CC framework
can be summarized as follows:


1) Decompose an objective vector into m low dimensional
subcomponents.


2) Set j = 1 to start a new cycle.


3) Optimize the j-th subcomponent with a certain EA for
a predefined number of fitness evaluations (FEs).


4) If j < m then j + +, and go to Step 3.
5) Stop if the stopping criteria are satisfied; otherwise go


to Step 2 for the next cycle.


A cycle consists of one complete evolution of all species
and the main idea is to decompose a high-dimensional prob-
lem into several low-dimensional subcomponents and evolve
these subcomponents cooperatively for a predefined number
of cycles. CC has shown to be a good framework for solving
optimization problems [7], [8]. Since the cooperative coevo-
lutionary framework has been extended to multi-objective
optimization, a number of approaches have been proposed
incorporating the CCA framework to improve the performance
of multi-objective EAs. This is evidenced by MOCCGA [2],
which integrates cooperative coevolution with Fonseca and
Fleming’s MOGA [9]. MOCCGA uses a dominance rank for
individuals, in which a count of the number of individuals
dominating others is the fitness criterion. In MOCCGA, the
objectives are evaluated twice for each individual both with the
best ranked individuals from each subpopulation, as well as
with randomly selected individuals. This follows the approach
described by Potter and De Jong, which aims to decrease
the premature convergence observed on some test problems
adopted with the original CC framework. In MOCCGA, the
subcomponents are ranked only within the same subpopula-
tion. It is important to mention that the number of evaluations
adopted by the authors is not reported anywhere in the paper.
Another approach is presented in [3], where a cooperative
coevolutionary algorithm for multi-objective optimization is
presented. This algorithm subdivides the decision variable
space and determines which portions of the decision variables
intervals are being used and discards portions of the intervals
that it deems that are not being used by the search process. It
also subdivides intervals so that separate sub-populations can
operate on the portions of these intervals which contribute to
the search. Sub-populations which are not making contribu-
tions are eliminated from the search. Parmee and Watson [10]
proposed a collaborative multi-objective optimization scheme
for the preliminary design of airframes. Here, they use one
population to optimize each of the objective functions of the
problem. The method utilizes individual genetic algorithms
(GAs) for the optimization of each objective in order to reduce
the problem to a number of concurrent co-evolutionary tasks
specific to the overall design domain. Iorio and Li used NSGA-
II [11] to evolve each species in their NSCCGA [12]. This
Algorithm uses Potter and De Jong’s scheme [1] where there
are as many species as decision variables in the problem and
each of them are evolved using NSGA-II. Individuals from
each population are evaluated forming collaborations with
randomly selected components from the best non-domination
levels in the previous generation’s sub-populations. Another
coevolutionary approach is found in [13]. Here, a game theory
based coevolutionary algorithm (GCEA) which makes use of
the concept of Nash equilibrium [14] is presented. They used a







game matrix, and as an optimal solution of the game, the equi-
librium state of this coevolutionary algorithm is to be found.
Payoff of the game, for each population Gi, is calculated from
the differences between two objective functions as follows:


G1(vi, v
′
i) = f1(x)− f2(x′) (8)


G2(vi, v
′
i) = f2(x′)− f1(x) (9)


From these payoffs, the fitness of each player is:


Fi = 100 ∗ G1(vi, v
′
i)


α
(10)


F ′i = 100 ∗ G2(vi, v
′
i)


α
(11)


where α is constant to normalize the fitness of Fi or
F ′i . From these settings, GCEA works as follows: first two
populations are randomly generated. Then, the Player selected
in the first population (x) plays with that from the second
population (x′) and then he is paid off using (8). In the same
manner, the Player in the second population is paid off using
(9). The fitness of each player Fn and F ′n is updated using
(10) and (11). This process is executed for all individuals of
each population one by one. Each population is regenerated
separately using genetic algorithms. The main drawback of this
approach is that it works only for two-dimensional problems
and the way the Nash equilibrium is used is very naive
and static. There exist even more examples of the use of
cooperative coevolution as a framework, but most of them
work in a similar way as the ones we have described in this
section.


In spite of the success of these approaches, there is evidence
that shows how CCAs frequently perform poorly on what
seem to be relatively simple problems, giving poor results or
collapsing prematurely due to the loss in population diversity
[4]. Here, we claim that cooperative coevolutionary systems
are more attracted to points of robust resting balance than
to ideal collaboration. CCAs have been shown to gravitate
towards equilibrium states, regardless of whether or not such
states correspond to an optimal solution for a given problem.
Relative overgeneralization is one of the main causes for
this behavior [15]. Relative overgeneralization occurs when
coevolving populations are attracted to areas of the search
space in which there are many strategies that perform well
when combined with individuals from the other populations.
This tends to generate individuals that have poor performance,
which in turn can prevent the evolution of optimal or near-
optimal solutions. It has also been studied how, through the
process of Darwinian selection, a population of agents can
evolve to an Evolutionary Stable Strategy (ESS) as introduced
by Maynard Smith in 1982 [16]. He showed how a coevolu-
tionary phenomenon reaches static states and that these states
are ESSs in game theory. Also, from a mathematical point of
view, coevolution has game theoretical properties and for that
reason coevolution finally reaches the stable equilibrium state
and this state is thought of as an optimal solution because


of the dominance property of the game. Because of these
properties, we assume that all these CCAs’ pathologies are
also present when dealing with MOPs and that there exist ways
to alleviate them so that the performance of such algorithms
can be improved.


The most logical approach to deal with some of the
pathologies present in CCAs is to bias the CCAs toward
searching for ideal collaborations. So, our aim is to combine
the coevolutionary algorithm with evolutionary game theory
in order to create a novel game theory based cooperative
coevolutionary framework. So, here we propose to make use of
the Nash equilibrium to define ideal collaborations that allow
the CC framework to avoid relative overgeneralization (instead
of looking for equilibrium states as the aforementioned GCEA
does). With this, we aim to get a faster and more efficient CCA
for multi-objective optimization.


IV. OUR PROPOSED APPROACH


Our approach to cooperative coevolution follows Potter’s
[1] model of cooperative coevolution where each population
contains individuals that represent a particular component (in
decision varibles space) of the problem, so that one member
from each population is needed in order to assemble a com-
plete solution. Evaluation of an individual from a particular
population is performed by joining the individual with collab-
orating partners from other populations. Aside from evalua-
tion, the populations are evolved independently. An abstract
mathematical model for this system comes from evolutionary
game theory (EGT). EGT is seen as a way of thinking about
evolution at the phenotypic level when the fitness of particular
individuals depend on their frequencies in the population [17].
As used by NSCCGA and MOCCGA, the common way to
perform the evaluation of each individual is by taking one
representative from the other populations that belongs to the
best set of solutions found so far. We believe that this way of
doing collaboration is the main cause for the aforementioned
pathologies, because each species is choosing representatives
from other populations having in mind only the performance
of the species alone and not as a whole team among all
of the species. This kind of interaction makes coevolution
to only explore narrow regions of the collaboration space,
which suggests that evolution is strongly attracted to certain
regions of the search space. However, these regions do not nec-
essarily correspond to (fitness-based) optimal solutions, and
coevolution often converges to sub-optimal equilibria. Since
in multi-objective optimization, objectives are in conflict, we
believe that making use of Nash equilibrium for finding better
collaborations is the best option, since it gives a solution of
a non-cooperative game. According to Nash, each participant
of the game has his own strategy set and objective function.
Then, during the game, each player searches for the optimal
strategy while other players’ strategies are fixed. The game
is conducted in this frame and when no player can further
improve his criterion, the system is regarded as having reached
a state of equilibrium, known as Nash equilibrium. This is
exactly the way MOPs are managed by EAs, so this idea can







be applied to develop a novel CC framework, which, instead
of looking for best collaborations from the point of view of
an specific species, will look for ideal collaborations which
take into account all of the objectives in order to perform
better interactions among species. Our proposed approach is
described next.


A. Description of the proposed approach


Our approach works as follows: at the beginning, it divides
the vector of decision variables ~x of dimension D ∈ N into
S ∈ N subcomponents, where S is equal to the number of
objective functions in the problem. Each subcomponent is
created from a random grouping of decision variables in order
to increase the probability of grouping interacting variables in
non-separable problems. At the same time, S subpopulations
(species) are created, each one with NP individuals, and these
S subpopulations are assigned their corresponding decision
variables in a random way. This means that to each subpopu-
lation, it corresponds a subcomponent from S which had been
already created. Thus, every subpopulation will have a total of
m decision variables. At the same time, each species will be
assigned with an specific objective function, so that there will
be as many species as objective functions and each of them
will do the fitness assignment of their individuals according
to that, as will be described next. Once the subpopulations
are created, the algorithm does a random initialization of all
the individuals across all subpopulations. Then, the algorithm
performs the cycles in which the evolution of each of the
subpopulations is done for a given number of generations.
This will continue until the stopping condition is reached, and
at the end, the solutions that are globally non-dominated (i.e.,
with respect to all the subpopulations), constitute the outcome
of the algorithm. The collaboration among the subpopulations
takes place in the next way: in the first generation, random
collaborations are formed and evaluated, obtaining a random
individual from each subpopulation and forming a complete
set of solutions to be evaluated in their objective functions.
Then, the results from the evaluation are assigned back to
the individual under evaluation. After the first generation, the
resulting child subpopulations Q1 to QS will be evaluated
by forming collaborations with individuals from the other
species which are in a Nash equilibrium according to their
fitness values. As mentioned before, the usual way to per-
form collaborations is by selecting representatives from other
species which perform the best according to their respective
subpopulation. However, we believe that this is the main cause
for the tendency of CCAs to fall in ESS. So, we propose to
find an ideal collaboration by making use of Nash equilibrium.
Next, we give a brief description of such concept.


B. Equilibriums for selection of strategies


The formal description of Nash equilibrium is presented
next.


1) Normal form game: Let P = {1, . . . , n} be the set
of players, i ∈ P , aix ∈ Σi be an element of the set of
simple plays, and six be a strategy of player i, six ∈ Si; let


G = (S1, . . . , Sn;u1, . . . , un) be the game in normal form
[14] where:
• A strategy is a sequence of actions six = ai1 . . . a


i
n.


• A strategy profile is an n-tuple of strategies (s1, . . . , sn);
one strategy per player.


• Si is the set of strategies for the ith player.
• {S1, . . . , Sn} is the set of all the Si strategies.
• {u1, . . . , un} is the set of all payoff functions; one per


player.
• ui(s1, . . . , sn) = r, where (s1, . . . , sn) ∈ S1 × · · · ×
Sn, r ∈ R.


2) Nash equilibrium: The Nash equilibrium [14] is a widely
used mathematical concept, especially in the modelling of non-
cooperative games. To identify the strategy profiles that fit
the condition of Nash equilibrium, every strategy profile is
evaluated with the payoff functions of the players. Then, the
chosen profiles are those that, for every player, are the options
that produce the lowest loss for each one, individually, in a
non-cooperative way. In a more formal way, let s∗1, . . . , s


∗
n


and s∗i be the non-cooperative player’s strategies from i to the
n−1 other players’ strategies. So (s∗1, . . . , s


∗
i , . . . , s


∗
n) fits the


Nash equilibrium condition, if and only if it maximizes the
corresponding payoff function:


ui(s
∗
1, . . . , s


∗
i , . . . , s


∗
n) ≥ ui(s∗1, . . . , si, . . . , s∗n)


∀i ∈ P, si ∈ Si.
(12)


Every strategy profile is a payoff function valued and is
compared with all the others, to determine whether or not
it is dominated. Given a strategy profile x1 for each player
i, the strategy profile is modified by altering the player’s
current strategy while keeping the strategies of the other n−1
players unchanged; if any deviation from x1, evaluated by ui,
dominates it, that means that player i’s profit is higher by
ui(x2). So, x1 is dominated by x2’s profile and, therefore,
x1 is discarded. All the dominated profiles are discarded and
the non-dominated profiles are the ones that fit the Nash
equilibrium. Any game in (finite) normal form has at least one
strategy profile that fits the Nash equilibrium [14]. Observe
that in Nash equilibrium, every player is applying a non-
cooperative perspective which turns out to be not as bad for
him as the other players’ strategies.


With all this in mind, we propose to make collaborations
by finding the best unions according to the previous objective
values found so far. For this purpose, we create all the combi-
nations from the function of the individual being evaluated and
the posible values given by the rest of the other populations.
The way combinations are formed is depicted in Figure 1,
in which we show an example of a three-dimensional MOP
using 2 individuals for each population. Once we have this,
we consider that for our purpose, each objective function
value can be used as an strategy. With this, we can build a
utility function from each species point of view, in order to
create a non-cooperative game where each player is an species,
and its interest is focused on its specific objective function.
For this purpose, we adopted SPEA2’s fitness assignment







f1,S11 f2,S11 f3,S11
f1,S12 f2,S12 f3,S12


Species 1


f1,S11 f2,S21 f3,S31
f1,S11 f2,S21 f3,S32
f1,S11 f2,S22 f3,S31
f1,S11 f2,S22 f3,S32


Strategies


f1,S22 f2,S22 f3,S22


f1,S21 f2,S21 f3,S21


Species 2


f1,S31 f2,S31 f3,S31


f1,S32 f2,S32 f3,S32


Species 3


Fig. 1. Strategies creation for one individual in a CCA with 3 Species
(objective functions) and 2 individuals in each subpopulation.


strategy [18] within each species. Fitness assignment operates
as follows: having an individual i which belongs to the Qj


species being evolved, we will create all the combinations of
the objectives from the current species with the objectives of
the other species. Having these composed objective vectors
we will evaluate each of these combinations according to the
current species population. Thus, at the end we will have a
set of strategies from which we will find the Nash equilibrium
according to the fitness values that will be used as the utility
functions values. So, the individuals which bring a Nash
equilibrium will be selected from the subpopulations, P1 to
PS , of the previous generation in order to collaborate. This
will allow us to evaluate the new individual. The collaboration
procedure is shown in Figure 2. The way Nash strategy profiles
are obtained is shown in Algorithm 1.


Algorithm 1 Nash equilibrium algorithm for selection of
strategies for CC collaborations.
Input: Input each strategy profile and its payoff value


1: for all x = (x1, . . . , xm) strategy profiles do
2: for all player i = (1, . . . , n) do
3: if x is labeled as non-dominated then
4: Do the derivations in x for player i
5: if x is dominated by at least one derivation of i


then
6: labeled x as dominated {move to the next strat-


egy profile}
7: end if
8: else
9: {move to the next strategy profile}


10: end if
11: end for
12: end for


The algorithm iterates until some termination condition is
fulfilled (usually when a certain predefined number of cycles
is reached). At the end, we get the non-dominated solutions
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Fig. 2. Cooperative coevolutionary collaboration architecture from the per-
spective of species number 1. Here, we assume that we have S species, where
the representative of each species for collaboration is the one that fits a Nash
equilibrium.


from the non-dominated individuals of each subpopulations, in
order to obtain a final set of solutions for the problem being
solved. A summary of the way in which our approach works
is presented in Algorithm 2.


Algorithm 2 Cooperative Coevolutionary Framework
Input: NP , Cycles, Gmax, NumEsp
Output: SolutionSet
Pobs← Populations(NP,NumEsp)
InitializeSpecies(Pobs)
for j ← 1 to Cycles do


for i← 1 to NumEsp do
for k ← 1 to Gmax do
MOEA(Pobs[i])


end for
end for


end for
SolutionSet← ObtainNonDominatedSet(Pobs)
return SolutionSet


C. Experimental Studies


For the purposes of this study, we adopted the Zitzler-
Deb-Thiele (ZDT) [19] and the Deb-Thiele-Laumanns-Zitzler
(DTLZ) test suites [20] with two and three objectives, respec-
tively.


D. Methodology


Since the main objective of this work is to evaluate the
performance of our approach in terms of efficiency when
solving MOPs, we will analyze our results with respect to
those of the NSCCGA [12] and GCEA [13]. For this sake,
we established a predefined number of function evaluations
that the algorithms can use, to analyze how they behave with
the same resources. For measuring the results we adopted the
hypervolume performance indicator [21]. The hypervolume
is obtained by computing the volume (in objective function
space) of the non-dominated set of solutions Q that minimize
a MOP. For every solution i ∈ Q, a hypercube vi is generated
with a reference point W and the solution i as its diagonal
corner of the hypercube. The reference point W can be
generated by building a vector of worst possible objective







function values. Then, the hypervolume (HV) is computed as
the union of all the found hypercubes as follows:


HV = volume


 |Q|⋃
i=1


vi


 (13)


The aim of this study is to identify which of the MOEAs
being compared is able to get closer to the true Pareto front
using the same number of objective function evaluations.


E. Parameterization


The parameters of each MOEA used in our study were cho-
sen in such a way that we could do a fair comparison among
them. Although all the algorithms used for our comparative
study are CCAs, the specific nature of each of them requires
different parameters. Thus, for our approach and for GCEA
there will be as many species as objective functions, whereas
for NSCCGA there are as many species as decision variables.
For all the algorithms we used a small population size of 16
individuals for each subpopulation (species). This was done,
in order to set an environment where the aforementioned
pathologies arise. For the ZDT test suite, we used 67 cycles
and the number of species for NSCCGA was set to 30, since
that is the number of decision variables for these problems.
The exception is ZDT4 where the number of decision variables
is 10. For this problem, we used 200 cycles. For our approach
(NashCC) and GCEA, the number of species was set to 2,
because the ZDT problems have 2 objectives. The number of
cycles was set to 1000. For the DTLZ test suite, we could
only compare results against CCNSGA since GCEA is not
able to scale to more than two objectives. The number of
species for NSCCGA was set to 12, since the DTLZ problems
use by default that number of decision variables. In this
case, 1250 cycles were used. For our proposed NashCC, the
number of species was set to 3, since these problems have
3 objectives. The number of cycles was set to 5000. For all
algorithms and problems, the distribution indexes for the SBX
and polynomial-based mutation operators [11], were set as:
ηc = 20 and ηm = 20, respectively. The crossover probability
was set to pc = 0.9 and the mutation probability was set to
pm = 0.01. Finally, we used just one generation for each
species per cycle for all approaches. All of this in order to
use the same number of function evaluations in all CCAs and
to allow for a fair comparison of results.


F. Analysis of results


In our experiments, we obtained the hypervolume value over
the 25 independents runs performed. Tables I and II show
results of the hypervolume measure for the ZDT and DTLZ
test suites, respectively, as well as the reference points used
for each of the problems. To ease the analysis of the results in
these tables, the cells containing the best hypervolume value
for each problem have a grey colored background.


From Figures 3 to 14, we plot the results of the median of
the 25 runs. These plots are shown for the ZDT and the DTLZ
test problems, respectively. We can observe that, using the
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Fig. 3. Plot of CCAs for ZDT1.
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Fig. 4. Plot of CCAs for ZDT2.
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Fig. 5. Plot of CCAs for ZDT3.
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Fig. 6. Plot of CCAs for ZDT4.


same number of function evaluations, our proposed NashCC
is able to get closer than NSCCGA and GCEA to the Pareto
front in all the problems. It is clear that NashCC is much
faster than the other two algorithms in terms of number of
evaluations. As can be observed, NSCCGA and GCEA have
premature converge in most problems, which makes them to
fall in false fronts in the case of multi-frontal problems such
as ZDT4. This confirms that the tendency of CCAs to fall into
ESS is also present when dealing with MOPs and that looking
for good collaborations is an effective way to alleviate this
problem.


V. CONCLUSIONS AND FUTURE WORK


This paper proposes a new cooperative coevolutionary
framework for solving MOPs using a novel cooperation strat-
egy based on the Nash equilibrium. With this, we presented
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Fig. 7. Plot of CCAs for ZDT6.
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Fig. 8. Plot of CCAs for DTLZ1.
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Fig. 9. Plot of CCAs for DTLZ2.
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TABLE I
HYPERVOLUME VALUES FOR THE ZDT TEST SUITE


ZDT1 ZDT2 ZDT3 ZDT4 ZDT6


Algorithm NashCC CCNSGA CCGT NashCC CCNSGA CCGT NashCC CCNSGA CCGT NashCC CCNSGA CCGT NashCC CCNSGA CCGT


Ref. Points (1 8) (1 9) (1 9) (1 900) (1 10)


Best 7.6285 7.0870 5.4413 8.3108 7.8108 2.5263 9.0247 8.4213 4.2544 899.6179 890.5287 532.1361 6.7281 3.7310 0.7373


7.6269 7.0843 4.0366 8.3106 7.7170 2.5197 9.0188 8.4140 3.9618 899.6039 889.9144 517.7009 6.7246 3.7002 0.4183


7.6268 7.0667 3.3556 8.3089 7.7149 2.4991 9.0185 8.3796 3.7482 899.5833 886.6908 484.3817 6.7196 3.4643 0.4033


7.6264 7.0632 3.0911 8.3082 7.6785 2.4911 9.0146 8.3700 3.7173 899.4977 885.5299 454.5236 6.7187 3.3439 0.3968


7.6256 7.0305 3.0564 8.3070 7.6688 2.4911 9.0141 8.3097 3.7161 899.4590 884.8965 443.1219 6.7186 3.3223 0.3579


7.6253 6.9974 2.9899 8.3053 7.6135 2.4712 9.0137 8.2885 3.6335 899.4424 884.8232 425.7738 6.7181 3.3147 0.3444


7.6244 6.9758 2.9129 8.3012 7.6082 2.0796 9.0119 8.2882 3.5062 899.4239 884.8077 420.1604 6.7163 3.3110 0.3347


7.6241 6.9534 2.9070 8.3010 7.5968 2.0732 9.0112 8.2664 3.4547 899.2720 884.7901 418.4893 6.7094 3.2766 0.3298


7.6239 6.9454 2.6500 8.2991 7.5676 1.8883 9.0047 8.2413 3.4528 899.2685 884.3186 415.4923 6.7057 3.2499 0.3197


7.6233 6.9338 2.5859 8.2987 7.5648 1.8712 9.0040 8.1980 3.4151 899.2629 880.8902 413.5572 6.7055 3.2174 0.3132


7.6228 6.9297 2.5426 8.2982 7.5565 1.7314 9.0035 8.1663 3.2693 899.2607 879.9972 411.7965 6.6999 3.1605 0.2874


7.6226 6.9118 2.5214 8.2964 7.5375 1.7263 9.0001 8.1254 3.2510 899.2540 878.8118 410.1775 6.6987 3.0051 0.2680


Median 7.6225 6.9105 2.4754 8.2944 7.5193 1.6522 8.9982 8.0892 3.2009 899.2539 878.0266 375.7467 6.6984 2.9893 0.2642


7.6212 6.9095 2.2863 8.2943 7.4892 1.6327 8.9924 8.0647 3.0842 899.2509 877.0857 366.9912 6.6962 2.9829 0.2334


7.6210 6.8809 2.1792 8.2940 7.4726 1.6086 8.9717 8.0465 2.9459 899.2400 877.0416 366.0214 6.6891 2.8825 0.2130


7.6198 6.8771 2.0903 8.2934 7.4721 1.5961 8.9706 7.9992 2.9135 899.2394 876.6987 338.2662 6.6840 2.8581 0.1778


7.6188 6.8707 2.0473 8.2934 7.4207 1.5661 8.9697 7.9949 2.8526 899.2325 876.6007 336.7565 6.6812 2.7485 0.1693


7.6185 6.8668 2.0357 8.2921 7.3748 1.5278 8.9682 7.9943 2.8100 899.0523 876.0462 333.4452 6.6667 1.9087 0.0928


7.6183 6.8500 2.0352 8.2920 7.3586 1.4419 8.9649 7.9875 2.7137 899.0446 873.8957 330.1884 6.6563 1.9012 0.0798


7.6158 6.8195 2.0239 8.2908 7.3559 1.4396 8.9584 7.9737 2.6660 899.0429 873.8497 326.3380 6.6543 1.8504 0.0503


7.6153 6.8105 2.0183 8.2904 7.3497 1.3578 8.9512 7.9686 2.6425 899.0254 872.5329 325.2272 6.6456 1.7674 0.0367


7.6152 6.7614 1.9923 8.2893 7.2987 1.3367 8.9507 7.9513 2.5738 898.8857 871.4517 322.9623 6.6377 1.7088 0.0343


7.6138 6.7308 1.9235 8.2888 7.2484 1.1220 8.9482 7.9195 2.5155 898.8794 870.6939 306.6790 6.6339 0.9597 0.0243


7.6112 6.6191 1.8730 8.2830 7.2318 1.0963 8.9120 7.8683 2.4955 898.8418 866.3119 290.3387 6.6194 0.9265 0.0150


Worst 7.5758 6.6184 1.4873 8.2790 7.0012 1.0383 8.2848 7.8366 2.4719 898.2626 857.3100 281.6815 6.5977 0.8791 0.0059


Average 7.6195 6.9002 2.5823 8.2968 7.4891 1.7914 8.9592 8.1265 3.1707 899.2079 878.5418 385.9181 6.6849 2.6584 0.2363


STD 0.0102 0.1273 0.8232 0.0084 0.1833 0.4819 0.1435 0.1794 0.5050 0.2949 7.6306 68.3190 0.0363 0.8878 0.1727


TABLE II
HYPERVOLUME VALUES FOR THE DTLZ TEST SUITE


DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7


Algorithm NashCC CCNSGA NashCC CCNSGA NashCC CCNSGA NashCC CCNSGA NashCC CCNSGA NashCC CCNSGA NashCC CCNSGA


Ref. Points (35 35 35) (1.2 1.2 1.2) (50 50 50) (1.2 1.2 1.2) (1.2 1.2 1.2) (7 7 7) (7 7 7)


Best 42876.2811 42861.9638 1.0987 1.0976 124999.3152 124975.9658 1.0628 0.7717 0.7180 0.7027 334.8787 323.5990 498.3214 469.9119


42874.8800 42847.0050 1.0971 1.0928 124999.1670 124865.7086 1.0294 0.7716 0.7172 0.7019 334.8272 319.1156 498.0460 449.7765


42874.8800 42819.1787 1.0963 1.0926 124997.6336 124715.7241 0.9992 0.7691 0.7169 0.7018 334.7990 315.1843 497.8648 430.2499


42874.8431 42804.0798 1.0958 1.0925 124994.5279 124655.8189 0.9992 0.7685 0.7169 0.6986 334.7064 311.0600 497.5445 417.8822


42874.8248 42742.8616 1.0956 1.0922 124994.3927 124623.6335 0.9992 0.7681 0.7169 0.6977 334.6832 310.9483 497.3881 415.6720


42874.7272 42707.8119 1.0924 1.0896 124993.7485 124565.9743 0.9991 0.7671 0.7165 0.6969 334.6208 309.8232 497.3302 400.1097


42874.5948 42596.9558 1.0912 1.0886 124991.6194 124355.8553 0.9991 0.7646 0.7164 0.6967 334.5886 304.8691 497.1576 398.6594


42874.5795 42525.9315 1.0897 1.0877 124990.9612 123498.8561 0.9591 0.2880 0.7164 0.6962 334.5622 302.2213 496.9787 392.3261


42873.8784 42501.7135 1.0890 1.0864 124990.5698 123367.9406 0.7627 0.2880 0.7161 0.6962 334.4871 294.6850 496.4218 390.9044


42873.8354 42490.1736 1.0885 1.0858 124990.2125 122602.1798 0.7627 0.2880 0.7155 0.6944 334.4834 286.5837 496.2432 388.2298


42872.9553 42440.4895 1.0858 1.0857 124989.1850 122528.6792 0.7627 0.2880 0.7153 0.6934 334.4430 286.5616 496.2147 383.3258


42872.1874 42395.1893 1.0855 1.0817 124988.6998 122354.9181 0.7621 0.2880 0.7149 0.6929 334.3872 278.2876 494.8938 382.6247


Median 42872.1758 42252.9449 1.0850 1.0815 124988.2743 122249.1144 0.7621 0.2880 0.7148 0.6917 334.3602 271.4169 494.8744 382.3463


42872.0777 42251.2821 1.0843 1.0801 124986.7070 121018.5017 0.7621 0.2880 0.7146 0.6912 334.3265 260.2275 494.8650 381.6034


42872.0042 42240.1745 1.0841 1.0798 124984.5723 120204.4051 0.7584 0.2880 0.7138 0.6911 334.1917 256.5397 494.8056 379.4380


42871.5896 42136.6736 1.0829 1.0772 124981.2659 120090.9469 0.7584 0.2880 0.7133 0.6907 334.1842 255.3988 494.7458 378.7837


42871.4296 42041.5760 1.0821 1.0759 124979.7506 118446.6267 0.7584 0.2880 0.7130 0.6903 334.1492 252.3305 494.7171 373.3755


42870.9092 42000.2356 1.0812 1.0747 124978.5341 111578.2296 0.7578 0.2880 0.7126 0.6892 334.0760 249.2532 494.6616 369.2247


42870.6630 41934.0698 1.0807 1.0702 124977.9124 111355.0424 0.7578 0.2880 0.7121 0.6884 334.0601 243.9649 494.6347 368.6373


42867.1791 41635.6971 1.0795 1.0674 124964.3519 110351.6186 0.7578 0.2880 0.7121 0.6876 334.0141 243.1744 494.5831 364.3375


42859.6049 41503.9476 1.0768 1.0611 124959.8377 110256.5113 0.7461 0.2880 0.7121 0.6842 334.0050 241.0774 494.5474 361.4942


42858.2116 41479.6057 1.0746 1.0605 124950.1114 95709.7965 0.7461 0.2880 0.7111 0.6827 333.9971 235.3766 494.4941 353.6972


42853.2824 40617.4194 1.0725 1.0592 124943.0481 89891.5783 0.7461 0.2880 0.7108 0.6773 333.9491 221.5874 494.2884 352.4184


42845.1465 38400.6563 1.0718 1.0562 124913.3725 73378.8013 0.7461 0.2880 0.7092 0.6765 333.9080 202.3386 494.0993 335.0071


Worst 42780.3090 32070.8457 1.0703 1.0483 124894.8008 55886.0385 0.7451 0.2843 0.7077 0.6760 333.0167 128.6456 494.0689 327.5270


Average 42866.28 41691.94 1.09 1.08 124976.90 113901.14 0.84 0.42 0.71 0.69 334.31 268.17 495.75 385.90


STD 19.4845 2210.2745 0.0083 0.0133 26.4582 17546.1981 0.1202 0.2204 0.0027 0.0076 0.4015 44.3675 1.4275 32.6220
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Fig. 11. Plot of CCAs for DTLZ4.


 0
 0.1


 0.2
 0.3


 0.4
 0.5


 0.6
 0.7


 0.8 0


 0.1


 0.2


 0.3


 0.4


 0.5


 0.6


 0.7


 0.8


 0


 0.2


 0.4


 0.6


 0.8


 1


 1.2


NSCCGA


NashCC


Fig. 12. Plot of CCAs for DTLZ5.


 0  1  2  3  4  5  6  0
 1


 2
 3


 4
 5


 6


 0


 1


 2


 3


 4


 5


 6


NSCCGA


NashCC


Fig. 13. Plot of CCAs for DTLZ6.
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Fig. 14. Plot of CCAs for DTLZ7.


a novel cooperative coevolutionary MOEA, called NashCC,
which was shown to be able to successfully deal with the ZDT
and DTLZ test functions. We have studied the convergence
rate of our proposed NashCC with respect to that of NSCCGA
and GCEA. The results confirmed that our proposed approach
outperforms the other two CCAs and that the collaboration
framework has a great impact in CCAs. We confirm that the
tendency of CCAs to fall into ESS is also present when dealing
with MOPs and that looking for ideal collaborations is a good
way to alleviate this problem. As part of our future work we
aim to reduce the computational cost of the Nash equilibrium
method required by our algorithm in order to be able to scale
it to more objectives.
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