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Abstract. In recent years, decomposition-based multi-objective evolu-
tionary algorithms (MOEAs) have gained increasing popularity. How-
ever, these MOEAs depend on the consistency between the Pareto front
shape and the distribution of the reference weight vectors. In this pa-
per, we propose a decomposition-based MOEA, which uses the modified
Euclidean distance (d+) as a scalar aggregation function. The proposed
approach adopts a novel method for approximating the reference set,
based on an hypercube-based method, in order to adapt the reference
set for leading the evolutionary process. Our preliminary results indi-
cate that our proposed approach is able to obtain solutions of a similar
quality to those obtained by state-of-the-art MOEAs such as MOMBI-
II, NSGA-III, RVEA and MOEA/DD in several MOPs, and is able to
outperform them in problems with complicated Pareto fronts.


1 Introduction


Many real-world problems have several (often conflicting) objectives which need
to be optimized at the same time. They are known as Multi-objective Opti-
mization Problems (MOPs) and their solution gives rise to a set of solutions
that represent the best possible trade-offs among the objectives. These solu-
tions constitute the so-called Pareto optimal set and their image is called the
Pareto Optimal Front (POF). Over the years, Multi-Objective Evolutionary Al-
gorithms (MOEAs) have become an increasingly common approach for solving
MOPs, mainly because of their conceptual simplicity, ease of use and efficiency.


Decomposition-based MOEAs transform a MOP into a group of sub-problems,
in such a way that each sub-subproblem is defined by a reference weight point.
Then, all these sub-problems are simultaneously solved using a single-objective
optimizer [16]. Because of their effectiveness (e.g., with respect to Pareto-based
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MOEAs1) and efficiency,2 decomposition-based MOEAs have become quite pop-
ular in recent years both in traditional MOPs and in many-objective problems
(i.e., MOPs having four or more objectives).


However, the main disadvantage of decomposition-based MOEAs is that the
diversity of its selection mechanism is led explicitly by the reference weight
vectors (normally the weight vectors are distributed in a unit simplex). This
makes them unable to properly solve MOPs with complicated Pareto fronts
(i.e., Pareto fronts with irregular shapes).


Decomposition-based MOEAs are appropriate for solving MOPS with regu-
lar Pareto front (i.e., those sharing the same shape of a unit simplex). There is
experimental evidence that indicates that decomposition-based MOEAs are not
able to generate good approximations to MOPs having disconnected, degener-
ated, badly-scaled or other irregular Pareto front shapes [5, 2].


Here, we propose a decomposition-based MOEA, which adopts the modified
Euclidean distance (d+) as a scalar aggregation function. This approach is able
to switch between a PBI scalar aggregation function and the d+ distance in
order to lead the optimization process. In order to adopt the d+ distance, we
also incorporate an adaptive method for building the reference set. This method
is based on the creation of hypercubes, which uses an archive for preserving good
candidate solutions. We show that the resulting decomposition-based MOEA has
a competitive performance with respect to state-of-the-art MOEAs, and that is
able to properly deal with MOPs having complicated Pareto fronts.


The remainder of this paper is organized as follows. Section 2 provides some
basic concepts related to multi-objective optimization. Our decomposition-based
MOEA is described in Section 3. In Section 4, we present our methodology and
a short discussion of our preliminary results. Finally, our conclusions and some
possible paths for future research are provided in Section 5.


2 Basic Concepts


Formally a MOP in terms of minimization is defined as:


minimize f(x) := [f1(x), f2(x), . . . , fm(x)]T (1)


subject to:
gi(x) ≤ 0, i = 1, 2, . . . , p (2)


hj(x) = 0, j = 1, 2, . . . , q (3)


where x = [x1, x2, . . . , xn] is the vector of decision variables, fi : Rn → R,
i = 1, . . . ,m are the objective functions and gi, hj : Rn → R, i = 0, . . . , p,
j = 1, . . . , q are the constraint functions of the problem.


1 It is well-known that Pareto-based MOEAs cannot properly solve many-objective
problems [12].


2 The running time of decomposition-based MOEAs is lower than that of indicator-
based MOEAs [1, 9] and reference-based MOEAs [14].
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We also need to provide more details about the IGD+ indicator, which uses
the modified Euclidean distance that we adopt in our proposal. According to
[11], the IGD+ indicator can be described as follows:


IGD+(A,Z) =
1


|Z|


 |Z|∑
j=1


d+j (z,a)
p


1/p


(4)


where a ∈ A ⊂ Rm, z ∈ Z ⊂ Rm, A is the Pareto front set approximation and
Z is the reference set. d+(a, z) is defined as:


d+(z,a) =
√


(max{a1 − z1, 0})2, . . . , (max{am − zm, 0})2. (5)


Therefore, we can see that the set A represents a better approximation to the
real PF when we obtain a lower IGD+ value, if we consider the reference set
as PFTrue. IGD+ was shown to be weakly Pareto complaint, and this indicator
presents some advantages with respect to the original Inverted Generational
Distance (for more details about IGD and IGD+, see [4] and [11] respectively).


3 Our Proposed Approach


3.1 General Framework


Our approach adopts the same structure of the original MOEA/D [16], but we
include some improvements in order to solve MOPs with complicated Pareto
fronts. Our approach has the following features: (1) An archiving process for
preserving candidate solutions which will form the reference set; (2) a method
for adapting the reference set in order to sample uniformly the Pareto front;
and (3) a rule for updating the reference set. Algorithm 1 shows the details of
our proposed approach. Our proposed MOEA decomposes the MOP into scalar
optimization subproblems, where each subproblem is solved simultaneously by an
evolutionary algorithm (same as the original MOEA/D). The population, at each
generation, is composed by the best solution found so far for each subproblem.
Each subproblem is solved by using information only from its neighborhood,
where each neighborhood is defined by the n candidate solutions which have the
nearest distance based on the scalar aggregation function. The reference update
process is launched when certain percentage of the evolutionary process (defined
by “UpdatePercent”) is reached. The reference update process starts to store the
non-dominated solutions in order to sample the shape of the Pareto front. When
the cardinality of the set |A| is equal to “ArchiveSize”, the reference method
is launched for selecting the best candidate solutions, which will form the new
reference set. Once this is done, the scalar aggregation function is updated by
choosing the modified Euclidean distance (d+) (see equation (4)), and the set
A is cleaned up. The number of allowable updates is controlled by the variable
“maxUpdates”.







4 Edgar Manoatl Lopez and Carlos A. Coello Coello


Algorithm 2: General Framework


Input: A MOP, a stopping criterion, N subproblems, a uniform spread of N
reference vectors: λ1 . . . λN , number of solutions in the neighborhood and a scalar
aggregation function (g).


Output: Approximation of the MOP
1: Create each neighborhood for every reference vector: B(i);
2: Generate an initial population randomly (xi, . . . , xN ) ∈ X ;
3: t← 0;
4: A ← {};
5: while t < genmax do
6: for each B(i) ∈ B do
7: Apply evolutionary operators: Randomly select two parents from B(i) and


create an individual y;
8: Improvement: Apply a problem-specific repair/improvement heuristic on y


to produce y′;
9: for each j ∈ B(i) do


10: if g(F (y′), λj) < g(F (xj), λ
j) then


11: xj ← y′;
12: end if
13: end for
14: Update of Neighboring Solutions: For each index in B(i) ;
15: if t > UpdatePercent then
16: if |A| < ArchiveSize then
17: A ← nonDominated(A ∪ y′);
18: yref ← getNadirPoint(A);
19: end if
20: if |A| == ArchiveSize and Updates < maxUpdates then
21: λ1 . . . λN ← ComputeReferenceSet(A, yref , zsize);
22: g(.)← d+;
23: A ← {};
24: Updates← Updates+ 1;
25: end if
26: end if
27: end for
28: t← t+ 1;
29: end while
30: Q ← non-Dominated (F (X));
31: return Q, X;
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3.2 Archiving Process


As mentioned before, the archive stores non-dominated solutions, up to a maxi-
mum number of solutions defined by the “ArchiveSize” value. When the archive
reaches its maximum capacity, the approximation reference algorithm is exe-
cuted for selecting candidate solutions (these candidate solutions will form the
so-called candidate reference set). After that, the archive is cleaned and the
archiving process continues until reaching a maximum number of updates. The
archiving process is applied after a 60% of the total number of generations. It
is worth mentioning that the candidate reference set is not compatible with the
weight relation rule3, which implies that it is not possible to use the Tchebycheff
scalar aggregation function for leading the search. However, the PBI function
works because it only requires directions (for more details see [16]).


3.3 Reference Set


In our approach, we aim to select the best candidate points whose directions are
promising (these candidate solutions will sample the Pareto front as uniformly
as possible). The main idea is to apply a density estimator. For this reason,
we propose to use an algorithm based on the hypercube contributions to select
a certain number of reference points from the archive. Algorithm 3 provides
the pseudo-code of an approach that is invoked with a set of non-dominated
candidate points (called A set) and the maximum number of reference points
that we aim to find. The algorithm is organized in two main parts. In the first
loop, we create a set of initial candidate solutions to form the so-called Q set.
Thus, the solutions from A that form part of Q will be removed from A. After
that, the greedy algorithm starts to find the best candidate solutions which
will form the reference set Z. In order to find the candidate reference points,
the selection mechanism computes the hypercube contributions of the current
reference set Q. Once this is done, we remove the ith solution that minimizes
the hypercube value and we add a new candidate solution from A to Q. This
process is executed until the cardinality of A is equal to zero. In the line 21
of Algorithm 3, we apply the expand and translate operations. A hypercube is
generated by the union of all the maximum volumes covered by a reference point.
The ith maximum volume is described as “the maximum volume generated by
a set of candidate points” (these candidate points are obtained from the archive
using a reference point yref ). The hypercube is computed using Algorithm 4.
The main idea of this algorithm is to add all the maximum volumes, which are
defined by the maximum point and the reference point (yref ). When a certain
point is considered to be the maximum point, the objective space is split between
m parts. The maximum point is removed from the setQ. This process is repeated
until Q is empty.


In the first part of Algorithm 4, we validate if Q contains one element. If that
is the case, we compute the volume generated by yref and q ∈ Q. Otherwise,


3 The weights of the reference point problem should be
∑m


i=0 λi = 1.
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we compute the union of all the maximum hypercubes. In order to apply this
procedure, we find the vector qmax that maximizes the hypercube. Once this
is done, we create m reference points which will form the so-called Y set. For
each reference point from Y, we reduce the set Q into a small subset in order
to form the set Qnew. Once this is done, we proceed to compute recursively the
hypercube value of the new set formed by the subset Qnew and the new reference
point ynew. It is worth noting that this value allows to measure the relationship
among each element of a non-dominated set.


Algorithm 3: ComputeReferenceSet(A, zsize)
Input: A current non-dominated set A ⊂ Rm and maximum number of reference


points zsize.
Output: Reference point set Z ⊂ Rm with |Z| = zsize
1: yref ← FindMaxV alue(A) + ε;
2: Q ← {};
3: while |Q| < (zsize + 1) do
4: a← pop(A);
5: Q


⋃
{a} ;


6: end while
7: while A! = {} do
8: i← 0;
9: maxHypercube← HCB(Q, yref );


10: for each q ∈ Q do
11: ContHyperCube[i]← maxHypercube−HCB(Q\{q}, yref );
12: i← i+ 1;
13: end for
14: imin ← argminContHyperCube;
15: Q\{qimin};
16: a← pop(A);
17: Q


⋃
{a};


18: end while
19: Z ← {};
20: for each q ∈ Q do
21: Z


⋃
{q ∗ ε− l};


22: end for
23: return Z;


4 Experimental Results


We compare the performance of our approach with respect to that of four state-
of-the-art MOEAs: MOEA/DD [13], NSGA-III [5], RVEA [2], and MOMBI-II
[9]. These MOEAs had been found to be competitive in MOPs with a variety
of Pareto front shapes. MOEA/DD [13] is an extension of MOEA/D which in-
cludes the Pareto dominance relation to select candidate solutions and is able
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Algorithm 4: HCB(Q, yref )


Input: A current set Q ⊂ Rm and a reference point yref
Output: Hypercube value
1: if |Q| = 1 then
2: return vol(Q, yref );
3: end if
4: V olList← {};
5: for each p ∈ Q′ do
6: V olList


⋃
{vol(p, yref )};


7: end for
8: imax ← argmaxV olList;
9: qmax ← Q[imax] ;


10: Y ← SplitReferencePoint (qmax, yref );
11: Q\{qmax};
12: hypercube← 0;
13: for each ynew ∈ Y do
14: Qnew ← CoverPoints (Q,ynew);
15: hypercube← hypercube+HCB(Qnew,ynew);
16: end for
17: return hypercube+max(V olList);


to outperform the original MOEA/D, particularly in many-objective problems
having up to 15 objectives. NSGA-III [5] uses a distributed set of reference points
to manage the diversity of the candidate solutions, with the aim of improving
convergence. The Reference Vector Guided Evolutionary Algorithm (RVEA) [2]
provides very competitive results in MOPs with complicated Pareto fronts. Many
Objective Meta-heuristic Based on the R2 indicator (MOMBI) [8] adopts the use
of weight vectors and the R2 indicator, and both mechanisms lead the optimiza-
tion process. MOMBI is very competitive but it tends to lose diversity in high
dimensionality. This study includes an improved version of this approach, called
MOMBI-II [9].


4.1 Methodology


For our comparative study, we decided to adopt the Hypervolume indicator, due
to this indicator is able to assess both convergence and maximum spread along
the Pareto front. The reference points used in our preliminary study are shown
in Table 1.


We aimed to study the performance of our proposed approach when solving
MOPs with complicated Pareto front shapes. For this reason, we selected 18
test problems with a variety of representative Pareto front shapes from some
well-known and recently proposed test suites: the DTLZ [7], the WFG [10], the
MAF [3] and the VNT test suites [15].
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Problem Reference point Problem Reference point


DTLZ1 (1,1,1) VNT1 (5, 6, 5)
DTLZ2-6 (2,2,2) VNT2 (5, -15, -11)
DTLZ7 (2, 2, 7) VNT3 (9, 18, 5)
MAF1-3 (2,2,2) WFG1 (3, 5, 7)
MAF4 (3,5, 9 ) WFG2 (2, 4, 7)
MAF5 (9, 5, 3 ) WFG3 (2, 3, 7)


Table 1: Reference points used for the hypervolume indicator


4.2 Parameterization


In the MAF and DTLZ test suites, the total number of decision variables is given
by n = m + k − 1, where m is the number of objectives and k was set to 5 for
DTLZ1 and MAF1, and to 10 for DTLZ2-6, and MAF2-5. The number of decision
variables in the WFG test suite was set to 24, and the position-related parameter
was set to m−1. The distribution indexes for the Simulated Binary crossver and
the polynomial-based mutation operators [6] adopted by all algorithms, were
set to: ηc = 20 and ηm = 20, respectively. The crossover probability was set
to pc = 0.9 and the mutation probability was set to pm = 1/L, where L is
the number of decision variables. The total number of function evaluations was
set in such a way that it did not exceed 60,000. In MOEA/DD, MOMBI-II
and NSGA-III, the number of weight vectors was set to the same value as the
population size. The population size N is dependent on H. For this reason, for
all test problems, the population size was set to 120 for each MOEA. In RVEA,
the rate of change of the penalty function and the frequency to conduct the
reference vector adaptation were set to 2 and 0.1, respectively. Our approach
was tested using a PBI scalar aggregation function and the modified Euclidean
distance (d+). The maximum number of elements allowed in the archive was set
to 500 and the maximum number of reference updates was set to 5.


4.3 Discussion of Results


Table 2 shows the average hypervolume values of 30 independent executions of
each MOEA for each instance of the DTLZ, VNT, MAF and WFG test suites,
where the best results are shown in boldface and grey-colored cells contain the
second best results. The values in parentheses show the variance for each prob-
lem. We adopted the Wilcoxon rank sum test in order to compare the results
obtained by our proposed MOEA and its competitors at a significance level of
0.05, where the symbol “+” indicates that the compared algorithm is signifi-
cantly outperformed by our approach. On the other hand, the symbol “-” means
that MOEA/DR is significantly outperformed by its competitor. Finally, “≈”
indicates that there is no statistically significant difference between the results
obtained by our approach and its competitor.
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MOMBI-II RVEA MOEA/DD NSGA-III MOEA/DR


DTLZ1 0.96622 ( 0.000001 ) + 0.66911 ( 0.000152 ) + 0.97379 ( 0.000000 ) ≈ 0.96256 ( 0.001064 ) + 0.97265 ( 0.000007 )
DTLZ2 7.36755 ( 0.000028 ) + 7.42224 ( 0.000000 ) ≈ 7.42234 ( 0.000000 ) ≈ 7.41893 ( 0.000000 ) + 7.42684 ( 0.000143 )
DTLZ3 7.38843 ( 0.000084 ) - 7.40582 ( 0.000084 ) - 7.4118 ( 0.000047 ) - 7.38048 ( 0.000258 ) - 7.26131 ( 0.000248 )
DTLZ4 7.3593 ( 0.036144 ) - 7.42226 ( 0.000000 ) - 7.42224 ( 0.000000 ) - 7.10506 ( 0.227356 ) ≈ 7.10433 ( 1.093691 )
DTLZ5 6.00978 ( 0.000000 ) + 5.9632 ( 0.000369 ) + 6.02456 ( 0.000062 ) + 5.84002 ( 0.05518 ) + 6.10349 ( 0.000002 )
DTLZ6 5.79608 ( 0.00523 ) + 5.13815 ( 0.016264 ) + 5.6037 ( 0.006442 ) + 5.49135 ( 0.023354 ) + 5.84857 ( 0.003765 )
DTLZ7 13.37473 ( 0.000091 ) - 13.0605 ( 1.283746 ) - 12.99409 ( 0.015542 ) ≈ 13.32733 ( 0.002554 ) - 12.37989 ( 0.181549 )
VNT1 61.44939 ( 0.000533 ) + 60.51323 ( 0.011862 ) + 60.55111 ( 0.021176 ) + 61.19214 ( 0.011932 ) + 61.88114 ( 0.512056 )
VNT2 7.79702 ( 0.000001 ) + 7.7712 ( 0.000368 ) + 7.80468 ( 0.000037 ) 7.77446 ( 0.000935 ) + 7.84291 ( 0.000554 )
VNT3 15.11767 ( 0.000262 ) + 15.03082 ( 0.000422 ) + 15.06016 ( 0.000114 ) + 15.12629 ( 0.000502 ) + 15.15149 ( 6.685422 )
MAF1 5.44926 ( 0.000019 ) - 5.37408 ( 0.000659 ) + 5.37139 ( 0.00009 ) + 5.4129 ( 0.000875 ) - 5.3986 ( 0.013358 )
MAF2 5.08952 ( 0.000056 ) 5.1583 ( 0.000058 ) ≈ 5.11373 ( 0.000003 ) + 5.09758 ( 0.000043 ) + 5.14115 ( 0.000105 )
MAF3 7.90637 ( 0.000043 ) - 7.91154 ( 0.004847 ) - 7.64261 ( 1.915744 ) + 7.89441 ( 0.00452 ) - 7.82731 ( 0.000558 )
MAF4 84.87316 ( 0.151259 ) - 83.53436 ( 29.511151 ) - 51.80943 ( 1120.296924 ) + 83.73257 ( 1.377427 ) - 75.81219 ( 4.084039 )
MAF5 95.97704 ( 52.294491 ) + 96.66782 ( 53.122845 ) + 96.95207 ( 0.017991 ) + 88.72762 ( 237.475764 ) + 98.26977 ( 44.804422 )
WFG1 50.38691 ( 7.353216 ) - 51.68413 ( 5.001739 ) - 41.77398 ( 7.334821 ) + 44.95726 ( 10.36034 ) ≈ 43.02462 ( 6.595565 )
WFG2 48.72516 ( 12.06217 ) - 51.14414 ( 0.045119 ) - 44.23925 ( 3.146579 ) + 48.14747 ( 12.622738 ) - 46.87356 ( 1.171321 )
WFG3 24.28138 ( 0.007298 ) - 22.12339 ( 0.086504 ) - 21.04349 ( 0.178677 ) - 23.54542 ( 0.037132 ) - 16.85662 ( 0.76122 )


Table 2: Performance comparison among several MOEAs using the average hypervol-
ume values obtained from 30 independent executions solving 18 benchmark problems
for 3 objectives.
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Fig. 1: Graphical representation of the final set of solutions obtained by each MOEA
on MAF1 with 3 objectives
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Fig. 2: Graphical representation of the final set of solutions obtained by each MOEA
on MAF5 with 3 objectives
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Fig. 3: Graphical representation of the final set of solutions obtained by each MOEA
on DTLZ6 with 3 objectives


As can be seen in Table 2, our MOEA was able to outperform MOMBI-II,
RVEA, MOEA/DD, and NSGA-III in seven instances and in several other cases,
it obtained very similar results to those of the best performer. We can see that
our approach outperformed its competitors in MOPs with degenerate Pareto
fronts (DTLZ5-6 and VNT2-3). In this study, MOMBI-II is ranked as the second
best overall performer, because it was able to outperform its competitors in four
cases. It is worth mentioning that all the adopted MOEAs are very competitive
because the final set of solutions obtained by them has similar quality in terms
of the hypervolume indicator.
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(b) RVEA
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(c)
MOEA/DD
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(d) NSGA-
III
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(e)
MOEA/DR


Fig. 4: Graphical representation of the final set of solutions obtained by each MOEA
on DTLZ7 with 3 objectives


Figures 1, 2, 3, 4 show a graphical representation of the final set of solutions
obtained by each MOEA. On the MOPs with inverted Simplex-like Pareto fronts,
our algorithm had a good performance (see Figure 1). Figures 1.a to 1.e show
that the solutions produced by all the MOEAs adopted have a good coverage
of the corresponding Pareto fronts. However, the solutions of MOMBI-II and
NSGA-III are not distributed very uniformly, while the solutions of RVEA and
MOEA/DD are distributed uniformly but their number is apparently less than
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their population size. On MOPs with badly-scaled Pareto fronts, our approach
was able to obtain the best approximation (see Figure 2). Figures 2.a to 2.e
show that the solutions produced by all the MOEAs adopted are distributed
very uniformly. On MOPs with degenerate Pareto fronts, it is clear that the
winner in this category is our algorithm since the solutions of NSGA-III, RVEA
and MOEA/DD are not distributed very uniformly, and they were not able to
converge (see Figure 3). On MOPs with disconnected Pareto fronts, our approach
did not perform better than the other MOEAs. The reason is probably that
the evolutionary operators were not able to generate solutions in the whole
objective space, which makes the approximations produced by our approach to
converge to a single region. Figure 4 shows that RVEA was able to obtain the
best approximation in DTLZ7 since its approximation is distributed uniformly
along the Pareto front.


5 Conclusions and Future Work


We have proposed a decomposition-based MOEA for solving MOPs with differ-
ent Pareto front shapes (i.e. those having complicated Pareto front shapes). The
core idea of our proposed approach is to adopt the modified Euclidean distance
(d+) as a scalar aggregation function. Additionally, our proposal introduces a
novel method for approximating the reference set, based on an hypercube-based
method, in order to adapt the reference set to address the evolutionary process.
Our results show that our method for adapting the reference point set improves
the performance of the original MOEA/D. As can be observed, the reference set
is of utmost importance since our approach leads its search process using a set of
reference points. Our preliminary results indicate that our approach is very com-
petitive with respect to MOMBI-II, RVEA, MOEA/DD and NSGA-III, being
able to outperform them in seven benchmark problems. Based on such results,
we claim that our proposed approach is a competitive alternative to deal with
MOPs having complicated Pareto front shapes. As part of our future work, we
are interested in studying the sensitivity of our proposed approach to its param-
eters. We also intend to improve its performance in those cases in which it was
not the best performer.
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23 June 2013. IEEE Press. ISBN 978-1-4799-0454-9.
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