

An Improved Version of a Reference-Based Multi-Objective
Evolutionary Algorithm based on IGD+


Edgar Manoatl Lopez


CINVESTAV-IPN (Evolutionary Computation Group)


MÉXICO, México D.F.


emanoatl@computacion.cs.cinvestav.mx


Carlos A. Coello Coello


CINVESTAV-IPN (Evolutionary Computation Group)


MÉXICO, México D.F.


ccoello@cs.cinvestav.mx


ABSTRACT
In recent years, the design of new selectionmechanisms has become


a popular trend in the development of Multi-Objective Evolutionary


Algorithms (MOEAs). This trend has been motivated by the aim of


maintaining a good balance between convergence and diversity of


the solutions. Reference-based selection is, with no doubt, one of


the most promising schemes in this area. However, reference-based


MOEAs are known to have difficulties for solving multi-objective


problems with complicated Pareto fronts, mainly because they rely


on the consistency between the Pareto front shape and the distri-


bution of the reference weight vectors. In this paper, we propose


a reference-based MOEA, which uses the Inverted Generational


Distance plus (IGD
+
) indicator. The proposed approach adopts a


novel method for approximating the reference set, based on an


hypercube-based method. Our results indicate that our proposed


approach is able to obtain solutions of a similar quality to those


obtained by RVEA, MOEA/DD, NSGA-III and MOMBI-II in several


test problems traditionally adopted in the specialized literature, and


is able to outperform them in problems with complicated Pareto


fronts.
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1 INTRODUCTION
A large number of real-world problems have several objectives


(which are often in conflict with each other) that need to be op-


timized at the same time. These are the so-called Multi-objective
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Optimization Problems (MOPs) and their solution involves finding


the best possible trade-offs among all the objectives. This set of


trade-offs, when defined in decision variable space, is known as the


Pareto optimal set (PS). The image of the Pareto optimal set is called


the Pareto optimal front (PF ). Recently, Multi-Objective Evolution-


ary Algorithms (MOEAs) have become an increasingly common


approach for solving MOPs, mainly because of their conceptual


simplicity, ease of use and efficiency.


For several years, MOEAs adopted selection mechanisms based


on Pareto optimality. However, it has been found that Pareto-based


MOEAs can not properly solve many-objective problems (problems


with more than three objectives) [15]. This has motivated the de-


velopment of new strategies for dealing with many-objective prob-


lems such as reference-based MOEAs [4, 7, 17, 18]. Reference-based


MOEAs can be classified into two main groups: (1) decomposition-


based MOEAs and (2) indicator-based MOEAs which rely on the


use of reference sets. Decomposition-based MOEAs transform a


MOP into a group of sub-MOPs, where each sub-MOP is defined


by a reference weight point. Each sub-MOP is optimized simulta-


neously by a single-objective optimizer [26]. This sort of MOEAs


have shown to be better than Pareto-based MOEAs both in tradi-


tional MOPs and in many-objective problems. However, the main


drawback of decomposition-based MOEAs is that the diversity of


its selection mechanism is controlled explicitly by the reference


weight vectors. This is because each weight vector corresponds to


one subproblem to be solved. On the other hand, MOEAs based on


the hybridization of a reference set and an performance indicator


have shown to be promising schemes for solvingmany-objective op-


timization problems [11, 12, 19]. When compared to hypervolume-


based MOEAs
1
[1, 27], indicator-based reference-based MOEAs


have a significantly lower computational cost and are able to obtain


approximations of a similar quality to hypervolume-based MOEAs.


Although effective and suitable for many-objective optimization,


reference-based MOEAs in general require the generation of a set


of reference weight vectors, analogously to decomposition-based


MOEAs. In general, if the set of weight vectors and the Pareto


front of a MOP share the same distribution, it is possible to obtain


well-distributed approximations. There is, however, experimental


evidence that indicates that theweight vectorsmost commonly used


by these MOEAs adopt a simplex-like shape. This sort of scheme


works well for Pareto fronts with regular shapes (e.g., a triangle


or a sphere). Unfortunately, this scheme doesn’t work properly


with some complicated Pareto fronts (e.g., disconnected, degener-


ate, inverted simplex-like or badly-scaled). Empirical studies have


1
The main drawback of hypervolume-based MOEAs is the high computational cost as-


sociated with the computation of the exact hypervolume contributions, which becomes


unaffordable when trying to solve many-objective optimization problems.
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shown that decomposition-based MOEAs and some indicator-based


MOEAs have difficulties to solve these MOPs with complicated


Pareto fronts. This motivated the work reported here, in which we


propose a novel MOEA that transforms its selection mechanism


into a Linear Assignment Problem (LAP), and adopts the Inverted


Generational Distance plus (IGD
+
) indicator as a cost function of


the LAP. In order to compute the IGD
+
indicator, we also incor-


porate an adaptive method for building the reference point set.


This method is based on the creation hypercubes. We show that


the resulting MOEA has a competitive performance with respect


to state-of-the-art MOEAs, and that is able to properly deal with


MOPs having complicated Pareto fronts.


The remainder of this paper is organized as follows. Section 2 pro-


vides some basic concepts related to multi-objective optimization.


The most relevant previous related work is described in Section 3.


Our proposed approach is shown in Section 4. Our methodology


is presented in Section 5. Section 6 presents our discussion results.


Finally, our conclusions and some possible paths for future research


are provided in Section 7.


2 BASIC CONCEPTS
Formally a MOP in terms of minimization is defined as:


minimize f⃗ (x⃗ ) := [f1 (x⃗ ), f2 (x⃗ ), . . . , fm (x⃗ )]⊤ (1)


subject to:


дi (x⃗ ) ≤ 0, i = 1, 2, . . . ,p (2)


hj (x⃗ ) = 0, j = 1, 2, . . . ,q (3)


where x⃗ = [x1,x2, . . . ,xn] is the vector of decision variables, fk :


Rn → R, k = 1, . . . ,m are the objective functions andдi ,hj : R
n →


R, i = 1, . . . ,p, j = 1, . . . ,q are the constraint functions of the prob-


lem. Next, we introduce some definitions that will be used in the


paper.


Definition 1. Let x⃗ , y⃗ ∈ Rm , we say that x⃗ “dominates” y⃗ (de-
noted by x⃗ ≺ y⃗ ), if and only if: i) xi ≤ yi for all i ∈ {1, . . . ,m} and
ii) x j < yj for at least one j ∈ {1, . . . ,m}.


Definition 2. We say that a vector of decision variables x⃗ ∈ X ⊂
Rn is “non-dominated” with respect to X and f⃗ , if there does not
exist another x⃗ ′ ∈ X such that f⃗ (x⃗ ′) ≺ f⃗ (x⃗ ).


Definition 3. We say that a vector of decision variables x⃗ ∈
F ⊂ Rn (where F is the feasible region) is “Pareto optimal” if it is
non-dominated with respect to F and f⃗ .


Definition 4. The “Pareto Optimal Set” P∗ is defined by:


P∗ = {x⃗ ∈ F |x⃗ is Pareto optimal}


Definition 5. The “Pareto Front” PF ∗ is defined as follows:


PF ∗ = { f⃗ (x⃗ ) ∈ Rm |x⃗ ∈ P∗}


Since we adopt the IGD
+
indicator, we will proceed to define it.


The IGD
+
indicator evaluates the quality of an objective vector


using a reference set. According to [14], the IGD
+
indicator is


defined as follows:


IGD
+ (A,Z) =


1


|Z|


*.
,


|Z |∑
j=1


ˆdj + (z⃗, a⃗)
p+/
-


1/p


(4)


where
ˆd is the nearest modified Euclidean distance from zj ∈ Z to


A and the modified Euclidean distance d+ (a⃗, z⃗) is defined as:


d+ (z⃗, a⃗) =


√
(max{a1 − z1, 0})2 + · · · + (max{am − zm , 0})2. (5)


Therefore, a lower IGD
+
value means that the set A constitutes


a better approximation to the real PF if we consider the reference


set to be PF T rue . This indicator was shown to be weakly Pareto


compliant and presents some evident advantages with respect to


the original Inverted Generational Distance (IGD) [6] (for more


details about IGD
+
, see [14]).


3 PREVIOUS RELATEDWORK
Next, we will briefly discuss some reference-based MOEAs. Our


discussionwill focus specifically on approaches that adopt reference


weight vectors for leading the optimization process. The approaches


discussed are divided in two main groups: (a) decomposition-based


MOEAs and (b) indicator-based MOEAs which rely on the use of


reference sets.


The Multi-objective Evolutionary Algorithm Based on Decomposi-
tion (MOEA/D) [26] is the best well-known decomposition-based


MOEA. MOEA/D divides the whole PF into a group of sub-spaces,


each of which can be regarded as a sub-MOP. Another example of


MOEA that belongs in this category is NSGA-III [7], which uses a


distributed set of reference points tomanage the diversity of the can-


didate solutions, whose aim is to improve convergence. There is also


an extension of MOEA/D which includes the Pareto dominance re-


lation to select candidate solutions. This MOEA is called MOEA/DD


[17], and is able to outperform the original MOEA/D, particularly


in many-objective problems (the authors of MOEA/DD validated it


with unconstrained and constrained benchmark problems having


up to 15 objectives). The Reference Vector Guided Evolutionary Al-
gorithm (RVEA) [4] is a very promising MOEA that provides very


competitive results in MOPs with complicated Pareto fronts. RVEA


incorporates a novel method to preserve good candidate solutions,


which consists of an adaptive technique for adjusting the reference


vectors in order to balance the convergence and diversity of the


solutions in high-dimensional objective spaces.


Regarding indicator-based MOEAs which rely on the use of ref-


erence sets, our discussion will focus specifically on approaches


that adopt either IGD
+
or ∆p


2
(both of which are based on the


use of reference sets). The first MOEA based on ∆p was DDE [21],


which uses differential evolution (DE) as its search engine. Its au-


thors showed that DDE was able to converge rapidly towards the


true Pareto front and that it could properly solve many-objective


problems. However, this approach had some limitations related to


2∆p is a Pareto non-compliant performance indicator which combines the indicators


called Generational Distance (GD) and Inverted Generational Distance (IGD), which


are able to assess both convergence and distribution of a Pareto front approximation


given a reference point set. For details on ∆p , see [6, 22].
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the use of ∆p (e.g., it does not properly work with multi-frontal and


degenerate MOPs). On the other hand, ∆p -EMOA [10] is another


approach based on the use of ∆p , which is inspired on SMS-EMOA


[1] and incorporates a novel mechanism for building the reference


set. This algorithm builds a reference point set by linearizing the


non-dominated front of the current population. ∆p -EMOA was


designed to solve only bi-objective problems. Nevertheless, there is


an extension of this approach, which is able to solve three-objective


problems [23]. Another approach based on the ∆p indicator is the


Reference Indicator-Based Evolutionary Multi-Objective Algorithm
(RIB-EMOA) [25]. This MOEA integrates a mechanism for build-


ing a reference set by using a family of curves. RIB-EMOA uses


a weight vector set for approximating the reference point set. Al-


though promising for many-objective optimization, this approach


is not able to solve MOPs with complicated Pareto fronts. Another


MOEA based on ∆p was proposed in [20]. This algorithm uses


ϵ-dominance in order to build a reference point set. This novel


algorithm was validated using standard test functions, having from


three to six objective functions. Its authors showed that this al-


gorithm is able to solve convex, concave and disconnected MOPs.


Additionally, they provided a promising solution to avoid the use


of reference weight vectors for guiding the optimization process.


In recent years, some researchers have proposed other types of


indicator-based reference-based MOEAs, such as R2-MOEA, which


is based on the R2 indicator [3]. Same as when using ∆p , the use of
R2 requires a reference set of weights in order to compute its value.


Another R2-basedMOEA is theMany Objective Meta-heuristic Based
on the R2 indicator (MOMBI) [11]. This algorithm adopts the use of


weight vectors and the R2 indicator [3], and both mechanisms lead


the optimization process. Although MOMBI is very competitive, it


loses diversity in high dimensionality. This motivated the develop-


ment of an improved version of this approach, calledMOMBI-II [12],


which uses a scalarizing function and statistical information for


selecting the candidate solutions. Recently, a new MOEA based on


the IGD
+
indicator, called IGD


+
-EMOA, was proposed in [18]. This


MOEA adopts a transformation to a Linear Assignment Problem


(LAP) into its selection mechanism. Its authors proposed a novel


technique for approximating the reference set, which is based on


the use of γ -supersphere curves. In spite of the good performance


of this approach in many-objective problems, it had difficulties for


solving MOPs with degenerate Pareto fronts. Here, we extend that


work by providing a novel method for approximating the refer-


ence point set using hypercubes. As we will see later on, this new


version of IGD
+
-EMOA is able solve many-objective optimization


problems with complicated Pareto front shapes. Our approach has


the following improvements. (1) An archiving process for preserv-


ing candidate solutions which will be form the reference set. (2) A


method for adapting the reference set in order to sample uniformly


the Pareto front. (3) A rule for updating the reference set.


4 OUR PROPOSED APPROACH
4.1 General Framework
The general framework of a MOEA adopted in this paper starts with


a population P0 which contains N randomly generated individu-


als. A new offspring is created by choosing two different parents


from P. The parents are recombined using evolutionary operators.
3


After that, the resulting offspring are added to the new set. This


process is executed until having a total of λ offspring. Thereafter,


the algorithm combines the parents and the offspring populations


to form the so-called A set. In order to select the next population,


we apply our LAP-based selection mechanism.


4.2 Selection Mechanism
Since, we intend to use the IGD


+
indicator in the selection mecha-


nism of our MOEA, we adopt the same selection mechanism pro-


posed by IGD
+
-EMOA [19]. This selection mechanism transforms


the environmental selection mechanism into a Linear Assignment


Problem (LAP). In order to explain this technique, we need to pro-


vide first more details about the LAP. The LAP is the problem of


choosing an optimal assignment of n items (e.g., jobs) to m ma-


chines (or workers). Mathematically, the LAP can be expressed as:


Given two sets, A = {a1, . . . ,an } and T = {t1, . . . , tn } with the


same cardinality, and a cost function C : A × T → R and having


Φ : A→ T as the set of all bijections between A and T . So, the LAP
can be formulated as follows:


min


ϕ∈Φ


∑
a∈A


C (a,Φ(a)) (6)


Normally, the cost of the problem is also described as a squared


matrix C , where each element Ci, j = C (ai , tj ) represents the rela-
tionship between ai and tj . Thus, the cost matrix in terms of a MOP


is created as:


Ci, j = d
+ (ai , zj ), i = 1, . . . , |A|, j = 1, . . . , |Z|. (7)


where a⃗i ∈ A is the ith vector point from the populationA, z⃗j ∈ Z
is the reference point and d+ is the modified Euclidean distance.


In order to solve the LAP, we use an extension of Kuhn-Munkres’


Algorithm for rectangular matrices [2], which is able to solve LAP


instances in polynomial time (O (n3)) [16]. The extension to rect-


angular matrices allows the selection mechanism to operate in


situations where the number of reference points and individuals


from the population are not equal. The optimal solution to our


assignment problem corresponds to the best relationship between


the current points of the population and the elements of a refer-


ence set. In order to build the reference point set, the algorithm


consists of two main procedures: a procedure to maintain non-


dominated solutions into an archive and a mechanism to remove


non-candidate solutions with a poor distribution from the archive.


Next, we provide more detail about these two procedures.


4.3 Archiving Process
The archive has a pre-set capacity to store the non-dominated


solutions, and the maximum number of solutions that are allowed in


the archive is defined by a specificp value.When the archive reaches


its maximum capacity, the approximation reference algorithm is


executed for selecting candidate solutions (these candidate solutions


will form the so-called reference set). After that, the archive is cleared
and the archiving process continues until reaching a maximum


number of generations. It is worth mentioning that the archiving


process is applied at each generation of the MOEA.


3
In our implementation, we adopted SBX (Simulated Binary Crossover) and Polynomial-


based Mutation [8].
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4.4 Building the Reference Set
In IGD


+
-EMOA, we aim to select the best reference points whose


directions are promising (i.e., directions with good distribution and


spread). In order to do that, we adopted a greedy algorithm based on


the hypercube contributions to select a certain number of reference


points from the archive. This greedy algorithm executes a density


estimator for computing the hypercubes. Its pseudo-code is shown


in Algorithm 1. The algorithm is organized as three consecutive


loops, and is invoked with a set of non-dominated candidate points


(called A set) and the maximum number of reference points that


we aim to find. In the first loop, we create a set of initial candidate


solutions to form the so-called Q set. Thus, the solutions from A


that form part of Q, will be removed fromA. After that, the greedy


algorithm starts to find the best candidate solutions which will form


the reference setZ. In order to find the candidate reference points,


the selection mechanism computes the hypercube contributions of


the current reference set Q.


Algorithm 1: ComputeReferenceSet(A, zsize )


Input: A current non-dominated set A ⊂ Rm and maximum


number of reference points zsize .
Output: Reference point setZ ⊂ Rm with |Z| = zsize
yr ef ← FindMaxValue (A) + ϵ ;
Q ← {};


while |Q| < (zsize + 1) do
a⃗ ← pop (A);
Q
⋃
{a⃗} ;


end while
while A! = {} do
i ← 0;


maxHypercube ← HCB (Q,yr ef );


for each q⃗ ∈ Q do
ContHyperCube[i]←maxHypercube−HCB (Q\{q⃗},yr ef );


i ← i + 1;
end for
imin ← argminContHyperCube;
Q\{qimin };


a⃗ ← pop (A);
Q
⋃
{a⃗};


end while
Z ← {};


for each q⃗ ∈ Q do
Z
⋃
{q⃗ ∗ ϵ − l⃗ };


end for
returnZ;


Once this is done, we remove the ith solution that minimizes


the hypercube value and we add a new candidate solution from A


to Q. This process is executed until the cardinality of A is equal to


zero. In the last loop, we apply the expand and translate operations.
These operations transform the surface for spreading the reference


set along objective function space.


A hypercube is generated by the union of all the maximum vol-


umes covered by a reference point. The ith maximum volume is


described as “the maximum volume generated by a set of candidate


points” (these candidate points are obtained from the archive and


a reference point yr ef ). The hypercube is computed using Algo-


rithm 2.


Algorithm 2: HCB(Q,yr ef )


Input: A current set Q ⊂ Rm and a reference point yr ef
Output: Hypercube value


if |Q| = 1 then
return vol(Q,yr ef );


end if
VolList ← {};
for each p⃗ ∈ Q ′ do
VolList


⋃
{vol (p⃗,yr ef )};


end for
imax ← argmaxVolList ;
q⃗max ← Q[imax ] ;


Y ← SplitReferencePoint (q⃗max ,yr ef );


Q\{q⃗max };


hypercube ← 0;


for each y⃗new ∈ Y do
Qnew ← CoverPoints (Q, y⃗new );
hypercube ← hypercube + HCB (Qnew , y⃗new );


end for
return hypercube +max (VolList );


In the first part of Algorithm 2, we validate if Q contains one


element. If that is the case, we compute the volume generated


by yr ef and q⃗ ∈ Q. Otherwise, we compute the union of all the


maximum hypercubes. In order to apply this procedure, we find the


vector ⃗qmax that maximizes the hypercube. Once this is done, we


createm reference points which will form the so-called Y . In order


to create the set Y , we combine the current reference point yr ef
and the point q⃗max . For each reference point from Y , we reduce


the set Q into a small subset in order to form the set Qnew , this


makes that we have to split any point from Q, whose components


are not covered by the y⃗new
4
. Once this is done, we proceed to


compute recursively the hypercube value of the new set formed by


the subset Qnew and the new reference point ynew . Algorithm 2


provides an efficient way of estimating the hypercube value. It is


worth noting that this value allows to measure the relationship


among each element of a non-dominated set.


4.5 Update Frequency
The timing and frequency of updating the reference set plays an


important role in this algorithm. The generated reference point


set does not always contribute in a good way because a frequent


updating can significantly affect the performance of the algorithm.


Therefore, we propose two additional mechanisms for updating the


reference set. The first one consists in updating the reference set if


the variance of the hypercube contribution of the new reference


set is lower than the variance of the previous reference set. In the


second mechanism, if the hypercube value of the previous reference


4
In order to split the i


th
point from set Q, we invoke the method "CoverPoints"
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Table 1: Main properties of the 18 test problems adopted


Properties Problems


Linear DTLZ1


Convex and Concave DTLZ2-3, MAF2-5, WFG1


Inverted Simplex-like MAF1


Disconnected DTLZ7, WFG2


Degenerate DTLZ5-6, VNT2-3, WFG3


Badly-scaled MAF4-5


set is less than the hypercube value of the new reference set, then


the new reference set is replaced by the previous one. It is worth


indicating that these two mechanisms are adopted in our proposed


approach.


5 EXPERIMENTAL STUDY
We compare the performance of our IGD


+
-EMOA with respect


to that of four state-of-the-art MOEAs: NSGA-III [7], RVEA [4],


MOMBI-II [12] and MOEA/DD [17]. These MOEAs had been found


to be competitive on MOPs with a variety of Pareto front shapes.


5.1 Test problems
We aimed to study the performance of our proposed approach


when solving MOPs with complicated Pareto front shapes. For this


reason, we selected 18 test problems with a variety of representative


Pareto front shapes from some well-known and recently proposed


test suites (i.e., the DTLZ test suite [9], the WFG test suite [13],


the MAF test suite [5] and the VNT test suite [24]). Based on the


properties of their Pareto fronts, we categorized the test problems


adopted into different groups: convex, concave, inverted simplex-


like, disconnected, degenerate and badly-scaled (see Table 1).


5.2 Methodology
For our comparative study, we decided to adopt the hypervolume


indicator, which assesses both convergence and maximum spread


along the Pareto front. If Λ denotes the Lebesgue measure, the


hypervolumen can be described as follows:


IH (A, ⃗yr ef ) = Λ *.
,


⋃
y⃗∈A


{x⃗ | y⃗ ≺ x⃗ ≺ ⃗yr ef }
+/
-


(8)


whereA is the approximation of the Pareto optimal set and ⃗yr ef ∈


Rk denotes the reference point. To compute IH , we used the refer-


ence points shown in Table 2.


5.3 Parameterization
In the DTLZ and MAF test suites, the total number of decision


variables is given by n =m+k − 1, wherem is the number of objec-


tives and k was set to 5 for DTLZ1, MAF1 and to 10 for DTLZ2-6,


and MAF2-5. The number of decision variables in the WFG test


problems was set to 24, and the position-related parameter was set


tom − 1. The parameters of each MOEA adopted in our study were


chosen in such a way that we could do a fair comparison among


them. The distribution indexes for the SBX and polynomial-based


mutation operators [8], used by all algorithms, were set to: ηc = 20


Table 2: Reference points used for the hypervolume indica-
tor


Problem Reference point Problem Reference point


DTLZ1 (1,1,1) VNT1 (5, 6, 5)


DTLZ2-6 (2,2,2) VNT2 (5, -15, -11)


DTLZ7 (2, 2, 7) VNT3 (9, 18, 5)


MAF1-3 (2,2,2) WFG1 (3, 5, 7)


MAF4 (3,5, 9 ) WFG2 (2, 4, 7)


MAF5 (9, 5, 3 ) WFG3 (2, 3, 7)


and ηm = 20, respectively. The crossover probability was set to


pc = 0.9 and the mutation probability was set to pm = 1/L, where
L is the number of decision variables. The total number of function


evaluations was set in such a way that it did not exceed 60,000. In


MOEA/DD, MOMBI-II and NSGA-III, the number of weight vectors


was set to the same value as the population size. The population


size N is dependent on H which specifies the number of divisions


in objective space. H was set in such a way that N took a value


not greater than 120. In RVEA, the rate of changing the penalty


function and the frequency to conduct the reference vector adapta-


tion were set to 2 and 0.1, respectively. The main characteristics of


the hardware used for the experiments were the following: an Intel


Core i7-3930k CPU running at 2.30 GHz, with 8GB of RAM.


6 DISCUSSION OF RESULTS
Table 3 provides the average hypervolume over the 30 independent


executions of each compared MOEA for each instance of the DTLZ,


WFG, VNT and MAF test suites. The best results are shown in


boldface and grey-colored cells show the second best results. The


variance is shown in parentheses. The Wilcoxon rank sum test was


adopted to compare the results obtained by IGD
+
-EMOA and its


competitors at a significance level of 0.05, where the symbol “+”


indicates that the compared algorithm is significantly outperformed


by IGD
+
-EMOEA. On the other hand, the symbol “-” means that our


approach is significantly outperformed by its competitor. Finally, “


≈” means that there is no statistically significant difference between


the results obtained by IGD
+
-EMOA and the compared algorithm.


It is clear that the winner in this experimental study is our proposed


IGD
+
-EMOA since it was able to outperform MOEA/DD, RVEA,


MOMBI-II and NSGA-III in ten cases and in a few more, it obtained


very similar results to those of the best performer. Figures 1, 2, 3


and 4 present a graphical representation of the approximations


to the Pareto front obtained by each MOEA in some instances of


the MAF and VNT test problems adopted with 3 objectives. On


the MOPs with inverted Simplex-like Pareto fronts, IGD
+
-EMOA


showed a clear advantage over its competitors (see Figure 1). Fig-


ures 1.a to 1.e show that the solutions produced by all the MOEAs


adopted have a good coverage of the Pareto front. However, the


solutions of MOMBI-II and NSGA-III are not distributed very uni-


formly, while the solutions of RVEA and MOEA/DD are distributed


uniformly but their number is apparently less than their popula-


tion size. On MOPs with degenerate Pareto fronts, our proposed


approach had also a good performance. Table 3 indicates that IGD
+
-


EMOA was able to outperform its competitors in this type of MOPs
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since its solutions are distributed more uniformly (see Figure 3


which shows the results obtained for VNT2). MOMBI-II, RVEA


and IGD
+
-EMOA are able to obtain solutions of a similar quality


when they solve MOPs with badly-scaled Pareto fronts, but our


approach was not able to outperform MOMBI-II in MAF4. How-


ever, IGD
+
-EMOA was better than its competitors when solving


MAF5. On the other hand, it is well-known that MOMBI-II, RVEA


and NSGA-III can solve efficiently MOPs with simplex-like Pareto


fronts. In this regard, it is worth mentioning that in these MOPs,


our proposed IGD
+
-EMOA was able to obtain approximations of


a similar quality to those obtained by its competitors. For DTLZ7,


IGD
+
-EMOA did not perform better than the other MOEAs. The


reason is probably that the Pareto front shape of this problem is


disconnected, which makes the approximations produced by our


approach to converge to a single region. We can see in Table 3 that


the variance obtained by IGD
+
-EMOA increases significantly in


this MOP. We can conclude that the construction of our reference


point set is very sensitive to this sort of scenarios, which is a clear


weakness of our proposed approach.


Table 4 shows a preliminary study on degenerate many-objective


problems by considering DTLZ5 with 3 up to 10 objectives. We


can see that our proposed approach significantly outperformed


its competitors, since MOMBI-II, RVEA, MOEA/DD and NSGA-III


were not able to converge to the true Pareto front as the number of


objectives was increased.We can see in Table 4 that the performance


of MOMBI-II, RVEA, MOEA/DD and NSGA-III is not consistent


when the number of objectives is greater than 8. Figure 6 presents


a graphical representation (using parallel coordinates plots) of the


approximations of the Pareto front obtained by each MOEA solving


DTLZ5 with 10 objectives. We can see that our proposed IGD
+
-


EMOA was able to obtain the best results in terms of Hypervolume


indicator, which makes it that our approach can solve MOPs with


degenerate shapes even in many-objective instances.


7 CONCLUSIONS
We have proposed a reference-based MOEA for solving many-


objective problems with a particular emphasis on those having


complicated Pareto front shapes. The core idea of our proposed


approach is to adopt the IGD
+
performance indicator in its se-


lection mechanism. Additionally, our proposal introduces a novel


method for building the reference set which is based on the use


of hypercubes
5
. Our results indicate that the use of hypercubes


significantly improves the performance of IGD
+
-EMOA. As can be


observed, the reference set is of utmost importance since our ap-


proach guides its search process using a set of reference points. Our


preliminary results indicate that IGD
+
-EMOA is very competitive


with respect to MOMBI-II, RVEA, MOEA/DD and NSGA-III, being


able to outperform them in more than 50 percent of the 18 bench-


mark problems adopted. Based on such results, we claim that our


proposed approach is a competitive alternative to deal with MOPs


having complicated Pareto front shapes, even in high-dimensional


objective spaces. As part of our future work, we are interested in


studying the sensitivity of our proposed approach to the reference


5
The source code of our proposed approach is available from the first author, upon


request.


set, with the aim of addressing the main weakness that was iden-


tified in our comparative study (i.e., disconnected Pareto fronts).


Furthermore, we are also interested in incorporating a local search


mechanism into our proposed MOEA, with the aim of improving


its performance.
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Figure 1: Graphical representation of the final set of solutions obtained by each MOEA on MAF1 with 3 objectives
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Figure 2: Graphical representation of the final set of solutions obtained by each MOEA on MAF2 with 3 objectives
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Figure 3: Graphical representation of the final set of solutions obtained by each MOEA on VNT2 with 3 objectives


 0 1 2 3 4 5 6 7 8 9


 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5


 0


 0.5


 1


 1.5


 2


 2.5


f3


f1f2


f3


(a) IGD+-EMOA


 0 1 2 3 4 5 6 7 8


 0  0.5  1  1.5  2  2.5  3  3.5  4


 0


 0.2


 0.4


 0.6


 0.8


 1


 1.2


 1.4


 1.6


 1.8


 2


f3


f1f2


f3


(b) MOMBI-II


 0 1 2 3 4 5 6 7 8 9


 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5


 0


 0.5


 1


 1.5


 2


 2.5


f3


f1f2


f3


(c) NSGA-III


 0 1 2 3 4 5 6 7 8 9


 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5


 0


 0.5


 1


 1.5


 2


 2.5


f3


f1f2


f3


(d) RVEA


 0 1 2 3 4 5 6 7 8 9


 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5


 0


 0.5


 1


 1.5


 2


 2.5


f3


f1f2


f3


(e) MOEA/DD


Figure 4: Graphical representation of the final set of solutions obtained by each MOEA on MAF5 with 3 objectives
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Figure 5: Graphical representation of the final set of solutions obtained by each MOEA on WFG3 with 3 objectives
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Table 3: Performance comparison among several MOEAs using the average hypervolume indicator obtained from 30 indepen-
dent executions solving 18 benchmark problems.


Problems MOMBI-II RVEA MOEA/DD IGD+-EMOA NSGA-III


DTLZ1 0.96622 ( 0.000001 ) + 0.66911 ( 0.000152 ) + 0.97379 ( 0.000000 ) ≈ 0.97381 ( 0.000000 ) 0.96256 ( 0.001064 ) +


DTLZ2 7.36755 ( 0.000028 ) + 7.42224 ( 0.000000 ) + 7.42225 ( 0.000000 ) + 7.42736 ( 0.000016 ) 7.41893 ( 0.000000 ) +


DTLZ3 7.38843 ( 0.000084 ) - 7.40582 ( 0.000084 ) - 7.4118 ( 0.000047 ) - 7.2211 ( 0.006505 ) 7.38048 ( 0.000258 ) -


DTLZ4 7.3593 ( 0.036144 ) - 7.42226 ( 0.000000 ) - 7.42224 ( 0.000000 ) - 6.76942 ( 0.236529 ) 7.10506 ( 0.227356 ) ≈


DTLZ5 6.00978 ( 0.000000 ) + 5.9632 ( 0.000369 ) + 6.02456 ( 0.000062 ) + 6.1033 ( 0.000000 ) 5.84002 ( 0.05518 ) +


DTLZ6 5.79608 ( 0.00523 ) + 5.13815 ( 0.016264 ) + 5.6037 ( 0.006442 ) + 5.92189 ( 0.005444 ) 5.49135 ( 0.023354 ) +


DTLZ7 13.37473 ( 0.000091 ) - 13.0605 ( 1.283746 ) ≈ 12.99409 ( 0.015542 ) ≈ 12.37989 ( 2.217964 ) 13.32733 ( 0.002554 ) ≈


VIE1 61.44939 ( 0.000533 ) + 60.51323 ( 0.011862 ) + 60.55111 ( 0.021176 ) + 61.98616 ( 0.000514 ) 61.19214 ( 0.011932 ) +


VIE2 7.79702 ( 0.000001 ) + 7.7712 ( 0.000368 ) + 7.80468 ( 0.000037 ) + 7.84583 ( 0.000012 ) 7.77446 ( 0.000935 ) +


VIE3 15.11767 ( 0.000262 ) + 15.03082 ( 0.000422 )+ 15.06016 ( 0.000114 ) + 15.16248 ( 0.000258 ) 15.12629 ( 0.000502 ) +


MAF1 5.44926 ( 0.000019 ) + 5.37408 ( 0.000659 ) + 5.37139 ( 0.00009 ) + 5.50322 ( 0.000193 ) 5.4129 ( 0.000875 ) +


MAF2 5.08952 ( 0.000056 ) + 5.1583 ( 0.000058 ) - 5.11373 ( 0.000003 ) + 5.13305 ( 0.000019 ) 5.09758 ( 0.000043 ) +


MAF3 7.90637 ( 0.000043 ) - 7.91154 ( 0.004847 ) - 7.64261 ( 1.915744 ) + 7.79256 ( 0.020172 ) 7.89441 ( 0.00452 ) -


MAF4 84.87316 ( 0.151259 ) ≈ 83.53436 ( 29.511151 ) ≈ 51.80943 ( 1120.296924 ) + 84.46979 ( 2.762969 ) 83.73257 ( 1.377427 ) ≈


MAF5 95.97704 ( 52.294491 ) + 96.66782 ( 53.122845 ) + 96.95207 ( 0.017991 ) + 98.27521 ( 0.000549 ) 88.72762 ( 237.475764 ) +


WFG1 50.38691 ( 7.353216 ) ≈ 51.68413 ( 5.001739 ) ≈ 41.77398 ( 7.334821 ) + 48.54235 ( 50.414084 ) 44.95726 ( 10.36034 ) +


WFG2 48.72516 ( 12.06217 ) - 51.14414 ( 0.045119 ) - 44.23925 ( 3.146579 ) + 45.58634 ( 7.395813 ) 48.14747 ( 12.622738 ) ≈


WFG3 24.28138 ( 0.007298 ) ≈ 22.12339 ( 0.086504 ) + 21.04349 ( 0.178677 ) + 24.34142 ( 0.015209 ) 23.54542 ( 0.037132 ) +


Table 4: Performance comparison among several MOEAs using the average hypervolume indicator obtained from 30 indepen-
dent executions solving DTLZ5 with 3 up to 10 objectives.


m MOMBI-II RVEA MOEA/DD IGD+-EMOA NSGA-III


3 6.00978 ( 0.000000 ) + 5.9632 ( 0.000369 ) + 6.02456 ( 0.000062 ) + 6.1033 ( 0.000000 ) 5.84002 ( 0.05518 ) +


5 21.79297 ( 0.001846 ) + 23.30876 ( 0.003765 ) + 20.09359 ( 0.702607 ) + 23.48784 ( 0.006147 ) 20.73826 ( 0.862548 ) +


8 167.75169 ( 1.3931 ) + 166.28627 ( 311.052362 ) + 144.38434 ( 32.923411 ) + 180.36716 ( 24.078975 ) 108.75498 ( 416.448268 ) +


10 686.39987 ( 203.794132 ) + 551.2682 ( 9825.611555 ) + 489.97082 ( 805.137545 ) + 718.77776 ( 8.701444 ) 358.05289 ( 19458.130567 ) +
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Figure 6: Graphical representation of the final set of solutions obtained by the five MOEAs used in our study on DTLZ5 with
10 objectives.
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