
A Boundary Search based ACO Algorithm
Coupled with Stochastic Ranking

Guillermo Leguizamón and Carlos A. Coello Coello

Abstract— The Ant Colony Optimization metaheuristic has
dramatically evolved in the last years. The area of continuos
optimization has recently received more attention from the
research community working with the ACO metaheuristic. In
this paper we present a boundary search based ACO algorithm
for solving nonlinear constrained optimization problems. The
aim of this work is twofold. Firstly, we present a modified search
engine which implements a boundary search approach based on
a recently proposed ACO metaheuristic for continuos problems.
Secondly, we propose the incorporation of the stochastic ranking
technique to deal with feasible and infeasible solutions during
the search which focuses on the boundary region. In our
experimental study we compare the overall performance of the
proposed ACO algorithm by including two different comple-
mentary constraint-handling techniques: a penalty function and
stochastic ranking. In addition, we include in our comparison of
results the Stochastic Ranking algorithm, which was originally
implemented using an Evolution Strategy as its search engine.

I. I NTRODUCTION

The Ant Colony Optimization (ACO) metaheuristic has
been extensively applied to solve plenty of combinatorial
optimization problems. The ACO metaheuristic (Corne et
al. [4], Dorigo and Stüztle [5]) includes a variety of algo-
rithms derived from the behavior of colonies of real ants.
These algorithms involve a colony of artificial ants that aimto
find good solutions to a problem by cooperating among them.
The cooperation is indirectly achieved bystigmergy, that
is, by indirect communication mediated by the environment
which is usually represented as a construction graph.

One of the first ACO extensions to operate on continuous
spaces can be found in Bilchev et al. [2] in which the whole
search space is discretized in order to represent a finite
number of search directions. This approach was validated
using a small set of constrained problems. Since then,
several other researchers have proposed schemes to apply the
ACO algorithm to continuous search spaces. However, all of
these approaches only deal with unconstrained optimization
problems. For example, Ling et al. [17], Lei et al. [14], [15],
Dreo et al. [6], Monmarché et al. [19], and Pourtakdoust et al.
[20]. More recently, an extension of the ACO metaheuristic
to continuous domains and applied to continuous and mixed
discrete-continuous problems is presented by K. Socha [23].
This proposal follows the original conception of the ACO
approach in regards of the way the solutions are built, i.e.,

Guillermo Leguizamón is with LIDIC (Research Group). Universidad
Nacional de San Luis - Ej. de Los Andes 950 - (D5700HHW) San Luis,
ARGENTINA. (email: legui@unsl.edu.ar). Carlos A. Coello Coello is with
CINVESTAV-IPN (Evolutionary Computation Group), Departamento de
Computación, Av. IPN No. 2508, Col. San Pedro Zacatenco, Mexico D.F.
07300, MEXICO. (email: ccoello@cs.cinvestav.mx).

incrementally. The solutions are built by using a probability
density distribution (PDF). At stepi each ant generates a
random number according to a mixture of normal kernels
of PDFsP i(xi) defined on the intervalai ≤ xi ≤ bi, i.e.,
a multimodal PDF aimed at considering several subregions
of that interval at the same time. In another recent work by
Socha et al. [24], the former ideas proposed by Socha [23]
regarding continuous domains are extensively presented and
details concerning implementation issues are given through
the ACOR algorithm. The experimental study presented by
the authors considers a test suite of several unconstrained
continuous optimization problems. In addition, an analysis
of the behavior of ACOR is presented regarding the impact
of its main parameters on the algorithm’s performance:q
and ξ. In Leguizamón et al. [12] a new constraint-handling
technique is implemented in an ACO algorithm for continu-
ous problems based on the former work by Bilchev et al. [2].
Leguizamón et al.’s work introduces a more general boundary
approach for solving nonlinear constrained problems which
was presented as a possible extension of the ACO algo-
rithms for continuous search spaces. The boundary approach
under the ACO metaheuristic showed to be competitive
with respect to other state-of-the-art algorithm when dealing
with nonlinear problems having active constraints. It is also
worth noting that the boundary approach has been studied
from the evolutionary computation perspective. For example,
in Michalewicz et al. [18] the efficiency of this approach
is shown by using two constrained optimization problems:
Keane’s function (also known asG02) [9] and another
function with one equality constraint (also known asG03).
For these cases, it was possible to definead hocgenetic op-
erators that fit perfectly the boundary of the feasible region.
However, this sort of approach is impractical in an arbitrary
problem with many constraints, and it is therefore necessary
to define a more general approach for boundary search which
can be as robust as possible to deal with different types of
constraints. Similarly, Schoenauer et al. [22] propose some
evolutionary operators capable of exploring a general surface
of dimensionn − 1 (n is the number of variables) for three
test cases: functionG03 and two additional functions which
represent respectively a constrained versions of the two
original (unconstrained) functions proposed by Baluja [1].
On the other hand, Wu et al. [25] proposed a GA for
the optimization of a water distribution system, which is
a highly constrained optimization problem. The proposed
approach co-evolves and self-adapts two penalty factors in
order to guide and preserve the search towards the boundary
of the feasible search space. However, Wu et al.’s work

does not involve any explicit boundary operator. Based on
the proposal of Socha et al. [24], Leguizamón et al. [13]
adopted the algorithm ACOR, one of the more recent ACO
extensions for continuous search spaces and showed how the
boundary approach could be included in a more advanced
search engine based on the ACO metaheuristic. In that work,
a new algorithm called ACO(S)

BR
is compared against ACO(B)

BR

(see Leguizamón et al. [11]), a boundary search based ACO
algorithm designed according the former ideas by Bilchev et
al. [2]. The new algorithm ACO(S)

BR
was found to be a suitable

alternative when facing constrained optimization problems.
However, both algorithms, ACO(B)

BR
and ACO(S)

BR
, include a

penalty function as their complementary technique adoptedto
handle the problem’s constraints. Although penalty functions
are a suitable approach, they usually need an extensive
preliminary experimental study to tune the values of their
penalty factors. Regarding this situation, we propose in this
paper the use of the stochastic ranking approach [21] in order
to avoid the use of penalty factors as well as to achieve an
improved performance of the ACO algorithm when dealing
with constrained problems.

The remainder of this paper is organized as follows.
Section II describes the formulation of the general nonlinear
optimization problems and some features of these problems
that could be exploited when some conditions are met. In
addition, a general formulation of the boundary approach
(see [12], [11]) is presented. The ACO algorithm ACO(B)

BR

(based on ACOR) which implements the boundary approach
is presented in Section III. On the other hand, Section IV
presents ACO(SR)

BR
, which is our proposed algorithm for

boundary search incorporationg stochastic ranking as its
complementary constraint-handling technique. In addition,
the ACO(Pen)

BR
is also presented. The test problems and

experimental results are presented and analyzed in SectionV.
Finally, our conclusions and some possible paths for future
research are provided in Section VI.

II. T HE BOUNDARY SEARCH APPROACH

We are interested in solving the general nonlinear pro-
gramming problem whose aim is to findx so as to optimize:

f(x) x = (x1, x2, ..., xn) ∈ R
n

where x ∈ F ⊂ S. The setS ⊂ R
n defines the search

space and setsF ⊆ S andU = S − F define thefeasible
and infeasiblesearch spaces, respectively. The search space
S is defined as ann-dimensional rectangle inRn (domains
of variables defined by their lower and upper bounds):

l(i) ≤ xi ≤ u(i) for 1 ≤ i ≤ n

whereas the feasible setF is defined by the intersection of
S and a set of additionalm ≥ 0 constraints:

gj ≤ 0, for j = 1, . . . , q and
hj = 0, for j = q + 1, . . . , m.

At any pointx ∈ F , the constraintsgk that satisfygk(x) =
0 are called the active constraints atx. Equality constraints

hj are active at all points ofF . It is worth remarking
that plenty of problems formulated as above include active
constraints at the best known or optimal solutions. For
example, for problems with at least one equality constraint
hj , the corresponding optimal solution will lie on the region
defined byhj(x) = 0. Furthermore, for many problems, the
best solutions may lie on the boundary between the feasible
and infeasible search space of some inequality constrains,
i.e., the region defined bygj(x) = 0. When those conditions
are met for a particular problem, the design ofad hocoper-
ators or approaches that explore the search space focusing
on the boundary region (according either to the equality
and/or inequality constraints) can be a suitable alternative
for including in a specific search engine or metaheuristic.

In the following we first explain how the boundary region
can be approached given a specific search space; more pre-
cisely, then-dimensional spaceRn. Then, we also describe
the manner in which this search space can be explored
assuming a hypothetical search engine and exploration opera-
tors. Afterwards, we present in detail the proposed technique
that takes advantage of the boundary approach to explore
some specific regions of the boundary of the feasible search
space.

A. Approaching the boundary

We describe here a general boundary approach (proposed
in [12], [11]) which is based on the notion that each pointb

of the boundary region can be represented by means of two
different pointsx andy, wherex is some feasible point and
y is some infeasible one, i.e.,(x,y) can represent one point
lying on the boundary by applying a “binary search” on the
straight line connecting the pointsx andy (when considering
an equality constraint,z ∈ F iff h(z) ≤ 0; otherwise,z ∈
U). Figure 1 shows a hypothetical search space including
the feasible (shadowed area) and infeasible regions. We can
identify four points lying on the boundaryb1, b2, b3, and
b4 which are respectively obtained from(x1,y1), (x2,y2),
(x3,y3), and(x4,y4).

x1

x2

x3

x4

y1

y2

y3

y4

b1

b2

b3

b4

p1

p2

(1)

(2)

(3)

U

F

Fig. 1. Given one feasible and one infeasible point, the corresponding
point lying on the boundary can be easily reached by using a simple binary
search. In this way, each point on the boundary can be reachedfrom at least
a pair of points(x,y) with x ∈ F andy ∈ U .

The binary search applied to each pair of points(x,y) is

achieved following the steps described in function BS (see
Algorithm 1). For example, a possible application of this
process can be seen in Figure 1 where we adopt the pair of
points (x3,y3) from which we obtain the pointb3, which
lies on the boundary. The first step (labeled(1)) indicates
that the first mid point found is infeasible. Consequently,
the left side of the straight line (x3) is moved to point
p1. In the next step (labeled(2)) we consider the points
p1 and y3 as extreme points for which the mid point is
the feasible pointp2. Thus, the new feasible point or right
extreme of the line is now the pointp2. Finally, the last
point generated isb3 which can be either lying on or
close to the boundary. Condition ((distto boundary(m) ≤ δ)
AND Feasible(m)) defines a threshold to stop the process
of approaching the boundary. However, the second part of
this condition (i.e., “Feasible(m)”) it is only applied when
considering an inequality constraint. In this way, function
BS guarantees thatm is in the feasible side regarding the
corresponding inequality constraint under consideration. It is
worth noticing that parametersx andy are local to BS, i.e.,
function BS behaves as a decoder of the pair of feasible and
infeasible points passed as parameters. Therefore, the number
of “mid pointsbetween”x and y before approaching the
boundary within a distance less thatδ is given by log2(r)
wherer = (dist(x,y)))/δ. Thus, the closer to the boundary,
the largerlog2(r).

Algorithm 1 BS(x,y: real vector): real vector
1: m: real vector;
2: repeat
3: m = mid point between(x,y);
4: if Is on Boundary(m) then
5: returnm; { m is a point lying on the boundary}
6: end if
7: if Feasible(m) then
8: x = m;
9: else

10: y = m;
11: end if
12: until (dist to boundary(m)≤ δ) AND (Feasible(m));
13: returnm; {The closest point to the boundary according

to δ }

B. Exploring the boundary region

So far, we have shown how a point lying on the boundary
b can be represented through a pair of points(x,y) with
x ∈ F andy ∈ U . Now we need to consider the exploration
of the search space which, according to our proposal, can
be defined asG = {(x,y)|x ∈ F ⊂ R

n ∧ y ∈ U ⊂
R

n}, that is, the set of pairs of points(x,y) as described
above. This space can be considered agenotypic spaceas
known in evolutionary computation. Since each point from
G represents a point on the boundary, it is necessary the
application of the decoder represented by functionBS (see
Algorithm 1) to obtain the correspondingphenotype, i.e.,

the “gene expression” of(x,y) ∈ G. Thus, the setB =
{b|b = BS(x,y)} is conformed by the set solutions on the
boundary. Each solution in this set is evaluated by function
φ, which represents a measure of solutions quality and gives
as a result an element from the setE = {e ∈ R|e = φ(b)}.

From the above description, it is clear that the search
engine must deal with the exploration of spaceG. Figure 2
shows a set of hypothetical points inG, a problem constraint
and the corresponding points on the boundary. In the third
pair of points (from left to right) we represent a possible
exploration region forx3 andy3 (it should be noticed that
the shape and size of the exploration area could vary when
considering different search engines and/or operators). In this
case, the projection of the extreme sides of the exploration
areas on the boundary (zig-zag line), represents the covered
area on the boundary of pointsx3 and y3 regarding a
possible exploration area. For example, from the perspective

(*)

(**)

x1

x2

x3

x4

y1

y2

y3

y4

U

F

Fig. 2. A set of hypothetical points inG, a problem constraint and
the corresponding points on the boundary where (*) indicates the possible
exploration regions forx3 and y3 and (**) indicates the corresponding
points on the boundary region based on possible perturbations of x3 and
y3.

of evolutionary algorithms, we can create a population of
individuals where each one of them represents an element of
setG. Therefore, suitable operators to be chosen could be any
crossover and/or mutation operators appropriate for floating-
point representations. A similar approach can be adopted if
using another search engine suitable for exploring continuous
spaces, e.g., particle swarm optimization, differential evolu-
tion, immune systems, etc. However, from the perspective of
the ACO metaheuristic the possibilities are more limited. In
this work we will show at least two alternatives for the ACO
metaheuristic in the following sections.

C. Focusing on the problem constraints

It is important to remember that we are assuming active
constraints at the global optimum to proceed with this
method where the search is always performed “indirectly”
on the boundary of the space defined by some of the
problem constraints. The simplest case to apply the boundary
approach is when the problem has only one constraint which
could be either an equality or an inequality constraint. Letus
suppose that the problem includes only one constraint, let us

sayh, then the search engine should proceed by generating
a set of elements of setG. After that, the exploration ofG
by the search engine will indirectly and exclusively explore
the region defined byh(b), i.e., all solutions generated will
be feasible without requiring anyad-hocboundary operator.

On the other hand, when facing the typical situation in
which we have more than one constraint, it is necessary
to define an appropriate policy to explore the boundary as
efficiently as possible. One possibility is to explore in turn the
boundary of each constraint. The selection of the constraints
to search for can be determined using different methods. If
the problem includes at least one equality constraint, such
equality constraints are the most appropriate candidates to
be selected first. However, a possible search engine could
remain focused on a particular constraint over the whole run
or may move from one problem constraint to another depend-
ing on a particular condition. In our previous work [12], we
defined a simple condition based on a parameter calledtc
which counts the number of iterations the algorithm focuses
in a particular constraint. However, more complex conditions
could be considered, for example, taking into account the
population diversity or the degree in which some problem
constraints are being violated. In this work, as will be
explained in a further section, we adopted the parametertc
to control the time when the algorithm should focus on a
different problem constraint.

F

U

g1

g2
g3

Fig. 3. Feasible search space defined by3 inequality constraints. The
search proceeds on the boundary of constraintg1.

As an illustrative example, Figure 3 shows a hypothetical
search space determined by three inequality constraints. Let’s
suppose that the search proceeds starting on constraintg1. If
the visited points are on the boundary ofF , these points
will also satisfy the remaining problem constraints (filled
line in Figure 3). However, the exploration of the boundary
with respect to constraintg1 will eventually produce points
violating constraintsg2 andg3 (dotted line in 3). One of the
simplest methods to deal with this situation is the application
of a penalty function for the infeasible solutions. In addition,
if g1 is active at the global optimum, the method will focus
the search on the boundary in order to restrict the explored
regions of the whole search space. Note however, that other
(more sophisticated) constraint-handling techniques canalso
be adopted. For example, it could be considered the inclu-
sion of the Stochastic Ranking approach [21] to make the

comparisons among the solutions generated [10] and thus
avoid the inclusion and tuning of any penalty factor when
evaluating a solution.

III. T HE PROPOSED ALGORITHMACO(S)
BR

FOR

BOUNDARY APPROACH

In this section we describe the design of the ACO(S)
BR

algorithm which implements the boundary search. The search
engine involved in ACO(S)

BR
is based on the ACOR algorithm

presented in [24]. Before explaining the implementation of
ACO(S)

BR
, we first describe briefly the main characteristics of

ACOR as it was proposed and tested in [24] on unconstrained
continuous optimization benchmark problems.

l(i) u(i)

p(xi|sp)

xi|sp

Target Gaussian kernel
Individual Gaussian functions

Fig. 4. (filled line): a continuous probability density function p(x|sp)
where xi ∈ [l(i), u(i)], and sp is a partial solution under construction
(see [24] for further details) and (dotted line): a possibleset of three
Gaussian functions to achieve by superposition a Gaussian Kernel which
approximates the corresponding multimodal Gaussian function (fille line).

Taking into account that the ACO metaheuristic works
by incrementally building the solutions according to a bi-
ased (by pheromone trail) probabilistic choice of solutions
components, the ACOR algorithm was designed aiming at
obtaining a set ofprobability density functions(PDFs). Each
PDF is obtained from the search experience and is used to
incrementally build a solutionx ∈ R

n considering in turn
each componentxi (∀i . . . n). Figure 4 (fille line) represents
a hypothetical PDF that could be eventually found during
the search. It can be observed a multimodal PDF used to
obtain a value for the variable on dimensioni ∈ {1, . . . , n}.
To approximate a multimodal PDF that looks like the one in
Figure 4, Socha et al. [24] proposed a Gaussian Kernel which
is defined as a weighted sum of several one-dimensional
Gaussian functiongi

l(x) as follows:

Gi(x) =

k∑

l=1

ωlg
i
l(x) =

k∑

l=1

ωl

1

σi
l

√
2π

e
−

(x−µi
l
)2

2(σi
l
)2 (1)

where i ∈ {1, . . . , n} identifies the number of dimension,
i.e., ACOR uses as many Gaussian kernel PDFs as the
number of dimensions of the problem. In addition,Gi is
parameterized with three vectors:ω, the vector of weights
associated with the individual Gaussian functions;µi, the
vector of means; andσi, the vector of standard deviations.
All these vectors have cardinalityk, which constitutes the
number of Gaussian functions involved. Figure 4 (dotted line)
shows a superposition of three Gaussian functions which

could approximate the hypothetical multimodal Gaussian
function (filled line).

In ACOR, a solution archive calledT is used to keep
track of a number of solutions similarly to the Population
Based ACO (PBACO) proposed by Guntsch et al. [8]. The
cardinality of archiveT is k, that is, the number of kernels
that conform the Gaussian kernel. For each solutionxl ∈ R

n,
ACOR maintains the corresponding values of each problem
dimension, i.e.,x1

l , . . . , x
n
l , and the value of the objective

function f(xl) which are stored satisfying thatf(x1) ≤
· · · ≤ f(xl) ≤ . . . f(xk). On the other hand, the vector
of weightsω should satisfy thatω1 ≥ · · · ≥ ωl ≥ · · · ≥ ωk.

The solutions inT are therefore used to dynamically gen-
erate probability density functions involved in the Gaussian
kernels. More specifically, for obtaining the Gaussian kernel
Gi, the three parametersω, µi, andσi need to be calculated.
Thus, for eachGi, the values of thei-th variable of the
k solutions in T become part of the elements of vector
µi, that is, µi = {µi

1, . . . , µ
i
n} = {xi

1, . . . , x
i
n}. Vector µ

is generated as follows: each solution that is added to the
archiveT is evaluated and ranked (ties are broken randomly).
The solutions inT are stored according to their rank, i.e., the
highest the rank of the solution, the lowest the corresponding
index in T . The weightωl associated to Gaussian function
gi

l is obtained as:

ωl =
1

qk
√

2π
e
− (l−1)2

2q2k2 (2)

with mean 1.0 and standard deviationqk, where q is a
parameter of ACOR which controls the preference of the
ranked solutions. Thus, whenq is small, the best-ranked
solutions are preferred, otherwise, a large value forq implies
a more uniform probability. As mentioned in [24], the
influence of this parameter on ACOR is similar to adjusting
the balance between the iteration-best and the best-so-far
pheromone updates used in traditional ACO algorithms. On
the other hand, each component of the deviation vector
σi = {σi

1, . . . , σ
i
k} is obtained as:

σi
l = ξ

k∑

e=1

|xi
e − xi

l |
k − 1

(3)

where l ∈ {1, . . . , k} is the kernel number with respect to
which the deviation is calculated andξ > 0, which is the
same for all dimensions, has an effect similar to that of the
pheromone evaporation rate in ACO. Thus, the higher the
value ofξ, the lower the convergence speed of the algorithm.

For obtaining a solution component at stepi (in the
construction solution process) it is only necessary to calculate
the l-th component ofσi since the sampling process of
Gaussian kernelGi is accomplished as follows. Given the
elements of vectorω calculated as in Eq. 2, the sampling
is done in two phases: 1) choose one of thek Gaussian
functions ofGi according to the following probability:

pl =
ωl∑k

r=1 ωr

, (4)

and, 2) after functiongi
l has been chosen, a sampling is ac-

complished (perhaps using a random number generator based
on a parameterized normal or an uniform distribution in
conjunction with, for instance, the Box-Muller method [3]).
Since at each step only one Gaussian function is used (let
us saygi

l), it is only neededσi
l instead of the whole vector

σi. The pheromone update is achieved by considering a set
A of the newly generated solutions1. The newT (in the next
algorithm iteration) is obtained asT = rank(T⊕A), i.e., the
old solutions in the archiveT plus the set of newly created
solutionsA are ranked. In other words, the old solutions
compete against the newly generated ones to conform the
updatedT which maintain its cardinality (k) throughout the
whole search process.

To adapt ACOR to deal with constrained problems by im-
plementing the boundary approach described above is rather
straightforward. The proposed algorithm ACO(S)

BR
, instead of

maintaining one archiveT , now maintains two archives for
similar purposes,TF andTU which represent respectively the
points on the feasible and infeasible parts of spaceG. A third
archive,TB, is also considered which is obtained by applying
functionBS the each point fromTF andTU . More precisely,
TB = {be|be = BS(xe,ye), e = 1, . . . , k}. Solutions inTB

are evaluated by means of functionφ. It is worth remarking
that solutions inTB are ranked according to the solution
quality given byφ. Taking into account this ranking, the
solutions inTF andTU are then ranked accordingly.

As in the original ACOR algorithm, vectorω is intended
for sampling the chosen Gaussian function, however, the
situation is different in ACO(S)

BR
since there exist two in-

dependent archivesTF and TU from which the Gaussian
Kernels are built, i.e., to explore the search spaceG, it is
necessary to process both archives from which the solutions
on the boundary are obtained. In addition, we define two
additional structuresAF and AU associated respectively
to archivesTF and TU . These two structures, similarly as
in the original ACOR, represent the newly solutions found
according to the Gaussian kernels fromTF andTU . Table I
represents a general outline of the archivesTF , TU , TB, ω,
and E . The last one is associated toTB and maintains the
value corresponding to the evaluation quality of solution in
TB. It should be noticed thatTB is not used to build any
Gaussian Kernel, however, the ranking of the solution in it
will influence the ranking of solutions inTF andTU , which
clearly influences the generation of new and better quality
solutions in the spaceG.

A general outline of ACO(S)
BR

is presented in Algorithm 2
which displays its main components. In line1, archivesTF

andTU are initialized by randomly generated solutions in the
feasible and infeasible search space regarding the problem
constraint at hand. Similarly, vectorω is initialized according
to Eq. 2 which includes the parametersq andk as explained
above. The main loop includes a call to function “Boundary”,
which is in charge of applying functionBS to each pair of
points respectively fromTF andTU and returns the archive

1SetA represents the set of ants according to Socha et al. [24].

TABLE I

REPRESENTATION OF THEACO(S)
BR

SEARCH SPACE DIVIDED IN FEASIBLE AND INFEASIBLE POINTS

TF

x1 x1
1 ... xi

1 ... xn
1

.

.

.
xl x1

l ... xi
l ... xn

l

.

.

.
xk x1

k ... xi
k ... xn

k

G1
F

Gi
F

Gn
F

TU

y1 y1
1 ... yi

1 ... yn
1

.

.

.
yl y1

l ... yi
l ... yn

l

.

.

.
yk y1

k ... yi
k ... yn

k

G1
U

Gi
U

Gn
U

⇐

ω

ω1

.

.

.
ωl

.

.

.
ωk

TB

b1 b11 . . . bi
1 . . . bn

1
.
.
.

bl b1l . . . bi
l . . . bn

l

.

.

.
bk b1k . . . bi

k . . . bn
k

E
φ(b1)

.

.

.
φ(bl)

.

.

.
φ(bk)

TB. Then, function “BuildSols” is in charge of generating
new solutions through the Gaussian kernel obtained from
the corresponding archives (lines4 and 5). In order to
further obtainAB, i.e., the newly generated solutions on the
boundary, function “Boundary” is then applied toAF and
AU . After that, TB plus AB are ranked according to the
solutions quality given by functionφ, and the best firstk
solutions in the ranking will be now part of the archiveTB

which is used as a reference to get the newTF and TU .
Let us say that the new set of points on the boundary is
TB = {bi1 , . . . , bik

} where bir comes either fromTB or
AB, therefore the newTF andTU are obtained respectively
from TF ⊕AF andTU ⊕AU taking into account the ranked
solutions in the newTB. This is precisely what the function
“Update” does.

Algorithm 2 A general outline of the ACO(S)
BR

algorithm

1: init(TF ,TU , ω);
2: for t in 1 : Tmax do
3: TB =Boundary(TF, TU)
4: AF =BuildSols(TF);
5: AU =BuildSols(TU);
6: AB =Boundary(AF , AU)
7: TB =Firstk(Sort(TB ⊕ AB))
8: Update(TF ,TU ,E); { According to the newTB}
9: end for

IV. T HE ACO(Pen)
BR

AND ACO(SR)
BR

ALGORITHMS

Based on the above modifications for the original ACOR

we define here two algorithms, ACO(Pen)
BR

and ACO(SR)
BR

.
The name ACO(Pen)

BR
corresponds to the algorithm called

ACO(S)
BR

2 which was proposed and studied in [13]. The
second algorithm, which constitutes the main proposal ot
this work, is called here ACO(SR)

BR
where the complemen-

tary constraint-handling technique is the stochastic ranking
approach proposed by Runnarson et al. [21]. The main
characteristic of ACO(Pen)

BR
is that the functionφ is used to

find the values in the structureE (see Table I) must include
a penalty factor in order to evaluate the solutions on the
boundary (structureTB). However, it is well known that
the main drawback of this technique is the problem to find
the most suitable penalty function and/or the corresponding
penalty factors involved. In Section V, we will show the
penalty function used and the corresponding penalty fac-
tors which have been extensively studied in Leguizamón
et al. [12], [11], and [13]. For the ACO(SR)

BR
algorithm,

the mechanism is slightly different, nevertheless, its imple-
mentation is straightforward. First of all, it is necessatyto
include another structure associated to archiveTB to keep
the extent of violation of the problem constraints. Let us
call this new structureV = {ν(b1), . . . , ν(bl), . . . , ν(bk)},
where ν is a function that returns precisely the extent of
violations of the problem constraints given byν(b) =∑q

j=1 max{0, gj(b)}2 +
∑m

j=q+1 |hj(b)|2 (similarly as de-
fined in [21], however, any other suitable function can be
applied) andφ = f , i.e., the objective function. After that,
function “Sort” (line 7, Algorithm 2) should be accordingly
changed. Following the proposal of Runarsson et al., the for-
mer function “Sort” which implements any classical sorting
algorithm, is modified now in the way that implements a
sort-like procedure (see Algorithm 3) to proceed with the

2We change the name here since both algorithms are based on Socha
et al.’s proposal where the difference is in the complementary constraint-
handling technique.

stochastic ranking of the newly generated solutions. It should

Algorithm 3 A general outline of the stochastic ranking al-
gorithm usign a bubble-sort like algorithm as defined in [21].
Pf represents the probability of using only the objective
function for comparisons in ranking in infeasible regions of
the search space for which a value of0.4 < Pf < 0.5
was reported as the most appropiate. ParametersN and
λ represents respectively the maximum number of sweeps
and the number of solutions that are ranked by comparing
adjacent solutions in at leastλ sweeps, andrnd ∈ U(0, 1).

1: Ij = j, ∀j{1, . . . , λ}
2: for i in 1 : N do
3: for j in 1 : λ − 1 do
4: if ((ν(xIj

) == ν(xIj+1)||(rnd < Pf)) then
5: if (ν(xIj

) > ν(xIj+1)) then
6: swap(Ij , Ij+1)
7: end if
8: else
9: if (ν(xIj

) > ν(xIj+1) then
10: swap(Ij , Ij+1)
11: end if
12: end if
13: end for
14: if no swap donethen
15: break
16: end if
17: end for

be noticed that the indexesIj and Ij+1 in function “swap”
point to the corresponding structures (e.g.,TB or other) to
produce the swaps when necessary. Runarsson et al. suggest
the settingN = λ for the number of solutions adjacent to be
compared. In our case,λ indicated the number of solutions
in the corresponding structure to be sorted. Thus, if|TB| = k
and|AB| = Na, thenλ = k+Na (see line8 in Algorithm 3).

V. EXPERIMENTS AND RESULTS

The main objective of our experimental study is to analyze
the quality of results as well as the performance of ACO(Pen)

BR

and ACO(SR)
BR

regarding the number of feasible solutions
found. In addition, we make a comparison with one of
these two algorithms and the original stochastic ranking
approach, as described in [21] (using an evolution strategy
as its search engine). Before presenting the results we will
describe some common characteristics of ACO(Pen)

BR
and

ACO(SR)
BR

regarding their application to the different test
cases. Indeed, ACO(Pen)

BR
and ACO(SR)

BR
require minimum

changes when applied to the different test cases considered:
the objective function, number of variables, range of each
variable, and constraints. However, the policy to determine
on which constraint the search should focus needs to be
considered when a problem has more than one constraint: a)
we can focus the search on all the constraints, but considering
one constraint in turn by controlling the change through
a particular condition (Sall), b) similar to the previous

alternative but considering only the active constraints (Sact),
or c) just considering one constraint during the whole run (Sc

where c ∈ {1, . . . , m}). These three policies to deal with
the way of approaching to the boundary were extensively
studied in Leguizamón et al. [12], [11] for the algorithm
ACO(B)

BR
. From these earlier results, we adopt the so called

Sact policy, which showed the best performance in all the
test cases studied. However, the other policies are also a
valuable and efficient alternative when no information is
available with respect to the possible active constraints.In
our experiments, the condition to produce a change on the
search from one constraint to another is given by an elapsed
number of iterations and is represented by the parametertc
as explained in Section II-C. In addition, for problems with
more than one constraint, we incorporate a penalty function
for algorithm ACO(Pen)

BR
of the form:

φ(x, µ) = f(x)+µ(

q∑

j=1

max{0, gj(x)}+

m∑

j=q+1

|hj(x)|) (5)

whereµ is a fixed penalty factor. Also, it is worth remarking
that each solution is always lying on the boundary of the
feasible space corresponding to the constraint under consid-
eration. This sort of penalty function was previously adopted
in [12], [11] due to its simplicity, since our interest was to
assess the advantages of the boundary approach proposed.
However, other constraint-handling techniques are evidently
possible as the stochastic ranking approach proposed in this
article (algorithm ACO(SR)

BR
). The penalty factorsµ used in

ACO(Pen)
BR

were experimentally determined for each partic-
ular problem (see [13]) and are shown later. All the algo-
rithms considered in this experimental study (i.e., ACO(Pen)

BR
,

ACO(SR)
BR

, and SR) were executed30 times with different
seeds for each parameter combination. The problems studied
include a set of well-known test cases traditionally adopted
in the specialized literature:G01 to G07, G09, G10, G11,
G13, G14, G15, G17, G21, G23, G24 [16], andG25 [7].
At earlier experiments with ACO(Pen)

BR
in [13], we initially

chose similar parameter settings as those used in [24] where
Na = 2, k = 50, ξ = 0.85, and q ∈ {0.0001, 01}; where
the higher value for parameterq was chosen for multimodal
functions. The preliminary results from ACO(Pen)

BR
by using

the above parameter setting was rather discouraging since the
algorithm was not capable of achieving any feasible solution
for all the test problems adopted. After that, we considered
a larger number of ants (i.e.,Na ≫ 2) for generating
a larger sampling of solutions according to thek = 50
Gaussian kernels. More specifically, we setNa = 50 which
was the setting for the number of ants used in ACO(Pen)

BR

and ACO(SR)
BR

in the experiments presented in this section.
The penalty factors involved in functionφ (Eq. 5) for each
problem using ACO(Pen)

BR
were as follows:G01 (µ = 1000),

G04 (µ = 5000000), G05 (µ = 10), G06 (µ = 1011), G07
(µ = 20000), G09 (µ = 200000), G10 (µ = 20000000, G13
(µ = 0.1), G14 (µ = 150), G15 (µ = 10), G17 (µ = 1000),
G21 (µ = 3000), G23 (µ = 1000), andG24 (µ = 10000).

TABLE II

RESULTS FROMACO(Pen)
BR

AND ACO(SR)
BR

ACCORDING TO THE PARAMETER SETTINGq = 0.0001 AND ξ = 0.85 USED FOR SOME TEST CASES IN[24].

THE REMAINING PARAMETER VALUES USED IN THE EXPERIMENT AREk = 50, Na = 50, AND Tmax = 10000. THE PARAMETER SETTING FOR

ACO(SR)
BR

WAS Pf = 0.45 FOR ALL PROBLEMS, EXCEPT FOR PROBLEMG23 FOR WHICHPf = 0.2.

ACO(SR)
BR

ACO(Pen)
BR

Prob. BF Mean Worst #Fea BF Mean Worst #Fea
G01 -15.000 (*) -15.000 -15.000 30 -15.000 (*) -15.000 -15.000 30
G04 -30665.539 (*) -30665.539 -30665.539 30 -30665.539 (*) -30665.539 -30665.539 30
G05 5126.49(*) 5127.8387 5178.7558 30 5126.5083 5143.6240 5159.6303 27
G06 - 6961.814 (*) -6961.813 -6961.8129 30 -6961.814 (*) -6961.8137 -6961.813 30
G07 24.306 (*) 24.537 24.832 30 24.306 (*) 24.530 24.985 25
G09 680.630 (*) 680.630 680.630 30 680.630 (*) 680.630 680.630 30
G10 7049.3261(+) 7155.9941 7368.4658 30 7058.3559 7208.0776 7506.7651 28
G13 0.05394 (*) 0.054003 0.054894 30 0.053951 0.054112 0.054637 23
G14 -47.76489(*) -47.683451 -47.451402 30 -47.624847 -45.268413 -41.556510 28
G15 961.7150 (*) 961.7150 961.7150 30 961.71515 961.71496 961.71520 30
G17 8854.3105(+) 8963.7792 8963.7792 16 8871.682 9029.559 9212.925 29
G21 193.72828(+) 194.1571 194.6119 20 193.79061 193.83093 193.90968 6
G23 -303.5474 22.5463 170.625 17 -300.80877 -49.064338 130.72998 4
G24 5.50801 (*) 5.50801 5.50801 30 5.50801 (*) 5.50801 5.50801 30

All of these values were set based on our previous work [12]
in which similar values were adopted for the so called
ACO(B)

BR
. On the other hand, for ACO(SR)

BR
we setPf = 0.45

and N = λ. The whole experimental study was performed
on a Laptop with an IntelR© PentiumR© M Processor 725,
running at 1.6 Ghz, and with 512 Mbytes of RAM. The
ACO(B)

BR
algorithm was implemented in C Language running

under Suse-Linux. It is important to remark that the test suite
considered includes problems with only one constraint. For
these problems (G02,3 G03, G11, andG25), the application
of either ACO(Pen)

BR
or ACO(SR)

BR
gives the same results. The

reason is because when a problem has only one constraint,
the boundary approach generates only feasible solutions, i.e.,
there is no need to use a complementary constraint-handling
technique. Thus, both ACO approaches still have the same
performance, because their search engine is exactly the same.
However, we will further show the results for these problems
when comparing the performance of ACO(SR)

BR
with SR.

Table II displays the results from algorithms ACO(SR)
BR

and ACO(Pen)
BR

for the test problems with more than one
constraint. The columns show respectively the best found
(BF), mean (Mean), and worst (Worst) values and the number
of feasible solutions found out of30 independent runs.
The (*) in column BF means that the algorithm achieved
the best known or optimal value whereas (+) means the
the best found value is very close to the best known or
optimal value. In column BF some values are in boldface
indicating that the corresponding algorithm found the best
value. It can be observed that forG01, G04, G06, G07,
G09, G13, G15, andG25 the two algorithms behave very
similarly regarding quality of solutions. However, the number
of feasible solutions found is always30 for ACO(SR)

BR
. On the

other hand, we can observe that ACO(SR)
BR

achieved a better
performance for problemsG05, G10, G14, G17, G21, and
G23, considering both, the quality of results and number
of feasible solutions found. It is important to remark that

3We considered this problem as having one constraint.

TABLE III

COMPARISON OFACO(SR)
BR

WITH RESPECT TOSTOCHASTICRANKING .

FOR ALL PROBLEMS AND BOTH ALGORITHMS COMPARED, WE SET

Pf = 0.45 EXCEPT FORG23 FOR WHICHPf = 0.2. NUMBERS IN

BOLDFACE INDICATE WHICH ALGORITHM FOUND THE BEST VALUE.

ACO(SR)
BR

SR
Prob. Opt BF #Fea BF #Fea
G02 0.803619 0.803619 30 0.803515 30
G10 7049.248 7049.361 30 7049.331 30
G14 -47.7648 -47.7648 30 -42.5805 30
G17 8853.5396 8854.3105 16 8856.1360 30
G21 193.7245 193.72828 20 NA NA
G23 -400.055 -303.5474 17 -46.047 2

for problem G23, we usedPf = 0.2 in order to obtain
feasible solutions, otherwise (withPf = 0.45), ACO(SR)

BR

was not able to find any feasible solutions. Finally, Table III
shows the results from ACO(SR)

BR
and SR for some problems.

The remaining problems considered are not shown since both
algorithms perform similarly, including those problems with
only one constraint. However, for problemsG02, G10, G14,
G17, G21, andG24 these two algorithms behave differently.
For G02, ACO(SR)

BR
found the best known value for this

problem, however, forG10, SR found a slightly better value
than ACO(SR)

BR
. For problemsG14, G21, andG23, the results

shows a more clear difference between these two algorithms
where ACO(SR)

BR
clearly outperforms SR (it must be noticed

that we set for ACO(SR)
BR

and SR,Pf = 0.45 except forG23
for which Pf = 0.2)

VI. D ISCUSSION

In this paper, we presented an alternative ACO algorithm
(ACO(SR)

BR
) with a a new search engine for implementing the

boundary search approach. The search engine is an adapta-
tion of a recent proposal for continuous problems (ACOR).
The new algorithm, called ACO(SR)

BR
includes stochastic

ranking as a complementary mechanism for problems with
more than one constraint. For testing ACO(SR)

BR
, we have

also used a version with a penalty function (ACO(Pen)
BR

). The
results showed a better performance of ACO(SR)

BR
with respect

to ACO(Pen)
BR

, specially regarding the number of feasible
solutions. In addition, the overall performance of ACO(SR)

BR

was compared to SR, showing the potential of this method
as an alternative or complementary approach for constrained
optimization problems. Future works include the use of a
hybrid version of ACO(SR)

BR
with local search, e.g., by doing

the main exploration onG and a complementary exploration
on B. In addition, we are also interested in the design
of a more general approach which includes the boundary
approach as a component that can be triggered when certain
conditions are met.

ACKNOWLEDGMENT

The second author gratefully acknowledges support from
CONACyT project no. 42435-Y.

REFERENCES

[1] S. Baluja. An empirical comparison of seven iterative and evolutionary
function optimization heuristics. Technical Report CMU-CS-95-193,
School of Computer Science, Carnegie Mellon University, 1995.

[2] G. Bilchev and I. C. Parmee. The ant colony metaphor for searching
continuous design spaces.Lecture Notes in Computer Science, 993:25–
39, 1995.

[3] G. E. P. Box and M. E. Muller. A note on the generation of random
normal deviates.Annals of Mathematical Statistics, pages 610–611,
1958.

[4] D. Corne, M. Dorigo, and F. Glover, editors.New Ideas in Optimiza-
tion. McGraw-Hill International, 1999.

[5] M. Dorigo and T. Stützle.Ant Colony Optimization. Mit-Press, 2004.
[6] J. Dréo and P. Siarry. A new ant colony algorithm using the

heterarchical concept aimed at optimization of multiminima contin-
uous functions. In M. Dorigo et al., editor,ANTS, pages 216–221,
Heidelberg, 2002. Springer-Verlag Berlin.

[7] Christodoulos A. Floudas and P. M. Pardalos.A collection of test
problems for constrained global optimization algorithms, volume 455.
Springer-Verlag Inc., New York, NY, USA, 1990.

[8] Michael Guntsch and Martin Middendorf. A population based ap-
proach for aco. InEvoWorkshops, pages 72–81, 2002.

[9] Andy Keane. Genetic algorithms digest, v8n16, 1994.
[10] G. Leguizamón and C. Coello Coello. A boundary ACO algorithm

with stochastic ranking. (In preparation).
[11] G. Leguizamón and C. Coello Coello. Boundary search for constrained

numerical optimization in ACO algorithms (an extended version
of [12]). (Submitted).

[12] G. Leguizamón and C. Coello Coello. Boundary Search for Con-
strained Numerical Optimization Problems in ACO algorithms. In
Marco Dorigo, Luca Maria Gambardella, Mauro Birattari, Alcherio
Martinoli, Riccardo Poli, and Thomas Stützle, editors,Ant Colony Op-
timization and Swarm Intelligence, pages 108–119. Springer. Lecture
Notes in Computer Science Vol. 4150, September 2006.

[13] G. Leguizamón and C. Coello Coello. An Advanced ACO Algorithm
Implementing Boundary Search for Constrained Numerical Optimiza-
tion Problems. Technical Report EVOCINV-01-2007, Evolutionary
Computation Group (EVOCINV), Computer Science Department,
CINVESTAV-IPN, http://delta.cs.cinvestav.mx/˜ccoello/2007.html,
2007.

[14] W. Lei and W. Qidi. Ant system algorithm for optimization in
continuous space. InProceedings of the 2001 IEEE International
Conference on Control Applications, pages 395–400, Mexico City,
Mexico, September 2001.

[15] W. Lei and W. Qidi. Further example study on ant system algorithm
based continuous space optimization. InProceedings of the 4th

Congress on Intelligent and Automation, pages 2541–2545, Shangai,
P.R. China, 10-14 June 2002.

[16] J. J. Liang, T. P. Runarsson, E. Mezura-Montes, M. Clerc, P. N.
Suganthan, C. Coello Coello, and K. Deb. Problem Definitionsand
Evaluation Criteria for the CEC. Technical report, SpecialSession on
Constrained Real-Parameter Optimization, School of Electrical and
Electronic Engineering Nanyang Technological University, available at
http://www.ntu.edu.sg/home5/lian0012/cec2006/technical report.pdf,
Singapore, 2006.

[17] Chen Ling, Sheng Jie, Qin Ling, and Chen Hongjian. A method
for solving optimization problems in continuous space using ant
colony algorithm. In Marco Dorigo, Gianni Di Caro, and Michael
Sampels, editors,Proceedings of the Third International Workshop,
(ANTS’2002), volume 2463 ofLecture Notes in Computer Science,
pages 288–289. Springer Verlag, Brussels, Belgium.

[18] Zbigniew Michalewicz, Girish Nazhiyath, and Maciej Michalewicz. A
note on usefulness of geometrical crossover for numerical optimization
problems. In Lawrence J. Fogel, Peter J. Angeline, and Thomas
Bäck, editors,Evolutionary Programming V: Proc. of the Fifth Annual
Conf. on Evolutionary Programming, pages 305–311, Cambridge, MA,
1996. MIT Press.

[19] N. Monmarché, G. Venturini, and M. Slimane. On how pachycondyla
apicalis ants suggest a new search algoritm.Future Generation
Computer Systems, 16:937–946, 2000.

[20] Seid H. Pourtakdoust and Hadi Nobahari. An extension ofant colony
systems to continuos optimization problems. In M. Dorigo, M. Birat-
tari, C. Blum, L. M. Gambardella, F. Mondada, and T. Stützle, editors,
Ant Colony Optimization and Swarm Intelligence, 4th International
Workshop, ANTS 2004, pages 294–301. Springer-Verlag.

[21] Thomas P. Runarsson and Xin Yao. Stochastic ranking forconstrained
evolutionary optimization.IEEE Transactions on Evolutionary Com-
putation, 4(3):284–294, 2000.

[22] M. Schoenauer and Z. Michalewicz. Evolutionary computation at
the edge of feasibility. In Hans-Michael Voigt, Werner Ebeling, Ingo
Rechenberg, and Hans-Paul Schwefel, editors,Parallel Problem Solv-
ing from Nature – PPSN IV, pages 245–254, Berlin, 1996. Springer.

[23] Krzysztof Socha. ACO for continuos and mixed-variableoptimization.
In M. Dorigo, M. Birattari, C. Blum, L. M. Gambardella, F. Mon-
dada, and T. Stützle, editors,Ant Colony Optimization and Swarm
Intelligence, 4th International Workshop, ANTS 2004, pages 25–36.
Springer-Verlag.

[24] Krzysztof Socha and Marco Dorigo. Ant colony optimization for
continuous domains. European Journal of Operational Research,
2007. In press.

[25] Z.Y. Wu and A.R. Simpson. A self-adaptive boundary search genetic
algorithm and its application to water distribution systems. Journal of
Hidraulic Research, 40(2):191–203, 2002.

