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Abstract—In recent years, the design of new selection mech-
anisms based on quality indicators has become a popular trend
in the development of Multi-Objective Evolutionary Algorithms
(MOEAs). This trend has been motivated by the well-known
limitations of Pareto-based MOEAs when dealing with many-
objective optimization problems (i.e., problems having more than
3 objectives). In this paper, we propose a selection mechanism
(called IGD+-H) which is based on the combination of the
Inverted Generational Distance+ (IGD+) indicator and Kuhn-
Munkres’ (Hungarian) algorithm to solve Linear Assignment
Problems (LAPs). The proposed selection scheme is compared
with respect to other selection mechanisms based on the IGD
indicator and with respect to the use of the ∆p indicator. Our
proposed technique is incorporated into a MOEA and is validated
using standard test functions. Our comparative study indicates
that both ∆p and IGD present some limitations when selecting
solutions in degenerate multi-objective problems. Our results
show that the transformation of the selection mechanism into
a linear assignment problem speeds up the convergence of the
MOEA and it is able to solve many-objective problems in an
effective and efficient manner. We show that our proposed IGD+-
H-based selection mechanism is able to achieve a significant speed
up (of up to 200x) with respect to the exclusive use of any of the
indicators adopted in our study.


I. INTRODUCTION


A large number of real-world problems that arise in aca-
demic and industrial areas, have several (often conflicting)
objectives which need to be optimized at the same time. They
are generically called multi-objective optimization problems
(MOPs) and their solution involves finding the best possible
trade-offs among all their objectives. These trade-offs, when
defined in decision variable space, constitute the so-called
Pareto optimal set. The image of the Pareto optimal set is
called the Pareto front (PF). Multi-Objective Evolutionary
Algorithms (MOEAs) have become an increasingly common
approach for solving MOPs, particularly in the last 15 years,
mainly because of their flexibility and ease of use.


For several years, MOEAs adopted selection mechanisms
based on Pareto optimality. However, in recent studies, it has
been found that Pareto-based MOEAs can not properly solve
many-objective problems (problems with more than three ob-
jectives) [1]. This has motivated the development of indicator-


based selection mechanisms, since this sort of mechanism
seems to work properly in many-objective problems. The
most popular performance indicator has been the hypervolume,
mainly because of its nice mathematical properties (it’s the
only unary indicator which is known to be Pareto compliant
[2], [3], [4]). However, the main drawback of hypervolume-
based MOEAs is the high computational cost associated with
the computation of the exact hypervolume contributions, which
becomes unaffordable when trying to solve many-objective
optimization problems. A possible way to deal with this
limitation is to adopt a different indicator to select solutions in
a MOEA such as the Inverted Generational Distance (IGD [5]),
which is defined as the average distance from each reference
point to its nearest solution. Although the IGD indicator has
a low computational cost, it is Pareto non-complaint.


Recently, a variation of the well-known IGD indicator was
introduced by Ishibuchi [6]. This indicator, which is called
IGD+, was shown to be weakly Pareto compliant and presents
some evident advantages with respect to the original IGD (for
more details about the weak Pareto compliance of IGD+, see
[6]). This indicator is also considered to be a good candidate
for being adopted in the selection mechanism of a MOEA. In
[7], a new mechanism based on transforming the selection
mechanism of a MOEA into a linear assignment problem
(LAP) was proposed. This mechanism was shown to be able
to deal with many-objective problems as well, without being
based on a performance (or quality) indicator.


In this paper, we propose to adopt the aforementioned
mechanism that transforms the selection mechanism of a
MOEA into a linear assignment problem, but in this case,
we adopt the modified Euclidean distance (d+) as our cost
function. In order to compute d+, we also incorporate the
reference set adopted by the IGD+ indicator.


Thus, we analyze here the impact on this selection mecha-
nism (using a transformation to a linear assignment problem)
when it interacts with different indicators based on reference
sets.


The remainder of this paper is organized as follows. Sec-
tion II provides some basic concepts related to multi-objective
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optimization. The most relevant previous related work is
described in Section III. In Section IV, we explain how to
transform the selection mechanism into a LAP using the
IGD+ indicator, and we also briefly describe the procedure
adopted to solve the resulting LAP. Our experimental results
are presented in Section V-D, including our methodology and a
short discussion of our main findings. Finally, our conclusions
and some possible paths for future research are provided in
Section VI.


II. BASIC CONCEPTS


We are interested in solving problems of the type:


minimize ~f(~x) := [f1(~x), f2(~x), . . . , fm(~x)]T (1)


subject to:
gi(~x) ≤ 0, i = 1, 2, . . . , p (2)


hj(~x) = 0, j = 1, 2, . . . , q (3)


where ~x = [x1, x2, . . . , xn] is the vector of decision variables,
fk : Rn → R, k = 1, . . . ,m are the objective functions and
gi, hj : Rn → R, i = 1, . . . , p, j = 1, . . . , q are the constraint
functions of the problem. Next, we introduce some definitions
that will be used in the paper.


Definition 1: Let ~x, ~y ∈ Rm, we say that ~x “dominates”
~y (denoted by ~x ≺ ~y ), if and only if: i) xi ≤ yi for
all i ∈ {1, . . . ,m} and ii) xj < yj for at least one
j ∈ {1, . . . ,m}.


Definition 2: We say that a vector of decision variables
~x ∈ X ⊂ Rn is “nondominated” with respect to X , if there
does not exist another ~x′ ∈ X such that ~f(~x′) ≺ ~f(~x).


Definition 3: We say that a vector of decision variables
~x ∈ F ⊂ Rn (where F is the feasible region) is “Pareto-
optimal” if it is nondominated with respect to F .


Definition 4: The Pareto Optimal Set P∗ is defined by:
P∗ = {~x ∈ F|~x is Pareto-optimal}


Definition 5: The “Pareto Front” PF∗ is defined as follows:
PF∗ = {~f(~x) ∈ Rm|~x ∈ P∗}


As we have already explained before, the IGD+ indicator
evaluates the quality of an objective vector using a reference
set. In oder to introduce IGD+, we need to describe some
indicators which are based on the use of a reference set. First,
we have the Generational Distance indicator (GD [8]) which
is the averaged semi-distance from the image of a candidate
set A to our discretization of the true Pareto front. Next, we
present its formal definition.


Given a candidate set A ⊂ Rm and a reference set Z ⊂ Rm,
then:


GD(A,Z) =
1


|A|


 |A|∑
j=1


dj(~z,~a)
p


1/p


(4)


where dj denotes the nearest Euclidean distance from ai ∈ A
to Z . Second, the formal definition of the IGD indicator is
defined as [5]:


IGD(A,Z) =
1


|Z|


 |Z|∑
j=1


d′j(~z,~a)
p


1/p


(5)


where d′j denotes the minimal Euclidean Distance from zj ∈ Z
to A.


Another reference set-based indicator is ∆p [9], which is
considered as an “Averaged Hausdorff Distance” between the
approximate set and the reference set. This indicator is based
on both GD and IGD. It is defined as:


∆p = max(GD(A,Z), IGD(A,Z)) (6)


In spite of the fact that ∆p is a pseudo-metric which
simultaneously evaluates proximity to the Pareto front and
spread of solutions along it, it is not Pareto compliant.


Finally, according to [6], the IGD+ indicator can be viewed
as follows:


IGD+(A,Z) =
1


|Z|


 |Z|∑
j=1


d′ +j (~z,~a)
p


1/p


(7)


where d′+ is the nearest modified Euclidean distance from
zj ∈ Z to A and the modified euclidian distance d+ (~a, ~z) is
defined as:


d+(~z,~a) =
√


(max{a1 − z1, 0})2 + · · ·+ (max{am − zm, 0})2.
(8)


Therefore, a low IGD+ value means that the set A con-
stitutes a better approximation to the real PF if we consider
the reference set as PFTrue.


The Pareto compliance property between two objective
vectors (i.e., ~a ≺ ~b =⇒ I(~a, ~z) < I(~b, ~z)) does not always
hold when the Euclidean distance is used. The authors of
IGD+ proved that it is weakly Pareto compliant. Additionally,
they also showed that IGD and ∆p have inconsistencies with
respect to the Pareto dominance relation since if a reference
point ~z and an objective vector ~a are non-dominated with each
other, it is possible to obtain I(~a, ~z) > I(~b, ~z) for ~a ≺ ~b. The
IGD+ indicator overcomes the main drawbacks of both IGD
and ∆p.


III. PREVIOUS RELATED WORK


Previously, we said that the performance indicator which
has been most commonly used for the selection mechanism
of a MOEA, is the hypervolume [2], [10]. This indicator
encapsulates in a single unary value a measure of both the con-
vergence to the true Pareto front and the maximum spread of
our Pareto front approximation. One of the best hypervolume-
based selection mechanisms currently available is the one







incorporated into the S Metric Selection-Evolutionary Multi-
Objective Optimization Algorithm (SMS-EMOA) [11]. How-
ever, the high cost involved in computing exact hypervolume
contributions limits the practical use of SMS-EMOA in many-
objective problems. In order to address these limitations, some
researchers have developed different alternatives, such as the
use of reference sets. Next, we will briefly discuss some
indicator-based MOEAs which rely on the use of reference
sets. Our discussion will focus specifically on approaches that
adopt either IGD+ or ∆p, since this last indicator combines
both GD and IGD (both of which are based on the use of
reference sets).


The first MOEA based on ∆p was called DDE [12], and
uses differential evolution as its search engine. Although
promising for many-objective optimization, this approach has
some limitations related to the use of ∆p (e.g., it doesn’t
properly work with multi-frontal problems). Another approach
based on this indicator is ∆p-EMOA [13], which is inspired
on SMS-EMOA and incorporates a novel mechanism for
building the reference set. The core idea in this case is to
linearize the nondominated (piecewise linear) front of the
current population. This approach was designed to solve only
bi-objective problems. An extension of this approach was
proposed in [14] for solving three-objective problems, but the
generalization to any number of objectives is very difficult to
implement.


Another approach based on this indicator is the Refer-
ence Indicator-Based Evolutionary Multi-Objective Algorithm
(RIB-EMOA) [15]. This MOEA integrates a novel mechanism
for building a reference set by using a family of curves
and incorporates a selection mechanism based on the ex-
clusive contribution of a solution (as done in SMS-EMOA).
RIB-EMOA uses a weight vector set for approximating the
reference set and it can solve many-objective optimization
problems.


Another MOEA based on ∆p was proposed in [16]. The
authors proposed to create a reference set at each generation
using ε-dominance. This novel algorithm was validated using
standard test functions, having from three to six objective
functions.


Recently, a new MOEA based on the IGD+ indicator, called
IGD+-EMOA, was proposed in [17]. This MOEA adopts a
transformation to a linear assignment problem into its selection
mechanism, and IGD+ is also used as the cost function for the
linear assignment problem. In IGD+-EMOA, its authors also
proposed a novel technique for approximating the reference
set, which is built using a set of γ-supersphere curves using a
dynamic procedure. IGD+-EMOA uses Newton’s method for
approximating the γ−superspheres curve. In spite of the good
performance of IGD+-EMOA in many-objective problems, it
had difficulties for solving problems with degenerate Pareto
fronts. Here, we extend this work by providing a more detailed
analysis of the effect of using the aforemention transformation
into a linear assignment problem when combined with IGD,
∆p and IGD+.


IV. OUR PROPOSED APPROACH


A. General Framework


The general framework of a MOEA starts with a population
Pt which contains N randomly generated individuals. A new
offspring is created by choosing two different parents from
P . The parents are recombined using evolutionary operators.
In this work, we adopted Simulated Binary Crossover (SBX)
and Polynomial-based Mutation [18]. Thereafter, the resulting
offspring are added to the new set. This process is repeated
until having a total of λ offspring. After that, the algorithm
combines the parents and the offspring populations to form
the so-called Q set. The new population at generation t + 1
is generated using different selection mechanisms. Next, we
will provide more details of the technique that we propose for
selecting the new population.


B. Selection Mechanism


We propose to use a combination of selection techniques.
The first technique transforms the selection mechanism into
a Linear Assignment Problem (LAP), which uses different
cost functions for defining the LAP. In order to explain
our technique, we need to provide first more details about
the LAP. The LAP is the problem of choosing an optimal
assignment of n items (e.g., jobs) to m machines (or workers).
Mathematically, the LAP can be expressed as: Given two
sets, A = {a1, . . . , an} and T = {t1, . . . , tn} with the same
cardinality, and a cost function C : A × T → R and having
Φ : A→ T as the set of all bijections between A and T . So,
the LAP can be formulated as follows:


min
φ∈Φ


∑
a∈A


C(a,Φ(a)) (9)


Normally, the cost of the problem is also described as
a squared matrix C, where each element Ci,j = C(ai, tj)
represents the relationship between ai and tj . The cost matrix
in terms of a MOP is created as:


Ci,j = d+ (ai, zj), i = 1, . . . , |A|, j = 1, . . . , |Z|. (10)


where ai ∈ Q is the ith point from the populationQ, zj ∈ Z is
the reference point and d+ is the modified Euclidean distance.
Analogously, that process can be combined with the normal
Euclidean distance.


In order to solve the LAP, we can make use of the Kuhn-
Munkres Algorithm, also known as the Hungarian algorithm,
which is able to solve LAP instances in polynomial time
O(n3) [19] for squared matrices. An extension of this algo-
rithm for rectangular matrices was introduced by Bourgeois
[20]. The extension to rectangular matrices allows the algo-
rithm to operate in situations where the numbers of reference
points and individuals from the population are not equal.
The optimal solution to our assignment problem is found
by identifying the combination of values in the cost matrix
C resulting in the smallest sum. This solution corresponds
to the best relationship between the current points of the










0.350 0.727 0.007 0.165 0.221
0.007 0.943 0.223 0.381 0.064
0.485 0.567 0.138 0.006 0.356
0.663 0.011 0.317 0.183 0.534
0.130 0.884 0.163 0.322 0.005
0.671 0.061 0.325 0.191 0.542
0.677 0.025 0.331 0.197 0.548
0.349 0.726 0.006 0.164 0.219
0.360 0.722 0.014 0.160 0.231



Fig. 1. Initial Cost matrix with 9 solutions and 5 reference points, which was
generated using the modified Euclidean distance for DTLZ2.


0.343 0.717 0.002 0.159 0.216
0.000 0.933 0.217 0.375 0.059
0.478 0.556 0.133 0.000 0.351
0.656 0.000 0.311 0.177 0.529
0.124 0.873 0.157 0.316 0.000
0.665 0.050 0.320 0.185 0.538
0.671 0.014 0.325 0.191 0.544
0.342 0.715 0.000 0.158 0.215
0.353 0.711 0.008 0.153 0.226



Fig. 2. Final Cost matrix with 9 solutions and 5 reference points, which
contains the optimal solution of the LAP for DTLZ2.


population and the elements of a reference set. Example 1 (see
Figure 1) shows a cost matrix with 9 rows and 5 columns,
where the number of columns expresses the cardinality of
the reference set. The optimal solution of the LAP is ob-
tained by selecting the solutions 1, 2, 3, 4 and 7 from the
final cost matrix. The smallest sum of the cost matrix is
0.007 + 0.006 + 0.011 + 0.005 + 0.006 = 0.035, which
represents the best relationship between the reference set and
the objective solutions.


Fig. 3 shows an example of how the selection technique
works. In this case, each reference point is represented by a
white square and the optimal solution of the LAP is indicated
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Fig. 3. Example of our proposed selection mechanism based on IGD+ and
the Hungarian Algorithm for DTLZ1 with 20 reference points.


using black circles. Our proposed selection mechanism works
in the same manner as the one proposed in [17], but with one
important difference: here, the construction of the reference
set is performed at the beginning of the search and remains
static (i.e., without changes), whereas in [17], the reference
set is re-computed at each generation.


Finally, we adopt another way to reduce the size of the
current population Q (for more details see [15]). This selection
mechanism chooses the N best individuals from Q using
any performance indicator such as IGD, ∆p or IGD+. This
selection mechanism works as the one adopted by SMS-
EMOA, which discards one solution from the population.
In SMS-EMOA, the individual that is removed is the one
that minimizes the exclusive contribution of the hypervolume
indicator. The exclusive contribution of a solution using any
reference set indicator (Ix) is described as:


EIx(a,A,Z) = Ix(A\{a},Z). (11)


where A is the population and Z is the reference set. However,
this process works only if the cardinality of the offspring
population is one.


C. Approximating the Reference Set


There are several methods available for building the ref-
erence set. One of them was proposed by Menchaca et al.
in [16], and uses ε-dominance to establish a lower region.
They proposed to use an identification vector for splitting the
space into hypercubes. Each component of the vector keeps
the ε distance, which is established for each dimension of
the space. This is a novel approach but, unfortunately, it does
not provide solutions with a good (i.e., uniform) distribution.
There is another approach, which was proposed in [17], where
the authors tried to approximate the reference set using super-
spheres. In this case, the authors departed from the assumption
that the Pareto fronts are smooth convex or concave surfaces.
They showed that it is possible to calculate the curve by
applying Newton’s method. Although that approach solves
MOPs in which the Pareto front is either linear, concave or
convex, it does not work with degenerate Pareto fronts.


In this paper, we aim to analyze the impact of using different
selection mechanisms based on reference sets. For this reason,
we used a sample of the true Pareto front, which was randomly
generated with 3000 points. The size of the reference set was
also reduced to N points. Indeed, we selected the N points
that maximize the hypervolume indicator. In order to do this,
we adopted a greedy algorithm based on the hypervolume
contributions to reduce the number of reference points to a
certain specific size.


V. EXPERIMENTAL RESULTS


We compare the performance of the selection mechanisms
previously discussed. For this sake, each selection mechanism
was included into a general MOEA (see subsection IV-A). The
parameters of each MOEA used in our study were chosen in
such a way that we could do a fair comparison among them
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Fig. 4. Performance comparison among MOEAs, where each plot was
obtained from 30 independent executions solving DTLZ1 and DTLZ2 with 2
to 8 objectives.
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Fig. 5. Performance comparison among MOEAs, where each plot was
obtained by 30 independent executions solving DTLZ5 and DTLZ6 with 2 to
7 objectives.


and we could adopt the same evolutionary operators for each
version of the MOEA.


A. Test problems


For our comparative study, we adopted the Deb-Thiele-
Laumanns-Zitzler (DTLZ) test suite [21]. This set of problems
includes aspects such as separability and multifrontality which
make them more difficult to solve. We selected problems in
such a way that we had different Pareto front shapes such
as linear, concave and degenerate linear, since we aimed
to observe the impact of each of the selection mechanisms
previously discussed.


B. Methodology


For our comparative study, we decided to adopt the hyper-
volume indicator, which assesses both convergence to the true


TABLE I
REFERENCE POINTS USED TO COMPUTE THE HYPERVOLUME INDICATOR


FOR EACH DTLZ TEST PROBLEM.


Problem Reference points
DTLZ1 (1, 1, 1, . . . , 1)


DTLZ2-6 (2, 2, 2, . . . , 2)


Pareto front and maximum spread along it. Mathematically,
if Λ denotes the Lebesgue measure, the hypervolume can be
described as follows:


IH(A, ~yref ) = Λ


 ⋃
~y∈A


{~x| ~y ≺ ~x ≺ ~yref}


 (12)


where A is the approximation of the Pareto optimal front
and ~yref ∈ Rk denotes the reference point. To compute IH ,
we used the reference points shown in Table I. Additionally,
we also compared the running time of each version of MOEA,
which was measured in minutes.


C. Parameterization


In the DTLZ test suite, the total number of decision vari-
ables is given by n = m+ k − 1, where m is the number of
objectives and k was set to 5 for DTLZ1 and to 10 for DTLZ2
to DTLZ6. The number of objectives was set from 2 to 8.


The parameters of each MOEA used in our study were
chosen in such a way that the MOEAs were able to con-
verge to the true Pareto Front of the test instances adopted.
The distribution indexes for the SBX and polynomial-based
mutation operators [18], adopted by each MOEA, were set as:
ηc = 20 and ηm = 20, respectively. The crossover probability
was set to pc = 0.9 and the mutation probability was set to
pm = 1/L, where L is the number of decision variables. The
total number of function evaluations was not allowed to exceed
50,000. We used a population size of 110 individuals and we
iterated during 450 generations. For each MOEA, we used the
same reference set, which was generated for each test problem
(DTLZ1 to DTLZ6). Our experiments were run on a computer
with an Intel Core i5-3930k processor running at 2.70 GHz,
with 8GB of RAM.


D. Discussion of Results


Table II provides the average hypervolume over the 30
independent executions of each compared MOEA for each
instance of the DTLZ test suite. The best results are presented
in boldface and grey-colored cells show the second best
results. The running time is shown in parentheses. It is clear
that the winner in this experimental study is the IGD+-based
selection mechanism since the IGD+-based MOEAs were able
to outperform both the IGD-based MOEAs and the ∆p-based
MOEA in all the test problems in terms of the hypervolume
indicator.


We can observe in Figures 4 and 5 that the medians and
variances of all results are different, which means that the
differences obtained are statistically significant. Likewise, we







can see that the ∆p-based MOEA has a lower hypervolume
value than both the IGD+H-based MOEA and the IGD-H-
based MOEA. It is worth noting that, since ∆p adopts both
IGD and GD, the GD indicator affects the performance of the
∆p indicator. The reason is that GD calculates the average
distance from each solution to its closest reference point,
and this causes the selection mechanism based on the ∆p


indicator to select dominated solutions. For this reason, the
∆p-based MOEA is not able to converge. As can be ob-
served in Figures 4 and 5, the ∆p-based selection mechanism
incorporates a change between GD an IGD which makes
the variance to increase, since these two selection schemes
perform differently.


As shown in Table II, IGD+-H-MOEA and ExIGD+-
MOEA were able to outperform IGD-H-EMOA, ExIGD-
EMOA and Ex∆p-EMOA in all cases. These two approaches
(IGD+-H-MOEA and ExIGD+-MOEA) obtained similar re-
sults. Although IGD-H-EMOA works similarly to IGD+-H-
EMOA (since both incorporate the same selection mechanism
based on LAP, but have a different cost function), IGD-H-
EMOA was not able to converge to the true Pareto front,
whereas IGD+-H-EMOA was able to do it. The main reason
for this is that the use of the Euclidean distances affects the
dominance relation because the calculation of the Euclidean
distance is inconsistent with the Pareto dominance relation
when the reference point does not dominate the solutions.
This makes the IGD-based selection mechanism to choose
solutions which are close to the reference set, and avoids
selecting nondominated solutions. ExIGD-EMOA and Ex∆p-
EMOA are unable to converge to the Pareto front in DTLZ5
and DTLZ6 with 5, 6, 7 and 8 objectives since the use of
Euclidean distances affects their selection mechanisms.


The main reason for which the IGD+-based MOEAs
showed a better performance than MOEAs based on IGD and
∆p, is the incorporation of the modified Euclidean distance
since this distance adopts an inferiority vector, which can be
viewed as the minimum amount of the increase from a z refer-
ence point so that the result vector is weakly dominated by the
objective point. That modification makes possible to consider
non-dominated points when the IGD+ indicator is used as
our selection mechanism. The modified Euclidean distance
solves the drawbacks of IGD and ∆p. We showed that the
use of the modified Euclidean distance significantly improves
the performance of the selection mechanism. Notwithstanding,
the running time of ExIGD+-EMOA is higher than that of
IGD+-H-EMOA.


Table II indicates that IGD+-H-EMOA has the lowest
running times. However, ExIGD+-EMOA was able to solve
the test problems adopted in a reasonably low running time
(particularly for the instances having 2 and 3 objectives).


Figures 6 and 7 present a graphical representation of the
running time of each MOEA for DTLZ1 and DTLZ5. These
plots correspond to the average time value from 30 indepen-
dent executions. We can observe that the LAP reduces the
running time of a MOEA since the optimal solution of the
LAP guarantees the best relationship between the reference
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Fig. 6. Graph showing the running time of each MOEA for DTLZ1.
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Fig. 7. Graph showing the running time of each MOEA for DTLZ5.


point and the solutions. This allows this selection mechanism
to converge faster than the use of the Exclusive-based selection
mechanism.


Thus, IGD+-H-EMOA is computationally cheaper than
ExIGD-EMOA, ExIGD+-EMOA and Ex∆p-EMOA. It is
worth indicating that IGD+-H-EMOA is able to achieve a
significant speed up (of up to 200x) with respect to ExIGD+-
EMOA. This confirms that the use of a selection mechanism
based on IGD+ is an effective way to solve some many-
objective problems.


VI. CONCLUSIONS AND FUTURE WORK


We have proposed several selection mechanisms for
indicator-based MOEAs which use a reference set. The core
idea of our proposed algorithm is to adopt the IGD+ per-
formance indicator in the selection mechanism of a MOEA.
Here, we showed that the use of the modified Euclidean dis-
tance significantly improves the performance of the selection







TABLE II
RESULTS OBTAINED IN THE DTLZ TEST PROBLEMS BY EACH MOEA. WE COMPARED THE PERFORMANCE OF EACH MOEA USING THE HYPERVOLUME
INDICATOR. THE VALUES IN PARENTHESES CORRESPOND TO THE COMPUTATIONAL TIME (MEASURED IN MINUTES) REQUIRED BY EACH EXECUTION OF


THE MOEAS COMPARED. THIS TABLE WAS OBTAINED FROM 30 INDEPENDENT RUNS. ALL THE ALGORITHMS WERE COMPILED USING THE GNU C
COMPILER AND THEY WERE EXECUTED ON THE SAME COMPUTER.


IGD+-H-EMOA IGD-H-EMOA ExIGD+-EMOA ExIGD-EMOA Ex∆p-EMOA
m DTLZ1
2 0.87343 ( 0.0117 min) 0.87345 ( 0.0126 min) 0.87358 ( 2.8401 min) 0.87345 ( 2.8238 min) 0.86872 ( 1.9446 min)
3 0.97371 ( 0.0674 min) 0.97338 ( 0.0738 min) 0.97386 ( 3.7193 min) 0.97351 ( 4.075 min) 0.97266 ( 4.9237 min)
4 0.99379 ( 0.1442 min) 0.99353 ( 0.1411 min) 0.99386 ( 4.5933 min) 0.99308 ( 4.3992 min) 0.99121 ( 8.3803 min)
5 0.99371 ( 0.2163 min) 0.99275 ( 0.2103 min) 0.99404 ( 5.6831 min) 0.99223 ( 5.6811 min) 0.99045 ( 12.1779 min)
6 0.99054 ( 0.2517 min) 0.98847 ( 0.2612 min) 0.99057 ( 5.2241 min) 0.98726 ( 5.1929 min) 0.98831 ( 14.1643 min)
7 0.99776 ( 0.2471 min) 0.99592 ( 0.2386 min) 0.99783 ( 7.4982 min) 0.99479 ( 7.3405 min) 0.99462 ( 18.6716 min)
8 0.99586 ( 0.2801 min) 0.99344 ( 0.2792 min) 0.9958 ( 6.9452 min) 0.9921 ( 7.0153 min) 0.99168 ( 18.8965 min)


DTLZ2
2 3.21147 ( 0.0125 min) 3.21151 ( 0.0113 min) 3.21156 ( 4.7688 min) 3.21153 ( 4.7642 min) 3.12112 ( 3.8215 min)
3 7.43104 ( 0.0301 min) 7.43073 ( 0.0276 min) 7.43113 ( 5.9651 min) 7.4308 ( 7.2221 min) 7.42677 ( 8.182 min)
4 15.58708 ( 0.0451 min) 15.5851 ( 0.0396 min) 15.58732 ( 6.2784 min) 15.5852 ( 6.3927 min) 15.58049 ( 9.9203 min)
5 31.69208 ( 0.0559 min) 31.68537 ( 0.0477 min) 31.69251 ( 8.1911 min) 31.68585 ( 8.4751 min) 31.68244 ( 13.9195 min)
6 63.76177 ( 0.0608 min) 63.74695 ( 0.0482 min) 63.76286 ( 9.2453 min) 63.74789 ( 9.2507 min) 63.71765 ( 18.4489 min)
7 127.81248 ( 0.0725 min) 127.78877 ( 0.054 min) 127.81384 ( 10.7463 min) 127.7894 ( 10.9737 min) 127.76065 ( 20.8394 min)
8 255.83892 ( 0.0756 min) 255.76216 ( 0.059 min) 255.84114 ( 11.7623 min) 255.76964 ( 18.0689 min) 255.71304 ( 21.9143 min)


DTLZ5
2 3.21127 ( 0.0167 min) 3.21123 ( 0.0138 min) 3.21131 ( 7.2897 min) 3.21131 ( 7.3568 min) 3.132 ( 4.0653 min)
3 6.1043 ( 0.0255 min) 6.10427 ( 0.021 min) 6.10436 ( 4.4098 min) 6.10441 ( 5.388 min) 5.92074 ( 5.0434 min)
4 12.00938 ( 0.0462 min) 12.00646 ( 0.0323 min) 12.00975 ( 4.6598 min) 12.00786 ( 4.6972 min) 11.92451 ( 8.201 min)
5 23.82496 ( 0.0476 min) 23.81727 ( 0.0332 min) 23.82717 ( 6.24 min) 23.81817 ( 6.2444 min) 23.75192 ( 12.6418 min)
6 47.39216 ( 0.0496 min) 47.35934 ( 0.0365 min) 47.39692 ( 7.0745 min) 47.36511 ( 7.2339 min) 46.70794 ( 14.7261 min)
7 91.66916 ( 0.0653 min) 91.47108 ( 0.0468 min) 91.66848 ( 8.3923 min) 91.45174 ( 8.5274 min) 89.56395 ( 16.1746 min)
8 145.92603 ( 0.107 min) 145.63295 ( 0.0765 min) 145.87716 ( 8.555 min) 135.55127 ( 8.6648 min) 126.21945 ( 17.3731 min)


DTLZ6
2 3.08569 ( 0.0303 min) 3.0933 ( 0.031 min) 3.09634 ( 3.7122 min) 3.08765 ( 3.6532 min) 2.9441 ( 6.0076 min)
3 5.9579 ( 0.2248 min) 5.91691 ( 0.1842 min) 5.94636 ( 2.4423 min) 5.85907 ( 2.4041 min) 5.72483 ( 5.5973 min)
4 11.50411 ( 0.3443 min) 11.53968 ( 0.2563 min) 11.62126 ( 3.9025 min) 0 ( 3.9697 min) 11.92451 ( 7.6791 min)
5 21.77326 ( 0.3251 min) 21.6063 ( 0.2376 min) 22.29951 ( 5.6863 min) 0 ( 5.6109 min) 0 ( 12.0119 min)
6 41.68516 ( 0.3037 min) 40.5511 ( 0.2284 min) 41.98876 ( 6.5304 min) 0.56907 ( 6.7096 min) 2.36595 ( 13.8672 min)
7 84.29418 ( 0.3171 min) 81.75814 ( 0.2262 min) 84.2936 ( 7.5512 min) 0 ( 7.441 min) 0 ( 15.1196 min)


mechanism. Additionally, the transformation of the selection
mechanism into a LAP reduces the running time, which
makes possible a significant speed up (of up to 200x). Our
experimental results showed that a selection mechanism based
on ∆p has some drawbacks when it tries to solve problems
with degenerate Pareto fronts. This selection mechanism was
not able to solve degenerate multi-objective problems with
more than 5 objectives. As can be observed, the Pareto
compliant property between two-objective vectors is of utmost
importance and improves the performance of the selection
mechanism of a MOEA. Our preliminar experimental results
proved that IGD+-based selection mechanism is an effective
way to solve some many-objective problems and it would be
interesting to test with more multi-objective test suite. As part
of our future work, we are interested in developing a new
technique for building the reference set during the evolutionary
process.
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