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Abstract— The Ant Colony Optimization metaheuristic has incrementally. The solutions are built by using a prob#pili
dramatically evolved in the last years. The area of continus  density distribution (PDF). At step each ant generates a
optimization has recently received more attention from the random number according to a mixture of normal kernels
research community working with the ACO metaheuristic. In of PDFs Pi(z;) defined on the intervat; < z; < by, i.e.,

this paper we present a boundary search based ACO algorithm . ) e .
for solving nonlinear constrained optimization problems. The @& multimodal PDF aimed at considering several subregions

aim of this work is twofold. Firstly, we present a modified seach of that interval at the same time. In another recent work by
engine which implements a boundary search approach based on Socha et al. [24], the former ideas proposed by Socha [23]
a recently proposed ACO metaheuristic for continuos problens. regarding continuous domains are extensively presentéd an

Secondly, we propose the incorporation of the stochastic rking details concerning imolementation issues are given tHrou
technique to deal with feasible and infeasible solutions ding g 1mp 9 9

the search which focuses on the boundary region. In our the ACC: algorithm. The experimental study presented by
experimental study we compare the overall performance of ta  the authors considers a test suite of several unconstrained

proposed ACO algorithm by including two different comple-  continuous optimization problems. In addition, an analysi
mentary constraint-handling techniques: a penalty functon and of the behavior of ACQ is presented regarding the impact

stochastic ranking. In addition, we include in our comparin of f it . t th lqorithm’ f )
results the Stochastic Ranking algorithm, which was origimlly of Its main parameters on the algorthms periormange.

implemented using an Evolution Strategy as its search engin ~ and&. In Leguizamon et al. [12] a new constraint-handling
technique is implemented in an ACO algorithm for continu-

I. INTRODUCTION ous problems based on the former work by Bilchev et al. [2].
The Ant Colony Optimization (ACO) metaheuristic hasLengamon et al.'s work introduces a more general boundar

been extensively applied to solve plenty of combinatoria?pproaCh for solving nonlinear constrained problems which

optimization problems. The ACO metaheuristic (Corne e\‘:vtis prfesentet(_j as a possfle exten_f,rlﬁn t?f th; ACO algo—h
al. [4], Dorigo and Stuztle [5]) includes a variety of algo—rI mS for continuous search spaces. 1he boundary approac

rithms derived from the behavior of colonies of real antsl.mder the ACO metaheuristic showed to be competitive

These algorithms involve a colony of artificial ants that &m with respect to other state-of-the-art algorithm when gl

find good solutions to a problem by cooperating among therW'th nonlmear problems having active constraints. It isoal .
The cooperation is indirectly achieved Isfigmergy that worth noting that the boundary approach has been studied

is, by indirect communication mediated by the environmerﬂom _the evo_Iut|onary computatlon_p_erspecnve._For exampl
which is usually represented as a construction graph. In Michalewicz et al. [18] the efficiency of this approach

is shown by using two constrained optimization problems:

One of the first ACO extensions to operate on continuo%eane,S function (also known a&02) [9] and another
spaces can be found in Bilchev et al. [2] in which the whol Unction with one equality constraint (also known @83).

search space is discretized in order to represent a fini . . . .
o ; . o these cases, it was possible to defidehocgenetic op-
number of search directions. This approach was validate

using a small set of constrained problems. Since thegrators that fit perfectly the boundary of the feasible regio

several other researchers have proposed schemes to apply {pWever, this sort of approach is impractical in an arbyrar

ACO algorithm to continuous search spaces. However, all it oblem with many constraints, and it is therefore necgssar

these approaches only deal with unconstrained optimizatio0 define a more general approach for boundary search which

poblems.Forexample, Ling et [17], L et al. 14} [15] 20 22 2 05, 5 POSsble 0 dedt i et s of
Dreo et al. [6], Monmarché et al. [19], and Pourtakdoust.et a ' Y : prop

[20]. More recently, an extension of the ACO metaheuristitt:evc’luuon"Jlry operators capable of exploring a generapserf

. . ) ; . oé dimensionn — 1 (n is the number of variables) for three
to continuous domains and applied to continuous and mlxi st cases: functio’03 and two additional functions which
discrete-continuous problems is presented by K. Socha [2 rz '

This proposal follows the original conception of the ACO _pr_esent respec'uyely a con_stralned versions of the two
approach in regards of the way the solutions are built ieonglnal (unconstrained) functions proposed by Baluja. [1]
" 7On the other hand, Wu et al. [25] proposed a GA for
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does not involve any explicit boundary operator. Based oh; are active at all points ofF. It is worth remarking
the proposal of Socha et al. [24], Leguizamobn et al. [13fhat plenty of problems formulated as above include active
adopted the algorithm ACQ one of the more recent ACO constraints at the best known or optimal solutions. For
extensions for continuous search spaces and showed how #xample, for problems with at least one equality constraint
boundary approach could be included in a more advancéd, the corresponding optimal solution will lie on the region
search engine based on the ACO metaheuristic. In that wordefined byh;(x) = 0. Furthermore, for many problems, the
a new algorithm called AC@) is compared against Acﬁ) best solutions may lie on the boundary between the feasible
(see Leguizamon et al. [11]), a boundary search based AGId infeasible search space of some inequality constrains,
algorithm designed according the former ideas by Bilchev éte., the region defined by, (x) = 0. When those conditions
al. [2]. The new algorithm Ac@g was found to be a suitable are met for a particular problem, the designaaf hocoper-
alternative when facing constrained optimization protdem ators or approaches that explore the search space focusing
However, both algorithms, AC) and ACJ3), include a on the boundary region (according either to the equality
penalty function as their complementary technique adoated @nd/or inequality constraints) can be a suitable altevaati
handle the problem’s constraints. Although penalty fursi  for including in a specific search engine or metaheuristic.
are a suitable approach, they usually need an extensiveln the following we first explain how the boundary region
preliminary experimental study to tune the values of theigan be approached given a specific search space; more pre-
penalty factors. Regarding this situation, we propose is thcisely, then-dimensional spac&™. Then, we also describe
paper the use of the stochastic ranking approach [21] inrordé€ manner in which this search space can be explored
to avoid the use of penalty factors as well as to achieve @&ssuming a hypothetical search engine and exploratioraeper
improved performance of the ACO algorithm when dealindgors. Afterwards, we present in detail the proposed teakmiq
with constrained problems. that takes advantage of the boundary approach to explore
The remainder of this paper is organized as followsSome specific regions of the boundary of the feasible search
Section Il describes the formulation of the general norine Space.
optimization problems and some features of these problems .
that could be exploited when some conditions are met. % Approaching the boundary
addition, a general formulation of the boundary approach We describe here a general boundary approach (proposed
(see [12], [11]) is presented. The ACO algorithm Aﬁ@ in [12], [11]) which i§ based on the notion that each pdint
(based on AC@®) which implements the boundary approactPf the boundary region can be represented by means of two
is presented in Section IIl. On the other hand, Section Igifferent pointsx andy, wherex is some feasible point and
presents AC@{R), which is our proposed algorithm for ¥ IS SOme infeasible one, i.€x, ?’) carl r_epresent on? point
boundary search incorporationg stochastic ranking as it§ng on the boundary by applying a “binary search” on the
complementary constraint-handling technique. In addijtio Straightline connecting the pointsandy (when considering
the ACHZ 'is also presented. The test problems an@" €quality constraintg € 7 iff h(z) < 0; otherwise,z &

experimental results are presented and analyzed in Sagtion'/)- Figure 1 shows a hypothetical search space including
Finally, our conclusions and some possible paths for futuf@® feasible (shadowed area) and infeasible regions. We can
research are provided in Section VI. identify four points lying on the boundary;, b, bz, and
b, which are respectively obtained frotx;,y1), (x2,¥2),
Il. THE BOUNDARY SEARCH APPROACH (x3,¥3), and (x4, y4).

We are interested in solving the general nonlinear pro-
gramming problem whose aim is to findso as to optimize:

f(x) x=(x1,22,...,2y) € R"

wherex € F C S. The setS C R™ defines the search
space and set§ C S andU = S — F define thefeasible
andinfeasiblesearch spaces, respectively. The search spg
S is defined as am-dimensional rectangle iR™ (domains

of variables defined by their lower and upper bounds):
S
1(i) <z <wu(i)for1 <i<n .

whereas the feasible sét is defined by the intersection of
S and a set of additionah > 0 constraints:

) Fig. 1. Given one feasible and one infeasible point, theesponding
g; <0, for j=1,...,9 and point lying on the boundary can be easily reached by usingnalsi binary
h: =0. for j=q+1,...,m. search. In this way, each point on the boundary can be redohedat least
J ’ R a pair of points(x, y) with x € F andy € U.
At any pointx € F, the constraintgy, that satisfyg (x) =

0 are called the active constraintssat Equality constraints ~ The binary search applied to each pair of poifitsy) is



achieved following the steps described in function BS (sethe “gene expression” ofx,y) € G. Thus, the set3 =
Algorithm 1). For example, a possible application of this{b|b = BS(x,y)} is conformed by the set solutions on the
process can be seen in Figure 1 where we adopt the pairlmdundary. Each solution in this set is evaluated by function
points (x3,y3) from which we obtain the poinbs, which ¢, which represents a measure of solutions quality and gives
lies on the boundary. The first step (labeled) indicates as a result an element from the et {e € R|e = ¢(b)}.

that the first mid point found is infeasible. Consequently, From the above description, it is clear that the search
the left side of the straight linex§) is moved to point engine must deal with the exploration of spageFigure 2

p1- In the next step (labeled)) we consider the points shows a set of hypothetical pointséh a problem constraint

p1 andys as extreme points for which the mid point isand the corresponding points on the boundary. In the third
the feasible poinps. Thus, the new feasible point or right pair of points (from left to right) we represent a possible
extreme of the line is now the poim,. Finally, the last exploration region forxs andys (it should be noticed that
point generated ishbs which can be either lying on or the shape and size of the exploration area could vary when
close to the boundary. Condition ((digt.boundaryfn) < d)  considering different search engines and/or operatarshis
AND Feasiblefn)) defines a threshold to stop the processase, the projection of the extreme sides of the exploration
of approaching the boundary. However, the second part afeas on the boundary (zig-zag line), represents the cdvere
this condition (i.e., “Feasibl@g)”) it is only applied when area on the boundary of points; and y3 regarding a
considering an inequality constraint. In this way, funatio possible exploration area. For example, from the perspecti
BS guarantees thatn is in the feasible side regarding the

corresponding inequality constraint under consideratibis 1

worth noticing that parametess andy are local to BS, i.e., *)
function BS behaves as a decoder of the pair of feasible § ,,.- T U
infeasible points passed as parameters. Therefore, thberun N Y3
of “mid_pointsbetween”x and y before approaching the
boundary within a distance less théatis given bylogs(r) 7Yz a
wherer = (dist(x,y)))/d. Thus, the closer to the boundary /
the largerioga ().

i) Y4
Algorithm 1 BS(x,y: real vector): real vector F T (**) )

1: m: real vector;

2: repeat

3. m = mid_pointbetweeng,y);

Fig. 2. A set of hypothetical points i, a problem constraint and

4: if Is.on.Boundarygn) then the corresponding points on the boundary where (*) indicdbe possible

5: returnm; { m is a point lying on the boundary  exploration regions forxz and y3 and (**) indicates the corresponding

6: end if points on the boundary region based on possible perturts=id xs and
o . y3.

7. if Feasiblefn) then

8 IX = m, of evolutionary algorithms, we can create a population of

9: eise

individuals where each one of them represents an element of
10: y=m, setG. Therefore, suitable operators to be chosen could be any
11:  end if _ crossover and/or mutation operators appropriate for figati
12: until (distto-boundaryfn)< d) AND (Feasiblef)); ,gint representations. A similar approach can be adopted if
13: returnm; {The closest point to the boundary according,ging another search engine suitable for exploring cobtisu
04} spaces, e.g., particle swarm optimization, differentiadle-
tion, immune systems, etc. However, from the perspective of
the ACO metaheuristic the possibilities are more limited. |
B. Exploring the boundary region this work we will show at least two alternatives for the ACO
So far, we have shown how a point lying on the boundarnetaheuristic in the following sections.
b can be represented through a pair of poiftsy) with
x € F andy € U. Now we need to consider the exploration
of the search space which, according to our proposal, canlt is important to remember that we are assuming active
be defined agf = {(x,y)|lx €¢ F € R* Ay € U C constraints at the global optimum to proceed with this
R™}, that is, the set of pairs of points,y) as described method where the search is always performed “indirectly”
above. This space can be consideredemotypic space&as on the boundary of the space defined by some of the
known in evolutionary computation. Since each point fronproblem constraints. The simplest case to apply the boyndar
G represents a point on the boundary, it is necessary tlapproach is when the problem has only one constraint which
application of the decoder represented by functi®fi (see could be either an equality or an inequality constraint. bt
Algorithm 1) to obtain the correspondinghenotypei.e., suppose that the problem includes only one constraintset u

C. Focusing on the problem constraints



say h, then the search engine should proceed by generatingmparisons among the solutions generated [10] and thus
a set of elements of s&i. After that, the exploration off avoid the inclusion and tuning of any penalty factor when
by the search engine will indirectly and exclusively explor evaluating a solution.
the region defined by:(b), i.e., all solutions generated will Il THE PROPOSED ALGORITHMACOS) FOR
be feasible without requiring argd-hocboundary operator. : BR
) . NS BOUNDARY APPROACH

On the other hand, when facing the typical situation in
which we have more than one constraint, it is necessary In this section we describe the design of the AGO
to define an appropriate po“cy to exp|ore the boundary &’gjgorlthm which implements the bOUndary search. The search
efficiently as possible. One possibility is to explore imrttine ~ €ngine involved in ACQ) is based on the AC@algorithm
boundary of each constraint. The selection of the condgrairpresented in [24]. Before explaining the implementation of
to search for can be determined using different methods. HCOB%, we first describe briefly the main characteristics of
the problem includes at least one equality constraint, suéCOr as it was proposed and tested in [24] on unconstrained
equality constraints are the most appropriate candidates ¢ontinuous optimization benchmark problems.
be selected first. However, a possible search engine could p(s]sP)  rarger Gaussian kemel
remain focused on a particular constraint over the whole run - Individual Gaussian functions
or may move from one problem constraint to another depend-
ing on a particular condition. In our previous work [12], we
defined a simple condition based on a parameter called
which counts the number of iterations the algorithm focuses
in a particular constraint. However, more complex condiio S G \
could be considered, for example, taking into account the T z;|sP
population diversity or the degree in which some problem 10) u(i)
constraints are being violated. In this work, as will be
explained in a f.urther section, we a_'dOpted the parameter Fig. 4. (filled line): a continuous probability density fuimn p(z|s?)
to control the time when the algorithm should focus on &here z; € [i(i), u()], and s? is a partial solution under construction

different problem constraint. (see [24] for further details) and (dotted line): a possibkt of three
Gaussian functions to achieve by superposition a Gauss&neK which
approximates the corresponding multimodal Gaussian ilumdfille line).

Taking into account that the ACO metaheuristic works
by incrementally building the solutions according to a bi-
ased (by pheromone trail) probabilistic choice of solusion
components, the AC algorithm was designed aiming at
obtaining a set oprobability density function§PDFs). Each
PDF is obtained from the search experience and is used to
incrementally build a solutiox € R™ considering in turn
each component; (Vi...n). Figure 4 (fille line) represents
a hypothetical PDF that could be eventually found during
the search. It can be observed a multimodal PDF used to
obtain a value for the variable on dimensiog {1,...,n}.

To approximate a multimodal PDF that looks like the one in

As an illustrative example, Figure 3 shows a hypotheticdTi9ure 4, Socha et al. [24] proposed a Gaussian Kernel which
search space determined by three inequality constraiatis L IS defined as a weighted sum of several one-dimensional
suppose that the search proceeds starting on consgraitft ~Gaussian function;(z) as follows:
the visited points are on the boundary &t these points
will also satisfy the remaining problem constraints (filled , k ) Gy
line in Figure 3). However, the exploration of the boundary ~ G'(x) = Y wigi(z) =Y wi i\l/—e 2D (1)

. . . . — — o2
with respect to constraing; will eventually produce points =1 =1 !
violating constraintg, andgs (dotted line in 3). One of the wherei € {1,...,n} identifies the number of dimension,
simplest methods to deal with this situation is the applicat i.e., ACOr uses as many Gaussian kernel PDFs as the
of a penalty function for the infeasible solutions. In addit number of dimensions of the problem. In additic@’ is
if g1 is active at the global optimum, the method will focusparameterized with three vectors; the vector of weights
the search on the boundary in order to restrict the exploreassociated with the individual Gaussian functiops; the
regions of the whole search space. Note however, that othegctor of means; and-, the vector of standard deviations.
(more sophisticated) constraint-handling techniquesatam All these vectors have cardinality, which constitutes the
be adopted. For example, it could be considered the inclaumber of Gaussian functions involved. Figure 4 (dotted)lin
sion of the Stochastic Ranking approach [21] to make th&hows a superposition of three Gaussian functions which

Fig. 3. Feasible search space defined 3bynequality constraints. The
search proceeds on the boundary of constraint

k (z—pt)?




could approximate the hypothetical multimodal Gaussiaand, 2) after functiory! has been chosen, a sampling is ac-
function (filled line). complished (perhaps using a random number generator based

In ACOg, a solution archive called” is used to keep on a parameterized normal or an uniform distribution in
track of a number of solutions similarly to the Populationrconjunction with, for instance, the Box-Muller method [3])
Based ACO (PBACO) proposed by Guntsch et al. [8]. TheSince at each step only one Gaussian function is used (let
cardinality of archiveT is k, that is, the number of kernels us sayg;), it is only needed! instead of the whole vector
that conform the Gaussian kernel. For each solutipg R", o*. The pheromone update is achieved by considering a set
ACOg maintains the corresponding values of each problem of the newly generated solutionhsThe newT (in the next
dimension, i.e.z},...,z, and the value of the objective algorithm iteration) is obtained & = rank(T'® A), i.e., the
function f(x;) which are stored satisfying thaf(x;) < old solutions in the archiv& plus the set of newly created

- < f(x1) < ...f(xx). On the other hand, the vectorsolutions A are ranked. In other words, the old solutions
of weightsw should satisfy that; > --- > w; > --- > w,. compete against the newly generated ones to conform the

The solutions inl” are therefore used to dynamically gen-updatedl” which maintain its cardinalityX) throughout the
erate probability density functions involved in the Gaassi whole search process.
kernels. More specifically, for obtaining the Gaussian kérn  To adapt ACQ to deal with constrained problems by im-
G?, the three parametess, p!, ando’ need to be calculated. plementing the boundary approach described above is rather
Thus, for eachG?, the values of the-th variable of the straightforward. The proposed algorithm A@@, instead of
k solutions inT become part of the elements of vectormaintaining one archivd’, now maintains two archives for
pi, that is, pt = {ut, ... put} = {2%,...,28}. Vector u  similar purposes]» andT;, which represent respectively the
is generated as follows: each solution that is added to thints on the feasible and infeasible parts of sgacaA third
archiveT is evaluated and ranked (ties are broken randomlyarchive, T, is also considered which is obtained by applying
The solutions irfl” are stored according to their rank, i.e., thefunction B.S the each point fronT'= and7;,. More precisely,
highest the rank of the solution, the lowest the correspandi 7z = {b.|b. = BS(xc,y.),e = 1,...,k}. Solutions inTp
index inT. The weightw; associated to Gaussian functionare evaluated by means of functign It is worth remarking

gl is obtained as: that solutions inTi are ranked according to the solution
1 ey quality given by ¢. Taking into account this ranking, the
Wy = e 2a2kZ (2) solutions inTx andT;, are then ranked accordingly.
qk\/2m As in the original ACQ algorithm, vectorw is intended

with mean 1.0 and standard deviatiogk, where ¢ is a for sampling the chosen Gaussian function, however, the
parameter of AC® which controls the preference of the situation is different in AC(g?R? since there exist two in-
ranked solutions. Thus, whem is small, the best-ranked dependent archivegx and T;, from which the Gaussian
solutions are preferred, otherwise, a large valugjfonplies  Kernels are built, i.e., to explore the search spgcet is
a more uniform probability. As mentioned in [24], thenecessary to process both archives from which the solutions
influence of this parameter on AGQs similar to adjusting 0N the boundary are obtained. In addition, we define two
the balance between the iteration-best and the best-so-ftditional structuresA> and A;, associated respectively
pheromone updates used in traditional ACO algorithms. O archivesT» and T,. These two structures, similarly as
the other hand, each component of the deviation vectét the original ACQ;, represent the newly solutions found
o' ={ot, ..., 0t} is obtained as: according to the Gaussian kernels frdm and1;,. Table |
represents a general outline of the archiVes 1y, 1, w,

; k |zt — x;’| and £. The last one is associated 1 and maintains the
o= 52 o1 ) value corresponding to the evaluation quality of solution i
e=1 Ti. It should be noticed thdli is not used to build any
wherel € {1,...,k} is the kernel number with respect to Gaussian Kernel, however, the ranking of the solution in it

which the deviation is calculated argd> 0, which is the will influence the ranking of solutions i’ andT;,, which

same for all dimensions, has an effect similar to that of thelearly influences the generation of new and better quality

pheromone evaporation rate in ACO. Thus, the higher thsblutions in the spac§.

value of¢, the lower the convergence speed of the algorithm. A general outline of Ac(gig is presented in Algorithm 2
For obtaining a solution component at stép(in the which displays its main components. In ling archivesT's

construction solution process) it is only necessary towtate  andT;, are initialized by randomly generated solutions in the

the I-th component ofs’ since the sampling process offeasible and infeasible search space regarding the problem

Gaussian kerne? is accomplished as follows. Given the constraint at hand. Similarly, vectaris initialized according

elements of vectow calculated as in Eq. 2, the samplingto Eq. 2 which includes the parametgrandk as explained

is done in two phases: 1) choose one of thésaussian above. The main loop includes a call to function “Boundary”,

functions of G* according to the following probability: which is in charge of applying functioi®S to each pair of

Wy points respectively from'x andT;; and returns the archive

n= @ |
ZT:l Wy Set A represents the set of ants according to Socha et al. [24].



TABLE |
REPRESENTATION OF THEACO%SHQSEARCH SPACE DIVIDED IN FEASIBLE AND INFEASIBLE POINTS

Tr Tu e
X1 a:i N ] Y1 yi .|y Y1 w1
x| @ T z yi |y Y yr ~— wi
xp xy T}, Ty ye | vg vr uy on
G;— G G Gzl/, G; Gy
Ts £

b1 b1 .. b .. by ¢(b1)

b, | b .. by .. b} ¢(br)

by | b} .. b, . by ¢ (bg)

T. Then, function “BuildSols” is in charge of generatingACO,(B"’ig2 which was proposed and studied in [13]. The
new solutions through the Gaussian kernel obtained frosecond algorithm, which constitutes the main proposal ot
the corresponding archives (lines and 5). In order to this work, is called here AC@R) where the complemen-
further obtainAg, i.e., the newly generated solutions on theary constraint-handling technique is the stochastic iramk
boundary, function “Boundary” is then applied - and approach proposed by Runnarson et al. [21]. The main
Ay. After that, Tz plus A are ranked according to the characteristic of AC@%Q")is that the functiony is used to
solutions quality given by functiow, and the best first  find the values in the structu® (see Table 1) must include
solutions in the ranking will be now part of the archi#g  a penalty factor in order to evaluate the solutions on the
which is used as a reference to get the rEw and 7y  boundary (structurel’z). However, it is well known that
Let us say that the new set of points on the boundary the main drawback of this technique is the problem to find
Ts = {bi,...,b; } whereb;, comes either fromlz or the most suitable penalty function and/or the correspandin
Ap, therefore the new’s andT;, are obtained respectively penalty factors involved. In Section V, we will show the
from T’ ® Ar andTy, ® Ay taking into account the ranked penalty function used and the corresponding penalty fac-
solutions in the nevls. This is precisely what the function tors which have been extensively studied in Leguizamon
“Update” does. et al. [12], [11], and [13]. For the ACR™ algorithm,
the mechanism is slightly different, nevertheless, itslenp
mentation is straightforward. First of all, it is necess#ty
include another structure associated to archigeto keep
the extent of violation of the problem constraints. Let us
call this new structurd” = {v(b1),...,v(b;),...,v(bk)},
where v is a function that returns precisely the extent of
violations of the problem constraints given byb) =

1 maz{0,g;(b)}* + 37, |h;(b)]? (similarly as de-
fined in [21], however, any other suitable function can be
applied) andyp = f, i.e., the objective function. After that,
function “Sort” (line 7, Algorithm 2) should be accordingly
changed. Following the proposal of Runarsson et al., the for
mer function “Sort” which implements any classical sorting
algorithm, is modified now in the way that implements a
IV. THE ACO%%E")AND ACO,ESSRR)ALGORlTHMs sort-like procedure (see Algorithm 3) to proceed with the

Algorithm 2 A general outline of the AC@Q algorithm
1: init(T]:,Tu, w);
2. for tinl:T,,,. do
3. T =Boundary('s, Ty)
4. Ay =BuildSols(s);
5. Ay =BuildSols(y,);
6. Ap =Boundary@r, Ay)
7
8
9

Tp =First,(Sort(l's & Ag))
. Update('=,1y,E); { According to the newl'z}
: end for

Based on the above modifications for the original ACO ,
. . en) SR) We change the name here since both algorithms are based ¢ Soc
we define here two algorithms, ACﬁg and ACC%R " et al’s proposal where the difference is in the complenmgntanstraint-

en)

The name ACQg "’ corresponds to the algorithm calledhandiing technique.



stochastic ranking of the newly generated solutions. Iugho alternative but considering only the active constraints.{$

or ¢) just considering one constraint during the whole run (S
Algorithm 3 A general outline of the stochastic ranking al-wherec € {1,...,m}). These three policies to deal with
gorithm usign a bubble-sort like algorithm as defined in [21]the way of approaching to the boundary were extensively
Py represents the probability of using only the objectivestudied in Leguizamén et al. [12], [11] for the algorithm
function for comparisons in ranking in infeasible regioris OACO%). From these earlier results, we adopt the so called
the search space for which a value @ < Py < 0.5 S, policy, which showed the best performance in all the
was reported as the most appropiate. Parametérand test cases studied. However, the other policies are also a
A represents respectively the maximum number of sweepaluable and efficient alternative when no information is
and the number of solutions that are ranked by comparirgyailable with respect to the possible active constraims.
adjacent solutions in at leaatsweeps, andnd € U(0,1).  our experiments, the condition to produce a change on the

I =4, V5{1,..., A} search from one constraint to another is given by an elapsed
2. foriin1: N do number of iterations and is represented by the paramneter

3 forjinl:\x—1do as explained in Section II-C. In addition, for problems with
4 if (W(xg,) == v(xz;,,)||(rnd < Py)) then more than one constraint, we incorporate a penalty function
5: if (v(xr,) > v(xs,,,)) then for algorithm ACGL™ of the form:

6: swap(;, I;41)

7: end if a m

8: else ¢z, ) = f(2)+p(Y)_max{0, g;(@)}+ Y [h(2)]) (5)

o: if (v(xr1;) > v(xr,,,) then J=1 J=q+1

10: swap(;, I;j+1) whereyp is a fixed penalty factor. Also, it is worth remarking
11: end if that each solution is always lying on the boundary of the
12: end if feasible space corresponding to the constraint under donsi
13:  end for eration. This sort of penalty function was previously adaipt

14: if no swap donethen in [12], [11] due to its simplicity, since our interest was to
15: break assess the advantages of the boundary approach proposed.
16:  end if However, other constraint-handling techniques are etigen
17: end for possible as the stochastic ranking approach proposedsn thi

article (algorithm AC%R)). The penalty factorg used in

be noticed that the indexds and I, in function “swap” ACO" were experimentally determined for each partic-
point to the corresponding structures (efjs or other) to ular problem (see [13]) and are shown later. All the algo-
produce the swaps when necessary. Runarsson et al. sugg@ms considered in this experimental study (i.e., AGDY,
the settingV = X for the number of solutions adjacent to beAcogRR), and SR) were executegD times with different
compared. In our case, indicated the number of solutions seeds for each parameter combination. The problems studied
in the corresponding structure to be sorted. Thus[#l = £ include a set of well-known test cases traditionally addpte
and|Ag| = Na, then\ = k+ N, (see line8 in Algorithm 3). in the specialized literaturgz01 to G07, G09, G10, G11,
V. EXPERIMENTS ANDRESULTS G13, G14, G15, G17, G21, G23, G24 [16], and G25 [7].

' At earlier experiments with AC@%‘)‘") in [13], we initially

The main objective of our experimental study is to analyzgenhose similar parameter settings as those used in [24] where
the quality of results as well as the performance of N, = 2, k = 50, £ = 0.85, andg € {0.0001,01}; where
and ACdB‘?RR) regarding the number of feasible solutionsthe higher value for parameterwas chosen for multimodal
found. In addition, we make a comparison with one ofunctions. The preliminary results from AC%@E") by using
these two algorithms and the original stochastic rankinthe above parameter setting was rather discouraging diece t
approach, as described in [21] (using an evolution strategygorithm was not capable of achieving any feasible satutio
as its search engine). Before presenting the results we willr all the test problems adopted. After that, we considered
describe some common characteristics of @@@ and a larger number of ants (i.el, > 2) for generating
ACO regarding their application to the different testa larger sampling of solutions according to the= 50
cases. Indeed, ACA™ and AC SRR) require minimum Gaussian kernels. More specifically, we $ét = 50 which
changes when applied to the different test cases consider#@s the setting for the number of ants used in AGO
the objective function, number of variables, range of eachnd ACdBfRR) in the experiments presented in this section.
variable, and constraints. However, the policy to deteeminThe penalty factors involved in functiop (Eq. 5) for each
on which constraint the search should focus needs to Ipeoblem using AC@?{”) were as followsG01 (1 = 1000),
considered when a problem has more than one constraint:@)4 (¢ = 5000000), G05 (1 = 10), G06 (u = 10'!), GO7
we can focus the search on all the constraints, but conamleri(x = 20000), G09 ( = 200000), G10 (1 = 20000000, G13
one constraint in turn by controlling the change througlfy = 0.1), G14 (1 = 150), G15 (. = 10), G17 (1 = 1000),
a particular condition (§;), b) similar to the previous G21 (u = 3000), G23 (¢ = 1000), and G24 (= = 10000).



TABLE Il
RESULTS FROMACO,; AND ACO%%R)ACCORDING TO THE PARAMETER SETTING = 0.0001 AND £ = 0.85 USED FOR SOME TEST CASES If24].
THE REMAINING PARAMETER VALUES USED IN THE EXPERIMENT AREs = 50, Ng = 50, AND Tinae = 10000. THE PARAMETER SETTING FOR

(P("Il)

ACO<SR) WAS Pf = 0.45 FOR ALL PROBLEMS EXCEPT FOR PROBLEM=23 FOR WHICHPf =0.2.
ACO acole™
Prob. BF Mean Worst | #Fea BF Mean Worst | #Fea
G01 -15.000 (*) -15.000 -15.000 30 -15.000 (*) -15.000 -15.000 30
G04 | -30665.539 (*) | -30665.539| -30665.539 30 | -30665.539 (*) | -30665.539 | -30665.539 30
G05 5126.49(*) 5127.8387| 5178.7558 30 5126.5083 | 5143.6240| 5159.6303 27
G06 - 6961.814 (*) -6961.813 | -6961.8129 30 -6961.814 (*) | -6961.8137| -6961.813 30
GO07 24.306 (*) 24.537 24.832 30 24.306 (%) 24.530 24.985 25
G09 680.630 (*) 680.630 680.630 30 680.630 (*) 680.630 680.630 30
G10 7049.3261(+) 7155.9941| 7368.4658 30 7058.3559 | 7208.0776| 7506.7651 28
G13 0.05394 (*) 0.054003 0.054894 30 0.053951 0.054112 0.054637 23
G14 -47.76489(%) -47.683451 | -47.451402 30 -47.624847 | -45.268413| -41.556510 28
G15 961.7150 (*) 961.7150 961.7150 30 961.71515| 961.71496| 961.71520 30
G17 8854.3105(+) 8963.7792| 8963.7792 16 8871.682 9029.559 9212.925 29
G21 193.72828(+) 194.1571 194.6119 20 193.79061 | 193.83093| 193.90968 6
G23 -303.5474 22.5463 170.625 17 -300.80877 | -49.064338| 130.72998 4
G24 5.50801 (*) 5.50801 5.50801 30 5.50801 (*) 5.50801 5.50801 30
TABLE IlI

All of these values were set based on our previous work [121:OMPARISON oFACOLEH)
in which similar values were adopted for the so called
ACO(B ). On the other hand, for AC@ ) we setPy = 0.45
and N = \. The whole experimental study was performed
on a Laptop with an Int&) Pentiumi®) M Processor 725,

WITH RESPECT TOSTOCHASTICRANKING.
FOR ALL PROBLEMS AND BOTH ALGORITHMS COMPARERDWE SET
Py = 0.45 EXCEPT FORG23 FOR WHICH Py = 0.2. NUMBERS IN
BOLDFACE INDICATE WHICH ALGORITHM FOUND THE BEST VALUE

running at 1.6 Ghz, and with 512 Mbytes of RAM. The ACOUT SR

ACO(B]%) algorithm was implemented in C Language running [ prop. Opt BE | #Fea BE | #Fea
under Suse-Linux. It is important to remark that the testesui G02 | 0.803619| 0.803619| 30| 0.803515| 30
considered includes problems with only one constraint. For | 610 | 7049.248| 7049.361| 30 | 7049.331| 30
h blems({02,3 G03, G11, andG25), the application Ol | arTodsl a8 S0 425805 %0
t ese pro 2, (Sl , pp G17 | 8853.5396| 8854.3105] 16 | 8856.1360] 30
of either ACC%]R or ACOy,  gives the same results. The G21 | 193.7245| 193.72828] 20 NA | NA
reason is because when a problem has only one constraint, ©23 | -400.055| -303.5474] 17 -46.047 2

the boundary approach generates only feasible solutians, i

there is no need to use a complementary constraint-handling

technique. Thus, both ACO approaches still have the sarf@@ problem G23, we usedP; = 0.2 in order to obtain

performance, because their search engine is exactly the.saf@asible solutions, otherwise (withy = 0.45), ACO

However, we will further show the results for these problemwas not able to find any feasible solutions. Finally, Table I

when comparing the performance of A(gﬁ with SR. shows the results from AC@ ) and SR for some problems.
Table Il displays the results from algorithms A@?) The rgmaining proble_mfs congldereq are not shown since .both

and ACdBPpn) for the test problems with more than onedlgorithms perform similarly, including those problemsthwi

constraint. The columns show respectively the best foungé:Iy one constraint. However, for problera®?2, G10, G14,

(BF), mean (Mean), and worst (Worst) values and the numb 17, G21, and%%;i) these two algorithms behave different]y.
of feasible solutions found out 080 independent runs. FOr G02, ACOy ™ found the best known value for this

The (*) in column BF means that the algorithm achievec?mblem however fot710, SR found a slightly better value
the best known or optimal value whereas (+) means tH8an ACG;.". For problem14, G21, andG23, the results
the best found value is very close to the best known gihows a mosrg clear difference between these two algorithms
optimal value. In column BF some values are in boldfac¢here ACQy” clearly outperforms SR (it must be noticed
indicating that the corresponding algorithm found the bedhat we set for ACQ”and SR,P; = 0.45 except forG23
value. It can be observed that f6¥01, G04, G06, Go7, for which Py = 0.2)
G09, G13, G15, and G25 the two algorithms behave very

similarly regarding quality of solutions. However, the nioen

of feasible solutions found is alwag® forACO(SR) On the In this paper, we presented an alternative ACO algorithm
other hand, we can observe that Aﬁ@ achieved a better (ACO(SR ) with a a new search engine for implementing the
performance for problem&05, G10, G14, G17, G21, and boundary search approach. The search engine is an adapta-
G23, considering both, the quality of results and numbetion of a recent proposal for continuous problems (AGO

of feasible solutions found. It is important to remark thafThe new algorithm, called AC@ ) includes stochastic
ranking as a complementary mechanism for problems with
more than one constraint. For testing AE?,?@, we have

VI. DISCUSSION

3We considered this problem as having one constraint.



also used a version with a penalty function (Aﬁ@”)). The [16]
results showed a better performance of A@@ with respect

to ACO%?{"), specially regarding the number of feasible
solutions. In addition, the overall performance of Aﬁ@

was compared to SR, showing the potential of this method
as an alternative or complementary approach for constlainé 7]
optimization problems. Future works include the use of a
hybrid version of ACC@SRR)With local search, e.g., by doing
the main exploration o and a complementary exploration

on 5. In addition, we are also interested in the desigr[llg]
of a more general approach which includes the boundary
approach as a component that can be triggered when certain
conditions are met.
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