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Abstract

Generally, evolutionary algorithms require a large num-
ber of evaluations of the objective function in order to ob-
tain a good solution. This paper presents a simple approach
to save evaluations, applied to a competitive differential
evolution algorithm used to solve constrained optimization
problems. The idea is based on the way in which differen-
tial evolution finds new promising areas of the search space.
This allows to randomly assign a zero fitness to some off-
spring newly generated in order to avoid its evaluation and,
as a secondary effect, to slow down convergence. The ap-
proach is tested using different percentages of individuals
from the population, providing a competitive performance.
Besides, the effect that the elimination of individuals has on
convergence is also analyzed. Finally, to remark behavior
differences, the approach is tested against a version with a
smaller population and against a version with a simple fit-
ness approximation method. The results obtained are dis-
cussed and some conclusions are drawn.

1. Introduction

We are interested in the general non linear programming
problem in which we want to:Find
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by lower and upper limits < � �=� � �?> � ; � is the num-
ber of inequality constraints and ' is the number of equali-
ty constraints (in both cases, constraints could be linear or
nonlinear). If we denote with @ to the feasible region and
with A to the whole search space, then it should be clear
that @=BCA .

Evolutionary Algorithms (EAs) are widely used as pow-
erful approaches to solve optimization problems [5]. How-
ever, in order to obtain a reasonably good solution, they
typically require to perform a large number of evaluations
of the objective function and also of the constraints of the
problem, in case of constrained optimization (we will call
OFE to the number of evaluations of the objective function
and the constraints of a problem in the remainder of the pa-
per). For many real-world problems, the evaluation of the
objective function is very time-consuming. Therefore, seve-
ral fitness approximation models have been proposed in or-
der to replace some costly evaluations by objective function
estimates [3]. Most of this research is focused on approx-
imation models like polynomial models, kriging models,
neural networks and support vector machines [3]. These
models have proven to be effective in certain applications
[9]. However, despite avoiding the evaluation of the objec-
tive function of a problem, they add an extra computational
cost related to the construction and updating of the model.
On the other hand, we hypothesized that, another way of
saving OFEs can be based on the way the EA works. Moti-
vated by this idea, we found that, observing the way Diffe-
rential Evolution [6] finds promising regions in the search
space when using its mutation operator to solve optimiza-
tion problems, it is possible to sentence to death (assign
a zero fitness), based on a user-defined ratio, to some off-
spring newly created in order to save OFEs and also to de-
crease the convergence speed (which may lead to prema-
ture convergence) by favoring other zones (not necessarily
the best at the current time) of the search space.

This paper is organized as follows: In Section 2 we
present a brief introduction to DE and our specific DE-based
approach. In Section 3, a detailed description of our scheme
is provided. Afterwards, in Section 4 we present the results
obtained in the four phases of our experimental design and
we discuss them. In Section 5 we summarize our findings.



1 Begin
2 G=0
3 Create a random initial population ������� � , ��� 0
	��
�
��	����
4 Evaluate ���
������� � � , ��� 0
	
�
�
��	����
5 For G=1 to MAX GENERATIONS Do
6 F=rand[0.3,0.9]
7 For i=1 to NP Do
8 For k=1 to -�� Do
9 Select randomly ������ �
���� �
������
10

 ! !"
#%$ � randint � 0
	�& �
11 For j=1 to -�� Do
12 If (rand '
( ) 	 0 �+*-,/. or

 �  rand) Then
13 child ' � �  �'10 �3254 � �

 �'�0 �76 �
 �'10 � �

14 Else
15 child ' � �%�'10 �
16 End If
17 End For8 If flip( 9 . ) Then8 ��� �child � � � 6;:8

sumviol � �child � � � :8 Else8 evaluate child with original objective function8 End If
24 If <�= 0 Then
25 If (child is better than �>?��A@ �
26 (based on the three selection criteria)) Then
27 �>?��A@ � =child
28 End If
29 Else
30 �>?��B@ � =child
31 End For
32 If flip( C  ) Then
33 If ( �D���>?��B@ � �+E ���
��%�� � ) Then
34 ��%��A@ � � �>?��A@ �
35 Else
36 ��%��A@ � � �����
37 End If
38 Else
39 If ( �>?��A@ � is better than �����
40 (based on the three selection criteria)) Then
41 ��%��A@ � � �>?��A@ �
42 Else
43 ��%��A@ � � �����
44 End If
45 End If
46 End For
47 F � F 2 0
48 End For
49 End

Figure 1. Our SDDE. The steps of our saving
mechanism are marked with an arrow. “ G ”
means to assign the worst value for the in-
dividual. randint(min,max) returns an integer
number between min and max. rand

/ 
���� � re-
turns a real number between 
 and � , both
with uniform probability distribution. flip( H )
returns 1 with probability H .

Finally, in Section 6, we provide some conclusions and we
define our future work.

2. Previous Work

DE [6] is a population-based evolutionary algorithm with
a simple mutation mechanism and a crossover operator that
performs a linear recombination of a number of individuals
(normally three) and one parent (which is the subject to be
replaced) to create one child. Selection is deterministic be-
tween the parent and the child (i.e., the best of them remains
in the next population). DE shares similarities with tradi-
tional EAs. However, it does not use binary encoding as the
simple genetic algorithm [2] and it does not use a probabi-
lity density function to self-adapt its parameters as the evo-
lution strategy [8].

Mezura-Montes et al. [4] proposed a novel approach
based on DE to solve constrained optimization pro-
blems called Diversity Differential Evolution (DDE).
This constraint-handling technique consists on a com-
parison method based on feasibility. Also two additional
modifications to the DE approach were added: (1) a diver-
sity mechanism based on allowing the survival for the next
generation of those individuals with a good value of the ob-
jective function (regardless of feasibility) and (2) allow-
ing to each parent to generate more than one offspring, with
the aim of increasing the probability of getting a better off-
spring, besides promoting the collaboration of more indi-
viduals with one parent to generate new solutions. The ap-
proach was compared against state-of-the-art approaches
and the results were very competitive at a low compu-
tational cost, measured by the number of OFEs. The a-
pproach performed I�I�J �;
�
	
 OFEs.

Most of the research on fitness approximation is focused
in unconstrained optimization [1]. However, to the best of
our knowledge, very few of these approaches have been
used in constrained optimization. Won and Ray [9] com-
pared Kriging and Cokriging surrogate models with radial
basis Function models using a set of five unconstrained
problems and also two well-known constrained engineering
design problems. Their results showed the viability of using
these models on constrained problems. Runarsson [7] used
nearest neighborhood regression to solve a set of benchmark
problems in constrained optimization. His results showed
that, for the general nonlinear programming problem, using
only the information of the closest solution to approximate
the value of a new one is better than using a set of the clo-
sest solutions to average the approximation.

3. Our approach

The main motivation of this work was to find a way of
reducing the computational cost of a competitive approach
used to solve constrained optimization problems. However,
instead of incorporating computationally expensive approx-
imation models, the goal was to use features related to the



search engine adopted in order to perform this cost reduc-
tion.

From previous research [4] and some observations, we
found, based on the DE mutation and crossover operator,
that the offspring generated using them is located near one
of the three random individuals selected for reproduction
(about � 
�� of the time) instead of being close to its pa-
rent. See rows 9 to 17 in Figure 1 for details. Therefore,
promising regions found by the offspring are basically cho-
sen depending on the distribution of these three individuals.
If the offspring finds a more promising area than its parent,
it will remain in the population. Based on this way of opera-
tion, we propose to randomly “sentence to death” some off-
spring in order to save its OFE. This will also allow other
offspring, which could be less fit at the moment, to survive.
In addition, it will promote the exploration of other regions
slowing down the convergence of the approach. In this way
we achieve two goals: (1) to reduce the computational cost
(based on the OFEs performed by the approach) without
using an approximation model and (2) to allow the algo-
rithm to explore other regions of the search space in order
to avoid premature convergence. The pseudocode of the a-
pproach is presented in Figure 1. Pointed with arrows are
the steps added for the saving mechanism; we call it SDDE
for “Saving Diversity Differential Evolution”.

4. Experiments and Results

In the following experiments, we used ��� well-known
benchmark problems for constrained optimization. Details
of each problem can be found in [4]. A summary of their
main features are presented in Table 1. There are problems
with different features (dimensionality, type of objective
function, estimated size of the feasible region with respect
to the whole search space and also the number and type of
constraints).

The experimental design has four phases: (1) to evalua-
te the effect of different ratios of the saving mechanism on
the quality (best solution found overall) and robustness (best
mean and standard deviation values) of the approach, (2) to
analyze the effect of the saving mechanism in the conver-
gence behavior of the algorithm, (3) to establish differences
between the SDDE against the original approach with a re-
duced population size (this experiment aims to emphasize
that saving evaluations during the evolutionary process is
not equal to just reducing the population size and perfor-
ming less OFEs), and (4) to compare the SDDE against a
simple fitness approximation approach.

(1) Different ratios: For the first phase we used the fo-
llowing parameters for the SDDE: population size ��� �
�	� , number of generations = J 
	
 , 
�� � 
 � 
 , � ) / 
 � � �;
 � 
 4
randomly chosen at each generation, number of offspring
per parent :��&� J (90,036 OFEs), selection ratio � � �

Problem n Function � LI NI LE NE

g01 13 quadratic ) � )�) )���� 9 0 0 0
g02 20 nonlinear ��� � ��������� 1 1 0 0
g03 10 nonlinear ) � )�) 3�� � 0 0 0 1
g04 5 quadratic

3 � � ) )������ 0 6 0 0
g05 4 nonlinear ) � )�) ) )�� 2 0 0 3
g06 2 nonlinear ) � )�)������ 0 2 0 0
g07 10 quadratic ) � )�) ) )�� 3 5 0 0
g08 2 nonlinear ) � � � � 0 � 0 2 0 0
g09 7 nonlinear ) � � 0 ����� 0 4 0 0
g10 8 linear ) � )�) 3 )�� 3 3 0 0
g11 2 quadratic ) � )�������� 0 0 0 1
g12 3 quadratic � � � � ����� 0 � � 0 0
g13 5 nonlinear ) � )�) ) )�� 0 0 0 3

Table 1. Main features of the 13 test problems
chosen. : is the number of decision varia-
bles, and for the constraints LI is the number
of linear inequalities, NI the number of non-
linear inequalities, LE is the number of linear
equalities and NE is the number of nonlinear
equalities. � is the ratio between the feasible
region and the whole search space.

Ratio OFEs performed OFEs saved

) � ) ��)�)�� � )) � 0 � 0 )���� � � � �� �  !� � !#" $%!#&('%"
) � � � ��) � � 3�� �)���) � � ��� 0 0 � ����� 0 �) � � ��� 0 0)� ����� 0)�

Table 3. Average OFE (out of 
�
	
*�	� ) per-
formed and saved by the SDDE in the �%� test
problems. A result in boldface indicates the
percentage whose results were the best over-
all.


�� + J , tolerance for equality constraints , � 
 � 
�
	
�� . The
saving mechanism ratio called �.- was assigned with five
different values �.- )0/ 
�� �	� 
�� I � 
�� ���;
 � + �;
 � J21 and also
�.- ��
 (original approach without saving mechanism)
in order to assess its effect in the search. The statistical re-
sults of ��
 independent runs are summarized in Table 2.

It is important to emphasize that, depending of the value
of the �.- parameter, there is a number of saved OFEs;
these savings are presented in Table 3.

From the results in Table 2, several interesting issues
are observed. There is a very competitive performance of
the SDDE when the saving mechanism parameter range is
�.- ) / 
 � ���;
 � + 4 . When �.- ��
�� J , the performance is
severely affected (no feasible solutions are found in some
runs when solving problems g01, g03, g05 and g13), and
less competitive results are obtained in problems g02 and
g10. There is a set of problems where the saving mecha-



Problem & Different saving percentages tested against NO saving
Best Known Sol. Stats original DDE ����� -SDDE ����� -SDDE ����� -SDDE ����� -SDDE 	���� -SDDE

best 
���
�� ����� 
���
�� ����� 
���
�� ����� 
������ ����� 
������ ����� ��
������ �����
g01 mean 
���
�� ����� 
���
�� ����� 
������ ����� 
������ ����� 
������ ����� ��
������ �����


���	�� ����� worst 
���
�� ����� 
������ ����� 
������ ����� 
������ ����� 
������ ����� ��
���� �����
St. Dev � � ��� � E- 	 � � � E- � ���!� E- � ��� � E+ �

best ��� "���#�
�"�
 ��� ������	���� ��� ������	�� � ��� ������	���� ��� ������	���� ��� �����������
g02 mean ��� ��	�������� ��� ��	�����	�� ��� $�%�#�&�� % ��� ��	�������� ��� ����������� ��� ��	��������

��� ����������� worst ��� ����������� ��� 	���������	 �'� %�&�&�
(&�& ��� ����������� ��� ����������� ��� 	�����	�	��
St. Dev ��� � E- � ��� � E- � )�� % E- ) ��� 	 E- � ��� � E- � ��� � E- �

best ��� ����� ��� ����� ��� ����� ��� ����� ��� ����� *���� �����
g03 mean ��� ����� ��� ����� ��� ����� ��� ����� ��� ����� *+��� �����
��� ����� worst ��� ����� ��� ����� ��� ����� ��� ����� ��� ����� *���� �����

St. Dev ���!� E- 	 #�� " E- 
 ��� � E- � ��� � E- 	 ��� � E- � ��� � E- �
best 
,#���%�%�
�� 
(#�& 
,#���%�%-
�� 
(#�& 
,#���%�%-
�� 
(#�& 
,#���%�%-
�� 
(#�& 
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�� 
(#�& 
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�� 
(#�&

g04 mean 
,#���%�%-
�� 
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,#���%�%�
�� 
(#�& 
,#���%�%�
�� 
(#�& 
,#���%�%�
�� 
(#�& 
,#���%�%�
�� 
�#�& 
,����������� ����	

,��������	�� 	���� worst 
,#���%�%�
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,#���%�%-
�� 
(#�& 
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�� 
(#�& 
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,#���%�%�
�� 
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St. Dev � � � � � 	�� � E+ �
best 
���)(%�� .-&�$ 
���)(%�� .�&-$ 
���)(%�� .�&-$ 
���)(%�� .�&�$ 
���)(%�� .�&�$ /�
���)(%�� .�&�$

g05 mean 
���)(%�� .�&-$ 
���)(%�� .�&�$ 
���)(%�� .�&�$ 
���)�%�� .�&�$ 
���)�%�� .�&�$ /�
���)�%�� .�&�$
	�������� ����� worst 
���)(%�� .-&�$ 
���)(%�� .�&-$ 
���)(%�� .�&-$ 
���)(%�� .�&�$ 
���)(%�� .�&�$ /�
���)(%�� .�&�$

St. Dev � � � � � ��� � E- �
best 
,%�&�%'��� "��0. 
,%�&�%'��� "��0. 
,%�&�%���� "��0. 
,%�&�%���� "��0. 
,%�&�%���� "��0. 
,%�&�%���� "'�0.

g06 mean 
,��������� ����� 
,%�&�%���� "��0. 
,����	���� ����� 
,��������� ����� 
,%�&�%���� "'�0. 
,%�&�%���� "�� .

,��������� ����� worst 
,��������� ����� 
,%�&�%'��� "��0. 
,��������� ����� 
,������� � ����� 
,%�&�%���� "��0. 
,%�&�%���� "'�0.

St. Dev ��� � E+ � � ��� � E+ � ��� � E+ � � �
best )�.'� #���% )�.'� #���% )�.'� #���% )(.'� #���% ����� ����� ����� �����

g07 mean ����� ����� ����� ����� )(.'� #���% ����� ����� ����� ����� ����� �����
����� ����� worst ����� ����� ����� ����� )�.'� #���$ ����� ����� ����� ����� ����� �����

St. Dev � � � E- � ��� 	 E- � )�� 
 E- . ��� � E- � ��� � E- � ��� � E- �
best ��� ��&�
("-)�
 �'� ��&�
("�)�
 �'� ��&�
("�)�
 ��� ��&�
("�)�
 ��� ��&�
("�)�
 ��� ��&�
("�)�


g08 mean �'� ��&�
("�)�
 ��� ��&�
("�)�
 ��� ��&�
("�)�
 ��� ��&-
("�)�
 ��� ��&-
("�)�
 ��� ��&-
("�)�

��� ����	�����	 worst ��� ��&�
("-)�
 �'� ��&�
("�)�
 �'� ��&�
("�)�
 ��� ��&�
("�)�
 ��� ��&�
("�)�
 ��� ��&�
("�)�


St. Dev � � � � � �
best %�"���� %�#�� %�"���� %�#�� %�"���� %�#�� %�"���� %�#�� %�"���� %�#�� %�"���� %�#��

g09 mean %�"���� %�#�� %�"���� %�#�� %�"���� %�#�� %�"���� %�#�� %�"��'� %�#�� %�"��'� %�#��
������� ��� worst %�"���� %�#�� %�"���� %�#�� %�"���� %�#�� %�"���� %�#�� %�"���� %�#�� %�"���� %�#��

St. Dev � � � � � ��� � E- 	
best $(�(.�&�� )(.�& $��(.�&�� )�.-& ��������� ����� ����	���� ����� ����� ���!����� � ������� �����

g10 mean $��(.�&�� )�$�" ��������� ��	�� ����	���� �0��� ��������� 	���� ��������� ����	 �1�������!����	
��������� ����� worst $(�(.�&�� #�&�� ����	���� ����� ���������!����� �1������� ����� ��������� ��	�� ��������� �����

St. Dev #��!� E- ) ��� 	 E- � ��� � E+ � � � 	 E+ � ��� � E+ � ��� � E+ �
best ��� $�
 ��� $�
 ��� $�
 ��� $�
 �'� $�
 �'� $�


g11 mean ��� $�
 ��� $�
 �'� $�
 �'� $�
 ��� $�
 ��� $�

��� ��	 worst ��� $�
 ��� $�
 ��� $�
 ��� $�
 �'� $�
 �'� $�


St. Dev � � � � � �
best ��� ����� ��� ����� ��� ����� ��� ����� ��� ����� ��� �����

g12 mean ��� ����� ��� ����� ��� ����� ��� ����� ��� ����� ��� �����
��� ����� worst ��� ����� ��� ����� ��� ����� ��� ����� ��� ����� ��� �����

St. Dev � � � � � �
best ��� ��
(#�&�.-) �'� ��
(#�&(.�) �'� ��
(#�&(.�) ��� �-
(#�&(.-) ��� �-
(#�&(.-) 23��� ��	��������

g13 mean ���!����������� ���!����	������ ��� ��%�$(#���� ���!����	������ ��� ������	���� 23��� ��������	��
��� ��	�����	�� worst ��� ����������� ��� ����������� �'� .�#�"�"���# ��� ����������� ��� .-#�"�"���# 23��� �����������

St. Dev ��� � E- � ��� � E- � %�� & E- ) ��� � E- � ��� � E- � ��� � E- �

Table 2. Statistical results obtained by the original DDE with respect to the SDDE using different sa-
ving percentages in �	
 independent runs. A result in boldface means a better (or best) solution ob-
tained.The symbols in column 8 mean that in only a fraction of the �	
 runs feasible solutions were
found. “*”= ���) , “ 4 ”=

3��
��) , “ 5 ”=

3 ���) and “ 6 ”=
3 ���) .



nism helped SDDE to obtain even better results than the
original DDE; these problems are g02, g06, g07 and g13.
On the other hand, the quality and robustness of the re-
sults provided when solving problems g01, g03 and g10
were affected by the use of the saving mechanism. Mean-
while, for some test functions there was no evident decrease
in the performance by the use of the mechanism (g04, g05,
g08, g09, g11 and g12). Finally, we observed the most com-
petitive performance of the SDDE when �.- �+
 � I and,
based on the values reported in Table 3, we are obtain-
ing equally competitive results by the SDDE but with only���������

OFEs on average (instead of 
	
	
*�	� OFEs required
by the original approach).

(2) Convergence effect: Regarding the way in which the
saving mechanism affects the convergence of the approach,
we decided to show the convergence graph (the best objec-
tive function value found so far at each generation) using the
SDDE and also the original DDE. In each graph, two lines
will be found: the first one refers to the I 
�� -SDDE (with
the saving mechanism) and the second one is the original
DDE (without saving mechanism). The parameters used in
this experiment were set in order to allow both approaches
to perform almost the same number of OFEs ( �DJ �;
	
�
 ). The
idea is to promote a fair comparison based on equal compu-
tational cost. The parameters are exactly the same used in
the previous experiment for both approaches except for the
following: The SDDE used �.- � 
�� I ; and for the DDE:
population size ��� � �	
 in order to perform 75,000 OFEs
and, obviously, �.- ��
 � 
 . We selected two test functions
for each effect of the saving mechanism (positive, negative
or no effect) found in the previous experiment. Convergence
graphs from the J 
�
 generations are presented in Figure 2.

As it can be seen, the differences between SDDE and
DDE for the three effects, are noted early in the evolutio-
nary process (roughly before generation �	
 ). However, for
problem g02 the positive effect is clearly shown; the saving
mechanism slows down the convergence of the approach,
giving it a chance to explore other promising areas of the
search space and allowing it to reach better results. In the
remaining five plots, the effect is not clear at all. Therefore,
we decided to re-plot the graphs but now showing the first�	
 generations. They are presented in Figure 3.

These new graphs provide more evidence about the dif-
ferent behavior shown by the approach with the saving
mechanism. For those functions where the behavior leads
to a positive effect, there is a more accentuated oscillation
of the best solution before generation ��
 (functions g02 and
g13 in Figure 3) when using SDDE (version with saving
mechanism). On the other hand, for problems with nega-
tive effect of the saving mechanism, the oscillation is more
stressed in the version with no saving mechanism (functions
g01 and g10 in Figure 3). Finally, the oscillation is very si-
milar between both versions in those problems where the
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Figure 2. Convergence graphs (best f(x) at
each generation) for test problems showing
different effects with and without the saving
mechanism.
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Figure 3. Details of convergence graphs (best
f(x) at each generation) in the first �	
 gene-
rations for test problems showing different
effects with and without the saving mecha-
nism.

saving mechanism provided no effect (functions g04 and
g05 in Figure 3). The overall results suggest that the saving
mechanism provides the approach with a slow-down con-
vergence effect, whose oscillation in the first generations of
the process allows the algorithm to explore other regions of
the search space as to reach better final results. However,
this oscillation is not enough for some problems in order
to improve the obtained results. Finally, there is not a clear
link between the features of a given problem (type of ob-
jective function, dimensionality, number and type of cons-
traints) and the effect of the saving mechanism. This analy-
sis is beyond the goals of the present work.

(3) Saving vs. small population: The effect of elimi-
nating some individuals of the population can be conside-
red analogous to using a smaller population from the be-
ginning. Thus, we performed an experiment to compare the
SDDE against DDE using a smaller population and, again,
ensuring that both approaches performed the same number
of OFEs. We decided to use the +�
 � -SDDE because it was
the version with the lowest number of OFEs that produced
competitive results ( � J�J � 
	
�
 . See Table 3) against a DDE
performing the same number of evaluations. The parame-
ters of both approaches are the same used in the first experi-
ment. The only difference is the population size of the DDE
(which had to be smaller) and was set to ��� � I�I ( J�J �;
	
�

OFEs) with, obviously, �.- � 
 . The statistical results of�	
 independent runs are shown in Table 4.

The results show that the +�
 � -SDDE provided better
quality and robust results in seven functions (g02, g03, g07,
g09 and g13) and more robust results in functions g04, g05,
g06, g09 and g11. Similar best, mean, worst and standard
deviation results were obtained by both approaches in func-
tions g08, g12. Finally, the DDE (with no saving mecha-
nism and smaller population size) provided better results
(quality and robustness) in functions g01 and g10. These re-
sults empirically imply a significant difference of the perfor-
mance of the algorithm when using a mechanism that pro-
motes ignoring some solutions during the evolutionary pro-
cess, compared with just reducing the population size since
the beginning, in order to save evaluations in both cases.

(4) Saving vs. fitness approximation: Finally, we com-
pared our SDDE against a variation of a very simple fitness
approximation approach called “nearest neighborhood re-
gression” (NN) [7]. We used the basic idea of assigning the
values of the objective function and the constraints of the
closest individual in the decision space (decision variable
space) to an individual to be approximated. We used the Eu-
clidean distance measure in the decision space to compute
closeness. As in SDDE, this mechanism is applied based on
a user-defined ratio. We use the same DDE but now cou-
pled with the NN. We decided to use this “very simple” ap-
proximation mechanism because we wanted to compare our
approach, which, in fact is very simple, against the sim-
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Table 4. Statistical results obtained by the+ 
 � -SDDE against DDE with a reduced popu-
lation size and no saving mechanism in �	
 in-
dependent runs. A result in boldface means
a better (or best) solution obtained.

plest version of a fitness-approximation-based approach.
The parameters for both approaches are the same used in
the first experiment (we used the same ratio of I 
�� for ei-
ther the saving or the fitness approximation mechanism);
therefore, both approaches performed the same number of
OFEs on average ( � ��I �;
�
	
 ). In Table 5, the results ob-
tained in ��
 independent runs are presented. It is very clear
the the SDDE performed much better than the NN-DDE.
SDDE found better results (based on quality and robust-
ness) in functions g01, g02, g03, g05, g07, g10 and g13.
SDDE was also clearly more robust in problems g04, g06,
g09, g11 and g12. The only problem where NN-DDE was
competitive was g08. In fact, in problems g01, g03, g06,
10 and g11, NN-DDE had difficulties to find feasible solu-
tions in some runs. Furthermore, in functions g05 and g13
(both with equality constraints), no feasible solutions were
found by the NN-DDE in any single run. Based on this dis-
cussion, we can suggest that the SDDE provides a clearly
better performance than a fitness-approximation based a-
pproach whose complexity is similar.

5. Remarks

Based on the results obtained in our experiments, we
highlight the following: (1) It is possible to save evaluations
in an evolutionary algorithm based on analyzing its way of
generating new solutions and not necessarily adopting a fit-
ness approximation technique. (2) In this study, we saved
about I 
 � of the OFEs to get a similar performance (or
even better in some cases) to another competitive approach.
Furthermore, we could save a +�
 � of the OFEs while get-
ting just a small decrease of the overall performance of the
approach. (3) For some problems, the convergence slow-
down, derived from the saving mechanism, was enough as
to maintain or even improve the quality of the results, des-
pite the elimination of some individuals. However for a few
problems, this small oscillation caused a performance de-
crease. (4) We empirically showed that the effect of elimi-
nating some random individuals during the process does not
provide the same effect of just reducing the population size
since the beginning. (5) Finally, we also showed that our
saving mechanism provided much better results than an-
other (equally simple) fitness-approximation approach.

6. Conclusions and Future Work

We have presented a mechanism to save evaluations of
the objective function and the constraints based on the way
an EA generates new individuals instead of using a fitness
approximation approach. The idea was to discard some new
explored areas of the search space by assigning a zero fit-
ness to some random offspring. The approach was tested
using different variations, and provided competitive results
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Table 5. Statistical results obtained by the
I 
 � -SDDE against the I 
 � -NN-DDE in �	
 in-
dependent runs. A result in boldface means a
better (or best) solution obtained. “-” means
no feasible solutions were found. The sym-
bols in column 4 mean that in only a fraction
of the ��
 runs feasible solutions were found.
“*”=

3 0
��) , “ 4 ”=

�
��) , “ 5 ”=

3 ���) , “ 6 ”=
3 ���) and “ � ”=

3 ���) .

even when saving a + 
 � OFEs. Another effect of the sa-
ving mechanism was a slow-down of the convergence of
the approach, which led, for some test problems, to improve
the quality and robustness of the results. The approach was
also compared against a version with no saving mechanism
and a smaller population in order to empirically show that
the effects are not similar. Finally, our proposal also outper-
formed a very simple fitness approximation approach. Our
future paths of research consist on analyzing which features
of a problem make it more suitable to be solved using the
saving mechanism. We also want to explore the use of some
criteria to select the individuals to be condemned to death
(instead of just choosing them at random). Finally, we will
perform comparisons against more complex fitness approx-
imation approaches.
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