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ABSTRACT 
An approach based on a (µ+1)-ES and three simple tournament rules is 
proposed to solve global optimization problems. The proposed approach does 
not use a penalty function and does not require any extra parameters other than 
the original parameters of an evolution strategy. This approach is validated with 
respect to the state-of-the-art techniques in evolutionary constrained 
optimization using a well-known benchmark. The results obtained are very 
competitive with respect to the approaches against which our approach was 
compared. 


INTRODUCTION 
Having a strong theoretical background (Schwefel, 1995; Bäck, 1996; 


Beyer, 2000), Evolution Strategies (ES) have been found efficient in solving a 
wide variety  of optimization problems (Asselmeyer, 1997). However, as other 
evolutionary Algorithms (EAs), ES lack an explicit mechanism to deal with 
constrained search spaces.  


Several approaches to incorporate constraints into the fitness function of an 
EA (Michalewicz, 1996; Coello, 2002) have been proposed. The most common 
approach used to incorporate the constraints  of the problem to the fitness 
function of an EA is the use of penalty functions, where the amount of constraint 
violation  is used to punish or “penalize” an infeasible solution so that feasible 
solutions are favored by the selection process.  Without concerning their 
simplicity, they have many drawbacks from which the main one is that they 
require a careful fine tuning of the penalty factors that accurately estimates the 
degree of penalization to be applied so that we can approach efficiently the 
feasible region (Smith, 1997; Coello 2002). 


In this paper, we argue that the self-adaptation mechanism of a conventional 
evolution strategy combined with some (very simple) tournament rules based on 
feasibility can provide us with a highly competitive evolutionary algorithm for 
constrained optimization. 
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COMPARING DIFFERENT TYPES OF ES  
The motivation of this work is based in the fact that some of the most recent 


and competitive approaches to incorporate constraints into an evolutionary 
algorithm use an ES (see for example (Runarsson, 2000; Hamida, 2002)). We 
then hypothesized that  the self-adaptation mechanis of an ES plays an important 
role when solving numerical optimization problems. In order to verify our 
hypothesis, we performed a small comparative study among different types of 
ES. In order to determine the most useful type of ES to deal with constrained 
spaces, we performed a numerical comparison using five different types of ES. 
Both a (µ+λ)-ES and a (µ,λ)-ES were implemented with and without correlated 
mutation. Additionally, we also implemented a (µ+1)-ES using the “1/5-success 
rule”. We decided to adopt a very simple constraint-handling approach which 
shares similarities with some previous proposals (e.g.,  (Jimenez, 1999; Deb, 
2000)). Note however, that all of these previous proposals require an additional 
mechanism to maintain diversity in the population. In our proposal, however, no 
extra mechanisms are provided to maintain diversity. The tournament rules 
adopted in the five types of ES implemented are the following: 


• Between 2 feasible solutions, the one with the highest fitness value 
wins. 


• If one solution is feasible and the other one is infeasible, the 
feasible solution wins. 


• If both solutions are infeasible, the one with the lowest sum of 
constraint violation is preferred. 


We decided to use ten (out of 13) of the test functions described in 
(Runarsson, 2000) to evaluate our five types of ES. The test functions chosen 
contain characteristics that are representative of what can be considered 
“difficult” global optimization problems for an evolutionary algorithm. The 
expressions of the test functions can be seen in (Mezura-Montes, 2003). 


 
TF optimal Best Mean Median Worst St. Dev. 
g01 -15 -15 -14.8486 -14.998 -12.9999 0.410082 
g02 0.803619 0.793083 0.698932 0.708804 0.576079 0.062927 
g03 1 1 1 1 1 0.000014 
g04 -30665.539 -30665.539 -30665.442 -30665.539 -30663.496 0.393918 
g06 -6961.814 -6961.814 -6961.814 -6961.814 -6961.814 0.00 
g07 24.306 24.3681 24.7025 24.7307 25.5167 0.242956 
g08 0.095825 0.095825 0.095825 0.095825 0.095825 0.00 
g09 680.63 680.6317 680.6736 680.6593 680.9151 0.052483 
g11 0.75 0.75 0.7844 0.776296 0.8795 0.037345 
g12 1 1 1 1 1 0.00 


Table 1. Statistical Results of the (µ+1)-ES after the first set of experiments. 
 
We set a total of 350000 fitness function evaluations and performed 30 runs 


for each problem and for each type of ES. Equality constraints were transformed 
into inequalities using a tolerance value of 0.0001. For the (µ+1)-ES the initial 
values are: σ=4.0, C=0.99, µ=5, and maximum number of generations = 
350000. For the (µ+λ)-ES and (µ,λ)-ES, we adopted panmictic discrete 
recombination both for the strategy parameters and for the decision variables. 
The learning rates values were calculated as indicated in (Schwefel, 1995). The 
initial values for the standard deviations were 3.0 for all the decision variables. 
The initial values for the remaining ES are: µ=100, λ=300, and maximum 
number of generations = 1166. 
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Due to space limitations we only show the statistical results of the (µ+1)-ES 
in Table 1 (the complete statistical results can be found in (Mezura-Montes, 
2003)), which had the best overall performance, both in terms of the best 
solution found and in terms of its statistical measures. We found this a little bit 
surprising, because this is the most simple type of ES implemented in our 
comparative study. Based on the encouraging results that we obtained from this 
study, we decided to compare our (µ+1)-ES with respect to other approaches. 


The details of the selected approach (we decided to call it Simple Evolution 
Strategy, or SES) are in the pseudo-code shown in Figure 1. We adopted the 
“1/5-success rule” to self-adapt the only sigma value used in the algorithm. At 
each generation µ individuals are created but none of them is evaluated. In fact, 
we only evaluate the offspring created by the union of the mutated individuals 
produced. The low computational cost of the approach is owing to the fact that it 
requires only one sigma value to adapt and one fitness function evaluation per 
generation. 


 
  Begin 
     t=0 
     Create a random initial solution x0 
     Evaluate  f(x0) 
     For t=1 to MAX_GENERATIONS Do 
   Produce µ mutations of xt-1 using:  
  xi


j=xi
t-1+σ [t]•Ni(0,1)  


 forall i  ∈ n, j=1,2,…, µ 
  Generate one child xc by the combination of the µ mutations using  
  m=randint(1, µ) 
  xi


c= xi
m, forall i ∈ n 


 Evaluate f(xc) 
 Apply comparison criteria to select the best individual xt between xt-1 and xc 
 t=t+1 
 If (t mod n = 0)  Then 
  If (p s>1/5) Then 
   σ [t]= σ[t-n]/c 
  Else  
   If  (p s<1/5) Then 
    σ [t]= σ[t-n]•c 
   Else  
    If  (p s=1/5) Then 
     σ [t]= σ[t-n] 
    End If 
   End If 
  End If 
 End If 
     End For 
  End 
 
Figure 1. SES algorithm (n is the number of decision variables of the problem, 
ps is the success rate of mutations in order to apply the “1/5 success rule” ) 
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It is worth emphasizing that our algorithm is based on two mechanisms: (1) 
the natural self-adaptative mechanism of the ES, which helps the approach to 
sample the search space well enough as to reach the feasible region reasonably 
fast and (2) the comparison criteria of our tournaments, which select the most 
promising solution in order to be used as a new starting point for the search. 


COMPARING SES AGAINST OTHER APPROACHES  
In the second part of our experiment, we compared the performance of our 


approach with respect to three techniques that are representative of the state-of-
the-art in the area: the homomorphous maps “HM”(Koziel, 1999), the stochastic 
ranking “SR” (Runarsson, 2000) and the adaptive segregational constraint 
handling evolutionary algorithm “ASCHEA” (Hamida, 2002). In Tables 2, 3 and 
4, we show the results of the comparison.  


 
  Best  Mean  Worst  


TF optimal SES HM SES HM SES HM 
g01 -15 -15 -14.7886 -14.8486 -14.7082 -12.9999 -14.6154 
g02 0.803619 0.793083 0.79953 0.698932 0.79671 0.576079 0.79119 
g03 1 1 0.9997 1 0.9989 1 0.9978 
g04 -30665.539 -30665.539 -30664.5  -30665.442 -30655.3  -30663.496 -30645.9  
g06 -6961.814 -6961.814 -6952.1  -6961.814 -6342.6  -6961.814 -5473.9  
g07 24.306 24.3681 24.62 24.7025 24.826 25.5167 25.069 
g08 0.095825 0.095825 0.095825 0.095825 0.08916 0.095825 0.0291438 
g09 680.63 680.6317 680.91 680.6736 681.16 680.9151 683.18 
g11 0.75 0.75 0.75 0.7844 0.75 0.8795 0.75 
g12 1 1 0.99999 1 0.99913 1 0.99195 


Table 2. Comparison of results between our approach (SES) and the 
Homomorphous Maps (HM) 


 
 
 
 
 


  Best  Mean  Worst  
TF optimal SES SR SES SR SES SR 
g01 -15 -15 -15 -14.8486 -15 -12.9999 -15 
g02 0.803619 0.793083 0.803515 0.698932 0.781975 0.576079 0.726288 
g03 1 1 1 1 1 1 1 
g04 -30665.539 -30665.539 -30665.539 -30665.442 -30665.539 -30663.496 -30665.539 
g06 -6961.814 -6961.814 -6961.814 -6961.814 -6875.940 -6961.814 -6350.262 
g07 24.306 24.3681 24.307 24.7025 24.374 25.5167 24.642 
g08 0.095825 0.095825 0.095825 0.095825 0.095825 0.095825 0.095825 
g09 680.63 680.6317 680.63 680.6736 680.656 680.9151 680.763 
g11 0.75 0.75 0.75 0.7844 0.75 0.8795 0.75 
g12 1 1 1 1 1 1 1 


Table 3. Comparison of results between our approach (SES) and the Stochastic 
Ranking (SR) 
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  Best  Mean  Worst  
TF optimal SES ASCHEA SES ASCHEA  SES ASCHEA 
g01 -15 -15 -15 -14.8486 -14.84 -12.9999 NA 
g02 0.803619 0.793083 0.785 0.698932 0.59 0.576079 NA 
g03 1 1 1 1 0.9999 1 NA 
g04 -30665.539 -30665.539 -30665.5  -30665.442 -30665.5  -30663.496 NA 
g06 -6961.814 -6961.814 -6961.81 -6961.814 -6961.81 -6961.814 NA 
g07 24.306 24.3681 24.3323 24.7025 24.66 25.5167 NA 
g08 0.095825 0.095825 0.095825 0.095825 0.095825 0.095825 NA 
g09 680.63 680.6317 680.63 680.6736 680.641 680.9151 NA 
g11 0.75 0.75 0.75 0.7844 0.75 0.8795 NA 
g12 1 1 NA 1 NA 1 NA 


Table 4. Comparison of results between our approach (SES) and the Adaptive 
Segregational  Constraint Handling Evolutionary Algorithm  (ASCHEA) (NA 
means not available). 


 
There are several issues derived from this comparison that deserve some 


discussion: 
Our SES was able to converge to the global optimum in 8 of the test 10 


functions used (g01, g03, g04, g06, g08, g09, g11 and g12), and it was able to 
converge very closely to the optimum in the other two.Also, with respect to the 
homomorphous maps (see Table 2), SES converged to a better “best” solution in 
7 problems, and it obtained better average solutions in 8 problems. It also found 
a better “worst” solution in 6 problems. Thus, it should be clear that SES had a 
highly competitive performance, even improving the results of the 
homomorphous maps in some test functions. With respect to stochastic ranking 
(see Table 3), SES was able to converge to similar “best” solutions in 8 
problems and it obtained similar average and worst results in 2 problems. SES 
found a better average and worst result only in one problem (g06). Finally, with 
respect to ASCHEA (see Table 4), the SES converged to similar “best” results in 
7 problems and found better “best” results in problem g02. SES also obtained 
better average results in 3 problems and matched ASCHEA's average results in 
three more. 


DISCUSSION OF RESULTS 
The results described before indicate a competitive performance of our 


approach with respect to three techniques representative of the state-of-the-art in 
constrained evolutionary optimization. Besides being a very simple approach, it 
is worth reminding that SES does not require any extra parameters (besides 
those used with an evolution strategy). In contrast, the homomorphous maps 
require an additional parameter (called v) which has to be found empirically 
(Koziel, 1999). Stochastic ranking requires the definition of a parameter called 
Pf, whose value has an important impact on the performance of the approach 
(Runarsson, 2000). ASCHEA also requires the definition of several extra 
parameters and in its latest version, it uses niching, which is a process that also 
has at least one additional parameter (Hamida, 2002). Finally, the number of 
fitness funtion evaluations of our approach is less or equal to that requiered by 
the compared approaches: Stochastic ranking performed the same number of 
evaluations as SES (350000), but the homomorphous maps performed 1,400,000 
fitness function evaluations, and ASCHEA performed 1,500,000 fitness function 
evaluations. 
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CONCLUSIONS AND FUTURE WORK 
The self-adaptation mechanism of an evolution strategy combined with a set 


of simple tournament rules was used to deal with constrained search spaces. 
Based on the results obtained, we claim that the proposed approach is a viable 
alternative for constrained optimization. Its main advantage is that it does not 
require a penalty function or any extra parameters (other than the original 
parameters of an evolution strategy) to bias the search towards the feasible 
region of a problem. Additionally, our approach has a low computational cost 
and it is easy to implement. Our future work consists on experimenting with a 
different random numbers distribution (a Gaussian distribution was used in this 
paper) to avoid convergence to local optima, since this happens in some cases.  
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