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ABSTRACT
Most multi-objective evolutionary algorithms (MOEAs) of the state
of the art treat the decision variables of a multi-objective optimiza-
tion problem (MOP) as a whole. However, when dealing with MOPs
with a large number of decision variables (more than 100) their
efficacy decreases as the number of decision variables of the MOP
increases. Problem decomposition, in terms of decision variables,
has been found to be extremely efficient and effective for solving
large scale optimization problems. In this work, we study the ef-
fect of what we call “operational decomposition”, which is a novel
framework based on coevolutionary concepts to apply MOEAs’s
crossover operator without adding any extra cost. We investigate
the improvements that NSGA-III can achieve when combined with
operational decomposition. This new scheme is capable of improv-
ing efficiency of a MOEA when dealing with large scale MOPs
having from 200 up to 1200 decision variables.
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1 INTRODUCTION
The current practice of MOEAs is to assess their performance using
benchmark problems test suites, normally adopted with a relatively
low number of decision variables, usually, no more than 30 deci-
sion variables. However, in real-world applications, many MOPs
have hundreds of decision variables and the effect of parameter
scalability in modern MOEAs has not been properly analyzed. Be-
sides, there exists empirical evidence that indicates that most of
the currently available MOEAs significantly decrease their efficacy
as the number of decision variables of a MOP increases [3, 4]. In
this paper, we propose a new scheme to apply a MOEAs’ crossover
operators which improves the performance over large scale MOPs.
We study here the effect of parameter scalability and investigate
the improvements that a MOEA can achieve when adopting this
scheme. For this purpose, we propose to combine the NSGA-III [2]
with Cooperative Coevolutionary techniques, giving rise to a novel
MOEA based on what we call operational decomposition.

2 PREVIOUS RELATEDWORK
Regarding studies on parameter scalability in MOEAs, the most
significant ones that we are aware of are those reported by Durillo
et al. [3, 4], in which the behavior and effect of parameter scala-
bility over eight state-of-the-art multi-objective metaheuristics is
analyzed. Another work in this direction is a small study presented
in [7], where ZDT1 is solved with up to 100 decision variables using
MOEA/D. Later on, an algorithm based on interdependence variable
analysis and control variable analysis designed to deal with large
scale MOPs was presented in [6]. This work was then improved
in [8], where the decomposition is based on a decision variable
clustering method.

3 OUR PROPOSED APPROACH
We propose here the so-called operational decomposition (OD) ap-
proach, which is a coevolutionary step added to a MOEA, where we
make use of the divide-and-conquer technique that splits the MOP
to be solved (in decision variables space) when applying crossover.
We use decision variable decomposition to perform crossover op-
erations which allows us to handle in a better way the curse of
dimensionality present in MOEAs. So, individuals will still be rep-
resenting a whole solution, but operators will be applied based
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on the corresponding species, and not based on the individuals.
This makes the crossover operator to be more effective, since de-
composition of the operations causes a bigger effect than when
adopting the usual scheme in which most MOEAs are implemented.
The algorithm of our proposed operational decomposition scheme,
when incorporated to a MOEA, works as follows:

Input:
• S : Species for decision variables decomposition
• T : Neighborhood size for coevolutionary collaboration

Output:
• PS : the final solutions found during the search

Step 1) Initialization:
Step 1.1) Set the population of final solutions PS = ∅.
Step 1.2) Generate an initial population X = x1, . . . xN . Set

FV i = f (x i ).
Step 1.3) Divide the problem into S subcomponents c1, . . . , cS

each one of dimensionm, such that, for each j = 1, . . . ,N ,
x j = [c1j , . . . , c

S
j ].

Step 2) Update:
Step 2.1) Find the T closest decision variables vectors to

each solution xi ∈ X . For each xi , set B(i) = {i1, . . . , iT },
where x i1 , . . . ,x iT are the T closest solutions to x i .
For i = 1, . . . ,N do

Step 2.2) OD Operation and Mutation:
For j = 1, . . . , S do

Step 2.2.1) Randomly select two indexes p,q from B(i),
and then generate a new solution y

j
c from c

j
p and c

j
q

using crossover.
Step 2.3) Assemble y′ from [y′1c , . . . ,y

′S
c ].

Step 2.4) Apply mutation operator and evaluate solution y′.
Step 2.5) Remove from the external population PS all the

vectors dominated by f (y′). Add f (y′) to PS if no vectors
in PS dominate it.

Step 3) Stopping Criterion: Stop if the termination criterion
is satisfied. Otherwise, go to Step 2.

Since c jp and c jq in Step 2.2.1 are subcomponent (in decision vari-
ables space) neighbor solutions and their dimensionality is lower
than that of the original vector of decision variables x , their off-
spring y′jc (later improved by mutation) should be a good contribu-
tion to the complete assemble of the new final solution y′. The use
of neighbors allow the new solution to have a more controlled mod-
ification and the absence of it makes the approach to have a very
poor performance, causing a poor convergence of the solutions.

3.1 Experimental Results
In order to validate our approach we adopted NSGA-III [2] and
incorporated operational decomposition to it, giving rise to a new
MOEA called OD-NSGA. For the purposes of this study, we adopted
the Deb-Thiele-Laumanns-Zitzler (DTLZ) test suite and theWalking
Fish Group test suite [5] with instances of three objectives with
a number of decision variables that ranges from 200 to 1200. In
order to assess the performance of each approach, we selected the
hypervolume indicator [4], since this measure can differentiate
between degrees of complete outperformance of two sets.

NSGAIII ODNSGA ODNSGA - NSGAIII
Function No. Vars HV HV Improvement P(H)
WFG4 200 274 317 43 0.000000 (1)

400 245 311 66 0.000000 (1)
600 228 308 80 0.000000 (1)
800 219 305 87 0.000000 (1)
1000 208 303 95 0.000000 (1)
1200 210 301 91 0.000000 (1)

Table 1: Average of the hypervolume indicator for the WFG4 test problem.

For both OD-NSGA and NSGA-III, we adopted Simulated-binary
crossover (SBX) and polynomial-based mutation [1]. The mutation
probability was set to pm = 1/l , where l is the number of decision
variables; the distribution indexes were set as: ηc = 20 and ηm = 20.
For the case of OD-NSGA, the numbers of species were set such that
2 decision variables per species are used. The maximum number of
iterations adopted was set to 1000. Finally, the population size in
all problem instances was set to 120 and the number of supplied
reference points was set to 12. In our experiments, we obtained the
hypervolume value over the 25 independents runs performed. Table
1 show the average hypervolume value of the two MOEAs being
compared for WFG4 test problem adopted, as well as the results of
the statistical analysis that we made to validate our experiments,
for which we adopted Wilcoxon’s rank sum. The cells containing
the best hypervolume value for each problem have a grey colored
background. Based on the results ofWilcoxon’s test, we can confirm
that the null hypothesis can be rejected, so OD-NSGA yields the
best overall results.

4 CONCLUSIONS AND FUTUREWORK
Our approach was able to deal with all the difficulties presented in
the DTLZ and WFG test suites, even in high dimensionality. The
results confirmed that our proposed approach is very effective and
efficient in tackling large scale MOPs. As part of our future work,
we intend to study other decomposition techniques for decision
variable space. Also, wewant to test our approach inmany-objective
MOPs. We are also interested in studying the incorporation of
operational decomposition in other state-of-the-art MOEAs.
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