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ABSTRACT

In this paper, we incorporate a diversity mechanism to the differen-
tial evolution algorithm to solve constrained optimization problems
without using a penalty function. The aim is twofold: (1) to allow

infeasible solutions with a promising value of the objective function

to remain in the population and also (2) to increase the probabili-
ties of an individual to generate a better offspring while promot-
ing collaboration of all the population to generate better solutions.

These goals are achieved by allowing each parent to generate more

than one offspring. The best offspring is selected using a com-
parison mechanism based on feasibility and this child is compared
against its parent. To maintain diversity, the proposed approach
uses a mechanism successfully adopted with other evolutionary al-
gorithms where, based on a paramefera solution (between the
best offspring and the current parent) with a better value of the ob-
jective function can remain in the population, regardless of its feasi-
bility. The proposed approach is validated using test functions from
a well-known benchmark commonly adopted to validate constraint-
handling techniques used with evolutionary algorithms. The statis-
tical results obtained by the proposed approach are highly com-
petitive (based on quality, robustness and number of evaluations
of the objective function) with respect to other constraint-handling
techniques, either based on differential evolution or on other evo-
lutionary algorithms, that are representative of the state-of-the-art
in the area. Finally, a small set of experiments were made to detect
sensitivity of the approach to its parameters.

Categories and Subject DescriptorsG.1.6 Mathematics of Com-
puting]: Numerical Analysis-global optimization,constrained op-
timization J.2 [Computer Applications]: Physical Sciencies and
Engineering-Engineering

General Terms: Algorithms

Keywords: Global Optimization, Constraint-Handling, Differen-
tial Evolution
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Evolutionary Algorithms (EAs) are heuristics that have been suc-
cessfully applied in a wide set of areas [2, 17]. However, EAs in
their canonical versions lack a mechanism able to bias efficiently
the search towards the feasible region in constrained search spaces.
This has triggered a considerable amount of research and a wide
variety of approaches have been suggested in the last few years to
incorporate constraints into the fitness function of an evolutionary
algorithm [1, 18].

We are interested in the general nonlinear programming problem
in which we want to: Find & which optimizesf (%) subject to:
gi(%) <0, i=1,...,nhj(&) =0, j=1,...,pwhereZis

the vector of solutions = [z1,zs,...,z.]7, n is the number of
inequality constraints angis the number of equality constraints (in
both cases, constraints could be linear or nonlinear). If we denote
with F the feasible region and withi the whole search space, then

it should be clear thaf C S. For an inequality constraint that
satisfiesg; () = 0, we will say that is active af. All equality
constraintsh; (regardless of the value af used) are considered
active at all points ofF.

The most common approach adopted to deal with constrained
search spaces is the use of penalty functions. When using a penalty
function, the amount of constraint violation is used to punish or
“penalize” an infeasible solution so that feasible solutions are fa-
vored by the selection process. Despite the popularity of penalty
functions, they have several drawbacks from which the main one
is that they require a careful fine tuning of the penalty factors that
accurately estimates the degree of penalization to be applied as to
approach efficiently the feasible region [23, 1].

Differential Evolution (DE) is a relatively new EA proposed by
Price and Storn [19]. The algorithm is based on the use of special
mutation and crossover operators, based on the linear combination
of three different individuals and one subject-to-replacement par-
ent. The selection process is performed via deterministic tourna-
ment selection between the parent and the child created by it. How-
ever, as any other EA, DE in its canonical version lacks a mecha-
nism to deal with constrained search spaces. Therefore, some ap-
proaches have been proposed to incorporate constraint-handling to
DE and they are discussed in the following Section.

We present a first attempt to incorporate a diversity mechanism
(to maintain either feasible and infeasible solutions in the popu-
lation) which proved its effectiveness when used with an evolu-
tion strategy [16] to the DE algorithm. Indeed, we believe that
the search power of other heuristics such as differential evolution
has been underestimated in the specialized literature on constrained
optimization and therefore our interest in analyzing such search
power. The motivation of this work is twofold: (1) to add a diver-



sity mechanism to maintain infeasible solutions with a good value scheme, based only on the value of the objective function to be
of the objective function in the population and (2) to increase the optimized and where the individual with the best value between
probability of each parent to create an offspring better than it. In the parent and its offspring is selected. Lampinen’s new selection
this way, we will exploit the capabilities of the DE recombination- scheme [6, 7] is based on feasibility rules similar to those proposed
mutation operator. by Deb [3] using a genetic algorithm as a search engine and a nich-

The paper is organized as follows: In Section 2 we describe the ing mechanism to maintain diversity. In Deb’s comparison criteria:
previous work related to the current algorithm. A detailed descrip-
tion of our approach is provided in Section 3. The experiments
performed and the results obtained are shown in Section 4 and in
Section 5 we discuss them. Finally, in Section 6 we establish some e If one solution is feasible and the other one is infeasible, the
conclusions and we define our future paths of research. feasible solution wins.

e Between 2 feasible solutions, the one with the highest fitness
value wins.

e If both solutions are infeasible, the one with the lowest sum
2. PREVIOUS WORK of constraint violation is preferred.

DE [19]is a population-based evolutionary algorithm with a sim- The diff betw L N d Deb’ . iteri
ple mutation mechanism and a crossover operator that performs a € dilierence between Lampinen's and DEb's comparison criteria

linear recombination of a number of individuals (normally three) IS that in Lampinen’s approach, when both solutions are infeasible,

and one parent (which is the subject to be replaced) to create onthe selected solution will be that which Pareto-dominates the other

child. The selection is deterministic between the parent and the In Fhe constraints_, s_pace_(in_stead of using the sum of constraint vio-
child (i.e., the best of them remains in the next population). DE Iat;\(/)ln as thetde|0|5|1%n crlterlon)d See [6] for dr(]etslls. d DE wh

shares similarities with traditional EAs. However it does not use ezura €t al. [_ ] propose an app’roac ased on Ut whose
binary encoding as a simple genetic algorithm [4] and it does not selection criteria is based also in Deb’s comparison criteria (in-

use a probability density function to self-adapt its parameters as antCIUd'.ngJ thgbsium ?f tgonstra: mt\f/]'.OIatlon ctrkllterlg)g t(l) chg)tﬁse betwelen
Evolution Strategy [22]. wo infeasible solutions). In this case, the algorithm was also

Some previous approaches have been proposed to solve Con[nodified in a way such that the newly chosen individual could be

strained optimization problems using DE. Storn [24] proposed an re-inser_ted in the current popula}tion_(an_d not onI_y _inserted in the
adaptive mechanism that relaxes the constraints of the problem inPOPulation for the next generation like in the original DE algo-

order to make all the initial solutions feasible. This pseudo-feasible rlthm).dThe aim ItS tfo a"t%W n‘?‘fWW _betFertﬁqutlonstto be set!ectedd
region is shrunk at each generation until it matches the real feasi- a5 fandom parents for other ofispring In the currént generation an

ble region. Also, Storn [24] proposed to use an aging concept in to accelerate convergence. The approach provided gqod quality re-
order to avoid that a solution remains in the population during too iults, butt\'qvas Ingt lcont;f,lstent (r}oi- all rl:nsDrebgched e'thﬁr the biSt
many generations. Furthermore, he explored the idea of allowing nown or _egc3 al optimum S,O u |on)_. N Dev's approach, as we

a solution to generate more than one offspring by modifying the 25 '" Lampinen's and Mezura's algor_lthms, feasible solutions are
original DE algorithm in the following way: when a child is cre- always considered better than infeasible ones. In fact, they lack a
ated and it is not better than the parent subject to be replaced an_mechamsm t(.) maintain d|vgr5|ty (FO have both fea§|ble and infeasi-
other child is created. The process is repedt&H times. If the " 7 ble solutions in the population during all the evolutionary process),

parent is still better, the parent remains in the population. Both, which is one of the most important aspects to consider when de-

the aging parameter amdT" are defined by the user. Storn [24] signing a competitive constraint-handling approach [14].
used a modified “DE/rand/1/bin” version. The approach showed a
good performance in problems with only inequality constraints but 3. OUR APPROACH
presented problems when dealing with equality constraints. More-  Our proposed approach uses Storn’s idea of allowing to generate
over, only two test functions adopted in this study (out of the seven more than one offspring, but now combining it with a mechanism to
used to test the approach) are part of the well-known benchmarkallow infeasible solutions with a good value of the objective func-
for constrained optimization proposed by Koziel & Michalewicz tion to remain in the population. This idea is implemented in the
[5] and extended by Runarsson & Yao [20]. following way: Each solution in the population will generate
Lampinen & Zelinka [8, 11, 9, 10] used DE to solve engineering offspring using the mutation and crossover operator of the DE algo-
design problems. They opted to handle constraints using a staticrithm. The aim is to increase the probability of a parent to generate
penalty function approach that they called “Soft -constraint”. The a better offspring and also to promote the collaboration of the so-
authors tested their approach using three well-known engineeringlutions in the population to generate better offspring. Among these
design problems [8]. They compared their results with respect n, offspring we select the best of them, in a deterministic way and
to several classical techniques and with respect to some heuristicbased on the comparison criteria discussed in Section 2. In this
methods. The main drawback of the approach is the careful fine- way, we will get either the best feasible offspring (if there are fea-
tuning required for the penalty factors which is in fact mentioned sible offspring generated) or that offspring whose sum of constraint
by the authors in their article. violation is the lowest (the nearest individual to the feasible region).
Yung-Chien and Feng-Sheng [12] proposed an Augmented La- It is worth reminding that we use the version of comparison rules
grangian approach with an adaptive mechanism to update the pewhere, between two infeasible solutions, the sum of constraint vi-
nalty parameters. The approach was compared against differentolation is used as criterion [3, 15], and not the version where the
evolutionary-programming-based techniques and the results werePareto-dominance in constraints space is used [6]. This decision
competitive on a set of eleven functions were six of them belong to was made because there is empirical evidence that using multiob-
the well-known benchmark used to test EAs for constrained opti- jective optimization concepts is not suitable to handle constraints
mization [20]. in global optimization [21, 13]. After this multiple offspring gen-
Lampinen [6, 7] also proposed an extended version of the Differ- eration, we use the diversity mechanism proposed in [16] which
ential Evolution algorithm to solve constrained optimization prob- allows solutions with a good value of the objective function, re-
lems. The approach consists on replacing the original DE selectiongardless of feasibility, to remain in the population. We apply this



Begin
G=0
Create a random initial populatic&‘g Vi,i=1,...,NP
Evaluatef (¥5) Vi,i = 1,..., NP
For G=1 to MAX_.GENERATIONSDo
F=rand[0.3,0.9]
For i=1to NPDo
= For k=1ton, Do
Selectrandomlyy # ro # 13 #
Jrand = randin{1, D)
For j=1ton, Do
If (rand;[0,1) < CROr j = jranq) Then
child; = z;?G + F(mJ'lG — m:2G)
Else
child; = .LjG
End If
End For
If K > 1Then
= If (child is better thani, ,
(based on the three selection criteri@ij)en
aL 4, =child
End If
Else
aL 41 =child
End For
If flip(.S,.) Then
If(f(iG41) < (&) Then
Toi =tgq
Else

4l

fé;+1 =g
End If
Else
= If (iig;. , is better tharil,
(based on the three selection criteri@)ien
flc;+1 = ﬁ6+1
Else
Tgy1 = Tg
End If
End If
End For
G=G+1
End For
End

Figure 1. Our algorithm. Modified steps with respect
to the original DE algorithm are marked with an arrow.
randint(min,max) returns an integer number between min and
max. rand[0, 1) returns a real number between0 and 1. Both
with uniform probability distribution. flip( W) returns 1 with
probability W.

[ Problem | n ] Function ] p [LI T NIJTLE [ NE |
g0l 13 | quadratic| 0.0003% 9 0 0 0
g02 20 | nonlinear | 99.9973% | 1 1 0 0
g03 10 | nonlinear | 0.0026% 0 0 0 1
g04 5 | quadratic| 27.0079% | 0 6 0 0
g05 4 | nonlinear | 0.0000% 2 0 0 3
g06 2 | nonlinear | 0.0057% 0 2 0 0
go7 10 | quadratic | 0.0000% 3 5 0 0
g08 2 | nonlinear | 0.8581% 0 2 0 0
g09 7 nonlinear | 0.5199% 0 4 0 0
g10 8 linear 0.0020% 3 3 0 0
g1l 2 | quadratic| 0.0973% 0 0 0 1
gl2 3 | quadratic| 4.7697% | 0 | 9 | 0O 0
g13 5 | nonlinear | 0.0000% 0 0 0 3

Table 1: Main features of the 13 test problems chosenn is
the number of decision variables, and for the constraints LI is
the number of linear inequalities, NI the number of nonlinear
inequalities, LE is the number of linear equalities and NE is
the number of nonlinear equalities. p is the ratio between the
feasible region and the whole search space.

4. EXPERIMENTS AND RESULTS

To evaluate the performance of Diversity-DE we used the 13 test
functions described in [20]. The test functions chosen contain char-
acteristics that are representative of what can be considered “diffi-
cult” global optimization problems for an evolutionary algorithm.
Their expressions are presented in an Appendix at the end of this
paper. However, a summary of their main features is presented in
Table 1, where we also show the valuemfa metric to estimate
the ratio between the feasible region and the entire search space. It
was computed as followgi = |F'|/|S|, where| F'| is the number of
feasible solutions and| is the total number of solutions randomly
generated. In this work§ = 1,000, 000 random solutions.

We performed 00 independent runs for each test function. Equal-
ity constraints were transformed into inequalities using a tolerance
value 0f0.0001. The parameters used for our CHDE are the fol-
lowing: NP = 90, MAX _ GENERATIONS = 500 (225,000
evaluations of the objective functiony R = 0.9, n, = 5 and
Sr = 0.45. To ensure that there is no sensitivity to the “F” pa-
rameter used to add noise to an individual (i.e., the mutation op-
erator adopted in differential evolution), its value was randomly
generated (using a uniform distribution) per generation between
[0.3,0.9]. The values of this range were empirically derived. We
observed that this scaling factor worked better when the value was
far from0 and1. This indicates that the search direction obtained

mechanism when comparing the best offspring against its parent inby the DE operator is more suitable for the solution of these con-
the following way: Based on the value of a parameter calle(se- strained problems when it is calculated using the first individual
lection ratio) the selection will be performed either based only in and the scaled combination of the second and the third ones almost
the value of the objective function, regardless of feasibility or based with the same percentage. We decided to compare the obtained re-
on the aforementioned feasibility rules. Unlike Storn’s approach sults against three types of approaches: (1) the most competitive
[24], we always generate the pre-defined number of offspring in approach known to date, (2) the approach based in other EA which
order to increase the probability of improvement and we do not uses a similar diversity mechanism and (3) approaches based on
use any shrinking mechanism. Besides, our approach is the firstDE as well. In this way we will know: (1) how competitive is our
attempt (to the best of our knowledge) to incorporate a diversity approach against the approach whose results are the best, (2) how
mechanism previously used with other search engines (like evolu- well the diversity mechanism works using DE as a search engine
tion strategies) in order to know the capabilities of sampling of DE and (3) how competitive is our approach among other DE-based
in constrained search spaces. Also, our approach differs of previousapproaches. We selected as the most competitive approach the im-
DE-based approaches [6, 15] because none of them has a diversityproved version of the Stochastic Ranking approach by Runarsson
mechanism. Note that, when a decision variable value is generated& Yao [21]. Also, we compared against the Simple Evolution Strat-
by the DE operator outside the bounds defined for each variable, egy by Mezura & Coello [16] which uses the same diversity mech-
we only generate a random value with uniform distribution inside anism adopted in this work. Finally, we selected three competitive
the valid bounds. Our proposed version of the DE algorithm, called DE-based approaches previously discussed in Section 2 (the DE
Diversity-DE is shown in Figure 1. approach with re-insertion by Mezura et al. [15], the Hybrid DE by



Yung-Chien and Feng-Sheng [12] and the extended DE approachof the function was different from that commonly used in the lit-
by Lampinen [6]). The statistical results of these six approaches erature and therefore the results were different). Our approach
(including our proposal) are presented in Table 2. Note that some found slightly “ better” worst result in problem g07 and it provided
results on problems with equality constraints seem to improve the “similar” best, mean and worst results in six problems (g01, g05,
best known solution or global optimum (this is because the small g06, g07, g08 and g11). In problem g10, our approach found a
tolerance used when transforming the equality constraints into two “similar” best result, but it was slightly surpassed in the mean and
inequality constraints). The source code of the approach is avail- worst results. The extended DE used different parameters for each
able at: http://www.cs.cinvestav.mx/"EVOCINV/software.html test function and therefore, the number of evaluations of the ob-
jective function was also different for each problem. For problem

5. DISCUSSION OF RESULTS g01 they used0, 000, for problem g0512, 000, 000, for problem

As can be seen in Table 2 (column 8), our Diversity-DE could
reach the global optimum consistently in 10 of the 13 test func-

tions. The only exceptions were g02, g10 and g13 where the worst

results are, however, very close to the global optimum (or to the

best known solution). Now, we divide our discussion based on the
three types of comparisons performed and described in Section 4.
Discussions based on standard deviation values were omitted be-
cause they were very small and similar in most of the cases and in

others they were not available.

5.1 Diversity-DE Against One ofthe Most Com-
petitive Approaches

With respect to the improved Stochastic Ranking (ISR) approach
(columns 3 and 8 on Table 2) [21], our approach obtained “bet-
ter” results in problem g02 and “similar” results in the remaining
twelve. It is important to remark that the ISR is the most competi-
tive approach which is able to find the global optimum in every sin-
gle run for each test function, and the performance of our Diversity-
DE is very similar. Furthermore, note that the results provided by
the ISR required 350,000 evaluations of the objective function and
our Diversity-DE only required 225,000 evaluations.

5.2 Diversity-DE Against Diversity-ES

With respect to the Simple Evolution Strategy that uses a similar
diversity mechanism (columns 4 and 8 on Table 2), our Diversity-

g06 12, 000, for problem g07175, 000, for problem g0810, 000

for problem g0937500, for problem g10270, 000 and for prob-

lem g1130, 000. This variations difficult a fair comparison. How-
ever, the discussion presented here gives some insights about the
performance of both approaches. Furthermore, the Extended-DE
used a larger tolerance value for equality constraints 0.001

and we used = 0.0001 (which makes the problem more difficult

to solve).

5.4 Remarks

From the previous comparison, we can see that the Diversity-DE
produced very competitive results based on quality and robustness
with respect to one of the best techniques. Also, the obtained re-
sults suggest that allowing the survival of infeasible solutions with
a good value of the objective function provides better results when
using DE as a search engine compared with the use of an evolution
strategy. This aspect requires further analysis. Also, our Diversity-
DE provided very competitive results compared with other DE-
based approaches.

Our Diversity-DE can deal with highly constrained problems,
problems with low (g06 and g08) and high (g01, g02, g03, g07)
dimensionality, with different types of combined constraints (lin-
ear, nonlinear, equality and inequality) and with very large (g02) or
very small (g05, g13) or even disjoint (g12) feasible regions.

Measuring the computational cost, the number of objective func-

DE obtained clearly “better” best, mean and worst results in six tion evaluations (OFE) performed by our approach is lower than the
functions (902, 907’ gog, glo and 913) The S|mp|e Evolution other techniques with respect to which it was Compared. Our ap-
Strategy was not able to provide “better” results in any given func- Proach performed 225,000 OFE. The improved Stochastic ranking
tion. Furthermore, the ES-based approach required 330,000 evaluferformed 350,000 OFE, the Simple Evolution Strategy performed
ations of the Objective function to provide those results. 330,000 OFE and the DE with re-insertion performed 350,000 OFE.

. . . No comparison against the other two DE-based approaches based
5.3 Diversity-DE Against Other DE-Based Ap-  on the number of evaluations were made because the authors used

proaches different parameters for each test problem.

With respect to re-insert DE version (columns 5 and 8 on Table

2) , our approach found a “better” best result in problem g13 and
a “similar” best result in the remaining 12 problems. Furthermore,

5.5 Confidence Intervals
In order to predict the average performance of our approach we

our Diversity-DE found considerable “better” mean and worst re- performed an statistical test to calculate the confidence intervals
sult in all problems except problem g12 where the mean and worst for the mean statistic based on tH@# runs sample. To verify if the
result were “similar”. The re-insert DE version used 350,000 eval- distributions provided by the sample were close to a normal, we
uations of the objective function. performed a one-sample Kolmogorov-Smirnov test for each sam-
With respect to the Hybrid DE approach (columns 6 and 8 on ple for each function. In all cases the results proved that the distri-
Table 2), we could only compare with six benchmark functions be- butions were not close to a normal one. After that, we performed a
cause only those results were available. Diversity-DE found “bet- bootstrapping test with000 re-samples. Briefly, the aim of boot-
ter” best results in problem g10 and it found “better” mean and strapping is to create several new samples by sampling with re-
worst results in problems g07, g09 and g10. The Hybrid DE found placement (allowing a data to be repeated in the same resample)
“better” mean and worst results in problem g13, but it required from the original sample. Each sample is the same size of the orig-
271,000 evaluations of the objective function to get them. For the inal sample. Then the desired statistic is calculated for each resam-
remaining functions the number of evaluations required by this ap- ple. The distribution of these resample statistics is called a boot-
proach were not available (the authors did not use a fixed numberstrap distribution, which gives information about the shape, center
of evaluations as a stop criterion). and spread of the sampling distribution of the statistic. We used
Finally, with respect to the Extended-DE approach (columns 7 the S-plus software. The obtained bootstrapping distributions were
and 8 on Table 2), we could only compare using the eight test close to a normal. The summary of results with the confidence in-
functions available (function g04 was available but the definition tervals for the mean statistic, with6% confidence is presented in



Problem & Different ES tested
Best Known Sol. [ Stats ISR 21] SES[I6] | RDE[I5] | HDE[IZ] | EXDE[6] | Diversity-DE
best —15.000 —15.000 —15.000 —15.000 —15.000 —15.000
g01 mean —15.000 —15.000 —14.792 —15.000 —15.000 —15.000
—15.000 worst —15.000 —15.000 —12.743 —15.000 —15.000 —15.000
St. Dev 5.8E-14 0 NA NA NA 1.0E-9
best 0.803619 0.803569 0.803619 NA NA 0.803619
g02 mean 0.782715 0.769612 0.746236 NA NA 0.798079
0.803619 worst 0.723591 0.702322 0.302179 NA NA 0.751742
St. Dev 2.2E-2 2.75E-2 NA NA NA 1.01E-2
best 1.001 1.004 1.000 NA NA 1.000
g03 mean 1.001 1.003 0.640 NA NA 1.000
1.000 worst 1.001 1.002 0.029 NA NA 1.000
St. Dev 8.2E-9 4.23E-4 NA NA NA 0
best —30665.539 | —30665.539 | —30665.539 NA NA —30665.539
g04 mean —30665.539 | —30665.539 —30592.154 NA NA —30665.539
—30665.539 worst —30665.539 | —30665.539 —29986.214 NA NA —30665.539
St. Dev 1.1E-11 0 NA NA NA 0
best 5126.497 NA 5126.497 NA 5126.484 5126.497
g05 mean 5126.497 NA 5218.729 NA 5126.484 5126.497
5216.498 worst 5126.497 NA 5502.410 NA 5126.484 5126.497
St. Dev 7.2E-13 NA NA NA NA 0
best —6961.814 —6961.814 —6961.814 —6961.814 | —6961.814 —6961.814
g06 mean —6961.814 —6961.814 —6367.575 —6961.814 | —6961.814 —6961.814
—6961.814 worst —6961.814 —6961.814 —2236.950 —6961.814 | —6961.814 —6961.814
St. Dev 1.9E-12 0 NA NA NA 0
best 24.306 24.314 24.306 24.306 24.306 24.306
g07 mean 24.306 24.419 104.599 24.306 24.306 24.306
24.306 worst 24.306 24.561 1120.541 24.307 24.307 24.306
St. Dev 6.3E-5 7.11E-2 NA NA NA 8.22E-9
best 0.095825 0.095825 0.095825 NA 0.095825 0.095825
g08 mean 0.095825 0.095784 0.091292 NA 0.095825 0.095825
0.095825 worst 0.095825 0.095473 0.027188 NA 0.095825 0.095825
St. Dev 2.7E-17 1.04E4 NA NA NA 0
best 680.630 680.669 680.630 680.630 680.630 680.630
g09 mean 680.630 680.810 692.472 680.631 680.630 680.630
680.63 worst 680.630 681.200 839.78 680.634 680.630 680.630
St. Dev 3.2E-13 1.22E-1 NA NA NA 0
best 7049.248 7057.044 7049.248 7049.862 7049.248 7049.248
g10 mean 7049.250 10771.41 8442.66 7055.079 7049.248 7049.266
7049.248 worst 7049.270 16375.267 15580.37 7116.188 7049.248 7049.617
St. Dev 3.2E-3 2.52E+3 NA NA NA 4.45E-2
best 0.75 0.75 0.75 NA 0.75 0.75
gll mean 0.75 0.75 0.76 NA 0.75 0.75
0.75 worst 0.75 0.75 0.87 NA 0.75 0.75
St. Dev 1.1E-16 3.16E-4 NA NA NA 0
best 1.000 1.000 1.000 NA NA 1.000
gl2 mean 1.000 1.000 1.000 NA NA 1.000
1.000 worst 1.000 1.000 1.000 NA NA 1.000
St. Dev 1.2E-9 0 NA NA NA 0
best 0.053942 0.053964 0.053866 0.053950 NA 0.053941
gl3 mean 0.06677 0.264135 0.747227 0.053950 NA 0.069336
0.053950 worst 0.438803 0.544346 2.259875 0.053950 NA 0.438803
St. Dev 7.0E-2 2.06E-1 NA NA NA 7.58E-2

Table 2: Statistical results obtained by the improved version of the Stochastic Ranking (ISR), the Simple Evolution Strategy (SES),
the DE approach with re-insertion mechanism (RDE), the Hybrid Differential Evolution(HDE), the Extended Differential Evolution
(EXDE) and our Diversity-DE. A result in boldface means a better (or best) solution obtained. NA means not available.



Problem |  Optimum Confidence Interval 3 Different parameter values _ _
for the Mean statistic S ere s | oo | 50 | 9= os
g01 —15.000 [~15.000, —15.000] o B - NE NE 11999
g02 0.803619 [0.796136, 0.800064] 12000 w N/E N/E —14.980
903 1.000 [1.000,1.000] SEsD 5803536 0 ngﬁlﬁ) 0 sg{sEGw 028(?5()?;9
903 —30665.539 [7306655397 730665539} go2 M 0:797273 0:797482 0:797021 0:799335
g05 5126.498 [5126.497,5126.497] 0.s0310 | W || 0762780 | 0.770112 | 0.7717a0 | 0732078
go6 —6961.814 [-6961.814, —6961.814] = 9599 e NE — e
go7 24.306 (24.306, 24.306] 03 M 0.999 NE NE NE
ggg 0.095825 [0.095825,0.095825] 1.000 o o997 NE e NE
680.63 680.630,680.630 B —30665.539 N/E N/E N/E
glO 7049 25 [ [7049 25 7049 27] } go4 M —30650.978 N/E N/E N/E
11 0 75 [0 757 0 75} —30665.539 ;l) 72192455.2553 m;é “?E wg
g . .75,0. 4E+
B - N/E N/E 5126.497
912 1000 [10007 1000] g05 M N/E N/E 5;26.499
g13 0.053950 [0.054670, 0.084010] 5216.498 w N/E NIE 5126.507
SD - N/E N/E 3.1E-3
B 24.444 N/E N/E 24.306
. / / .
: . a0 | w || asots NE NE 247344
Table 3: 95% Confidence intervals for the sampled mean of our sD 1.7E-1 NJE N/E 5.8E-3
approach. These intervals were generated using a bootstrap- 409 H oaoosy NE NE e
i 1 i . w . N/E N/E N/E
ping process. A result in boldface means that the optimum was 680.63 s 030.640 NE NE NE
reached consistently. B 7479.604 NE NE 5048.279
glo M 12526.493 N/E N/E 10089.717
7049.248 w 23848.704 N/E N/E 14722.025
SD 3.8E+3 N/E N/E 1.9E+3
B - 0.053941 0.053941 0.053941
Table 3. 0.085050 | W 0338805 | 0.440898 | 0.054000
The confidence intervals for the mean suggest that Diversity-DE SD L.9E1 1.6E1 L4ES

either reaches the global optimum or provides a very good approx-
imation to it. For problem g02, which presents many problems
to optimization algorithms to consistently reach the vicinity of the
b(_est kr_10wn s_olutlon: the mean cor_lf_ldence '_”te”a' obtained by the difference) found by this combination with respect to the results
Dlversr[y_-DE is considered competitive. Be5|des,_ For problem g10, i, Table 2. “” means no feasible solutions were found.

whose size of the search space is one of the widest (based on the

valid intervals for the decision variables), the obtained confidence

interval is also considered very competitive. Finally, the confidence teresting was that this small valuewf prevented the approach to
interval for problem g13, whose global optimum is not easy to find find the feasible region for some test problems (g01, g05 and g13,
consistently, is also very close to it. Based on this small statistical whose estimated feasible region is very small). Also a negative ef-
test we can conclude that Diversity-DE is able to find the global fectwas found when increasing the value of fhe This result was
optimum or best known solution (or its vicinity) with a high prob-  also expected, because with higher valueS,gfthe search will be

Table 4: Statistical results obtained by the Diversity-DE with
different values for its parameters. N/E means no effect (or

ability for this set of problems. guided most of the time only by the objective function value and
the search will not concentrate enough as to find the feasible re-
5.6 Analyzing the Effects of the Parameters gion. See for example functions g05, g10 and g13 where in only

a fraction of the total number of runs we were able to find feasible
solutions. Finally, we observed no significant negative effects when
increasing the value of the number of offspring generated and also
decreasing the value of thg.. This last result is also interesting
because it suggests that, for the case of DE as a search engine, the
number of infeasible solutions with a good value of the objective
function required to remain in the population is not necessarily big,

if we want to obtain competitive results. This result will be subject
for future research.

In order to know the sensitivity of Diversity-DE to its two extra
parameters (number of offsprimg, and Selection rati®,.) we per-
formed a set of experiments varying them. We used the exact set
of values for the remaining DE parameters used in our previous ex-
periments and we also we maintained the total number of objective
function evaluations225, 000) in order to have a fair comparison.
We only modified the aforementioned two parameters in the fol-
lowing combinations: (1p, = 2 andS, = 0.45, (2) n, = 10 and
S, = 0.45, (3)n, = 5andS, = 0.2and (4)n, = 5andS, = 0.8.

For each combination we performed0 runs per test problem. In
Table 4 we present those functions where we found differences in 6. CONCLUSIONS AND FUTURE WORK

the results with respect to those shown in Table 2 (“B” means best, We have proposed a novel approach based on Differential Evo-
“M” means mean, “W” means worst and SD means Standard Devi- lution to solve constrained optimization problems. The constraint-
ation). We omitted the functions in which the results were exactly handling technique consists on a comparison method based on fea-
the same as those shown in Table 2 for the four combinations of sibility. Also two additional modifications to the DE approach were
parameters. added: (1) a diversity mechanism based on allowing the survival

For the combination of, = 2 andS, = 0.45, in problem g10 for the next generation of those individuals with a good value of

only in 55 runs out of100, feasible solutions were found. For the the objective function (regardless of feasibility) and (2) allowing
combination ofn, = 5 and.S,, = 0.8, in problem g05 only inl6 to each parent to generate more than one offspring with the aim of
runs out ofL00, feasible solutions were found; the same occurred in increasing the probability of getting a better offspring and promot-
problems g1031 of 100) and g13 {6 of 100). The results suggest  ing the collaboration of more individuals with one parent to gen-
a negative effect when decreasing the number of offspring gener- erate new solutions. The approach was compared against one of
ated. This result confirms our hypothesis of the utility of allowing the most competitive approaches (the improved Stochastic Rank-
each parent to be combined with more individuals in the population ing), also against an evolution strategy whose diversity mechanism
in order to sample the search space with more intensity. Also in- is similar to that used in this work and finally against three DE-



based approaches. From this comparison we can conclude that oup12]
approach is competitive at a low computational cost (measured by
the number of evaluations of the objective function). Besides, we
conclude that the use of DE as a search engine is very suitable to
solve this set of constrained problems and that the addition of a [13]
diversity mechanism improves the quality and robustness of the fi-
nal results. However, the approach showed some sensitivity to the
values of its two extra parameters. Our future work consists on test-
ing the approach using the main modifications separately (diversity
mechanism and multiple offspring) in order to detect if either only
one of them or just the combined effect is mandatory in the algo-
rithm. Also, we must find a self or on-line adaptive mechanism for
the two extra-parameters of the approach (number of offspring per
parentn, and the selection rati§,). We will also analyze more
in-depth the possible causes of the improvement when using a sim-
ilar constraint-handling approach but with different search engines.
Finally, we will perform an analysis of Variance (ANOVA) as an

[15]

in-depth test to analyze the sensitivity of Diversity-DE to all its pa- [1g]
rameters, including those used by the DE approach itself.
Acknowledgments .

The first author acknowledges support from the Mexican Consejo
Nacional de Ciencia y Tecnolag (CONACyT) through a post-
doctoral position at CINVESTAV-IPN, MEXICO. The second au-
thor acknowledges support from CONACyYT through a scholarship
to pursue graduate studies at CINVESTAV-IPN's Electrical Engi-
neering Department. The third author acknowledges support from [20]
CONACYyT through project number 42435-Y.

(28]

[19]

[21] T.P. Runarsson and X. Yao. Search Biases in Constrained Evolutionary
7. REFERE NC ES Opt|m|zat|on.|EE|§ Transactions on System, Man and Cybeynencs: Part C.
[1] C.A. C. Coello. Theoretical and Numerical Constraint Handling Techniques Special Issue on "Knowledge Extraction and Incorporation in Evolutionary
s : C tation’; 2005. | .
used with Evolutionary Algorithms: A Survey of the State of the Abmputer omputation _n press . . .
Methods in Applied Mechanics and Engineerit§1(11-12):1245-1287 [22] H. Ii SchwefelEvolution and Optimal Seekingohn Wiley & Sons Inc., New
' ! York, 1995.
January 2002. T . . . .

[2] C. A. Coello Coello, D. A. Van Veldhuizen, and G. B. LamoBtolutionary (23] A.E. .Sm'th and D. W. Coit. Constraint Handlmg chhmqqes—Penalty
Algorithms for Solving Multi-Objective Problenisluwer Academic Functhns. InT. Bck, D‘. B. Fogel, and Z. Mlchalerg:z, e_dltoHandbook of .
Publishers. New York. June 2002. ISBN 0-3064-6762-3 Evolutionary Computatiorchapter C 5.2. Oxford University Press and Institute

! § . i of Physics Publishing, 1997.

[3] K. Deb. An Efficient Constraint Handling Method for Genetic Algorithms. [24] R Stgrr: Sy;terln I;eg'jsign by Constraint Adaptation and Differential Evolution
(ngtr)gputer Methods in Applied Mechanics and Enginee;(2/4):311-338, IEEE Transactions on Evolutionary Computatj@{1):22—34, April 1999.

[4] D. E. GoldbergGenetic Algorithms in Search, Optimization and Machine
Learning Addison-Wesley Publishing Co., Reading, Massachusetts, 1989.

[5] S. Koziel and Z. Michalewicz. Evolutionary Algorithms, Homomorphous APPEN D|X
Mappings, and Constrained Parameter Optimizaimolutionary
Computation7(1):19-44, 1999.

[6] J.Lampinen. A Constraint Handling Approach for the Diifferential Evolution A TEST FU NCTIONS . . R
Algorithm. In Proceedings of the Congress on Evolutionary Computation 2002 The_ details of thel3 test functions used in this paper are the
(CEC’2002) volume 2, pages 1468-1473, Piscataway, New Jersey, May 2002.  following:

IEEE Service Center.

[7] J.Lampinen. Technical report, 2004. Available at: 1. gox . . ) . )
http:/Awww.it.lut.fi/kurssit/04-05/010778000/DECONSTR.PDF. Minimize: f(Z) =537,z — 53 5_, 27 — 3 ;25 ; subject to:

[8] J.Lampinen and I. Zelinka. Mechanical Engineering Design Optimization by
Differential Evolution. In D. Corne, M. Dorigo, and F. Glover, editdiew g1(Z) =221 + 222 + 210 + 11 — 10 <0
Ideas in Optimizationpages 127-146. Mc Graw-Hill, UK, 1999. —

=2 2 —10<0
[9] J.Lampinen and I. Zelinka. Mixed Integer-Discrete-Continuous Optimization gz(ﬁ) @1+ 25 4 T10 + 112 -
by Differential Evolution, Part 1: the optimization method. In Bn@ra, editor, 9s(Z) = 2x2 + 2x3 + 11 + 12 — 10 <0
Proceedings of MENDEL'99, 5th International Mendel Conference on Soft ga (%) = —8x1 + 219 <0
Computing pages 71-76. Brno, Czech Republic. Brno University of 5(F) = —8zs + w11 < 0
Technology, Faculty of Mechanical Engineering, Institute of Automation and 95 Y 2T A =
Computer Science, June 1999. ISBN 80-214-1131-7. 96(Z) = —8x3 + 212 <0
[10] J. Lampinen and I. Zelinka. Mixed Integer-Discrete-Continuous Optimization g7(%) = —2x4 — x5 + 10 < 0

by Differential Evolution, Part 2: a practical example. In Bn@ra, editor, (F) = —226 — 7 + 211 < 0

Proceedings of MENDEL'99, 5th International Mendel Conference on Soft g8 Y= 6 7 =

Computing pages 77-81. Brno, Czech Republic. Brno University of 9o(Z) = —2xg — 29 + 12 <0

Technology, Faculty of Mechanical Engineering, Institute of Automation and

Computer Science, June 1999. ISBN 80-214-1131-7. where the bounds areé < z; < 1 (G = 1,...,9),0 < z; < 100
[11] J. Lampinen and I. Zelinka. Mixed Variable Non-Linear Optimization by (i = 10,11,12) and0 < z13 < 1. The global optimum is at™ =

Differential Evolution. InProceedings of Nostradamus’99, 2nd International (1,1,1,1,1,1,1,1,1,3,3,3,1) wheref(z*) = —15. Constraintsyy,

Prediction Conferencgpages 45-55. Zlin, Czech Republic. Technical
University of Brno, Faculty of Technology Zlin, Department of Automatic
Control, October 1999. ISBN 80-214-1424-3.

Y.-C. Lin, K.-S. Hwang, and F.-S. Wang. Hybrid Differential Evolution with
Multiplier Updating Method for Nonlinear Constrained Optimization Problems.
In Proceedings of the Congress on Evolutionary Computation 2002
(CEC’2002) volume 1, pages 872—-877, Piscataway, New Jersey, May 2002.
IEEE Service Center.

E. Mezura-Montes and C. A. C. Coello. Multiobjective-Based Concepts to
Handle Constraints in Evolutionary Algorithms. In E.&ez, J. Favela,

M. Mejia, and A. Oliart, editorsProceedings of the Fourth Mexican
International Conference on Computer Science (ENC'2008)es 192—-199,
Los Alamitos, CA, September 2003. Apizaco, Tlaxcal@&xi¢o, IEEE
Computer Society.

14] E. Mezura-Montes and C. A. C. Coello. An improved diversity mechanism for

solving Constrained Optimization Problems using a Multimembered Evolution
Strategy. InProceedings of the Genetic and Evolutionary Computation
Conference (GECCO’'2004heidelberg, Germany, June 2004. Seattle,
Washington, Springer Verlag. (accepted for publication).

E. Mezura-Montes, C. A. C. Coello, and E. |. Tun-Morales. Simple Feasibility
Rules and Differential Evolution for Constrained Optimization. In R. Monroy,
G. Arroyo-Figueroa, L. E. Sucar, and H. Sossa, edit®raceedings of the

Third Mexican International Conference on Artificial Intelligence
(MICAI'2004), pages 707-716, Heidelberg, Germany, April 200&xiMo City,
México, Springer Verlag. Lecture Notes in Atrtificial Intelligence No. 2972.

E. Mezura-Montes and C. A. Coello Coello. Adding a Diversity Mechanism to
a Simple Evolution Strategy to Solve Constrained Optimization Problems. In
Proceedings of the Congress on Evolutionary Computation 2003 (CEC’2003)
volume 1, pages 6-13, Piscataway, New Jersey, December 2003. Canberra,
Australia, IEEE Service Center.

Z. Michalewicz.Genetic Algorithms + Data Structures = Evolution Programs
Springer-Verlag, third edition, 1996.

Z. Michalewicz and M. Schoenauer. Evolutionary Algorithms for Constrained
Parameter Optimization Problentsvolutionary Computatiord(1):1-32, 1996.

K. V. Price. An Introduction to Differential Evolution. In D. Corne, M. Dorigo,
and F. Glover, editord\ew Ideas in Optimizatigrpages 79-108. Mc

Graw-Hill, UK, 1999.

T. P. Runarsson and X. Yao. Stochastic Ranking for Constrained Evolutionary
Optimization.|[EEE Transactions on Evolutionary Computatj@if3):284—294,
September 2000.

g2, 93, g7, gs andgg are active.
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y o cost m)—zu" 1 cos(x;)

Maximize: f(Z) = subject to:
J (&) NSTRRTT j
n
1@ = 075—J[=zi<o0
i=1
02(F) = Y 2 -75m<0 @)

=1

wheren = 20 and0 < z; < 10 (¢ = 1,...,n). The global maximum is

unknown; the best reported solution is [20]z*) = 0.803619. Constraint

g1 is close to being activegg = —107%).
. g03

Maximize: f(Z) = (v/n)" [17_; =

subject to:

@) =L ef —1=0

wheren = 10and0 < z; <1(i=1,...,n).

z; =1/y/n(i=1,...,n)wheref(z") = 1.
. 904

Minimize: f (&) = 5.3578547x2 4 0.8356891x1 x5 + 37.293239x; —

40792.141

subject to:

g1(Z) = 85.334407 4 0.0056858z2x5 + 0.0006262x1 x4

— 0.0022053z325 — 92 < 0

g2(%) = —85.334407 — 0.0056858z2x5 — 0.000626221 24

+ 0.0022053z3x5 < 0

g3 (&) = 80.51249 + 0.0071317x2x5 + 0.0029955z 1 o

+0.0021813z2 — 110 < 0

g4(%) = —80.51249 — 0.0071317z225 — 0.0029955x1 2

—0.0021813z2 4+ 90 < 0

g5 (&) = 9.300961 + 0.0047026x3x5 + 0.0012547z 1 3

+0.0019085z3z4 — 25 < 0

96(Z) = —9.300961 — 0.0047026x3x5 — 0.0012547x 23

— 0.0019085x3x4 + 20 < 0

The global maximum is at

where: 78 < x; < 102,33 < xo < 45,27 < x; < 45 (i = 3,4,5).
The optimum solution is:™ = (78, 33, 29.995256025682, 45,
36.775812905788) where f(z*) = —30665.539. Constraintsgy Y ge
are active.

. go5
Minimize:f (Z) = 3z + 0.000001z5 4 2z + (0.000002/3)z

subject to:

gl(f) =—xz4+x3 —0.55<0

gg(f) = —I3 + T4 — 0.55 S 0

hs (%) = 1000 sin(—z3 — 0.25) +

1000 sin(—z4 — 0.25) +894.8 —z; =0
ha(Z) = 1000 sin(z3 — 0.25) +

1000 sin(zz — x4 — 0.25) + 894.8 — x5 = 0
hs(Z) = 1000 sin(z4 — 0.25) +

1000 sin(z4 — x3 — 0.25) + 1294.8 =0

where0 < x; < 1200,0 < zp < 1200, —0.55 < z3 < 0.55, and
—0.55 < x4 < 0.55. The best known solution i8* = (679.9453,
1026.067,0.1188764, —0.3962336) wheref(z*) = 5126.4981.

. go6

Minimize: f(Z) = (z1 — 10)® 4 (z2 — 20)*

subject to:

g1(%) = —(z1 — 5) — (z2 —5)?+100< 0
92(%) = (w1 — 6)> 4 (z2 — 5)* —82.81 < 0
where1l3 < z; < 100 and0 < wzp <
isz* = (14.095,0.84296) where f(z
straints are active.

. go7

Minimize: f(Z) = xf + :cg + 122 — 1421 — 1622 + (T3 — 10)2 +
4(z4 —5)2 + (x5 — 3)% +2(x6 — 1)% + 522 + T(2xs — 11)% +2(xg —
10)2 4 (z10 — 7)2 + 45

subject to:

g1(Z) = —105 + 421 + 5x2 — 3z7 + 928 < 0

g2(Z) = 101 — 8xz2 — 1727 + 225 < 0

g93(%) = —8zx1 + 2w2 + 5xg9 — 2110 — 12 <0

94(Z) = 3(z1 — 2)% + 4(z2 — 3) + 225 — Tz — 120 < 0

g5(%) = 522 + 8z + (x3 — 6)% — 224 —40 < 0

96(Z) = 22 + 2(x2 — 2)% — 22122 + 1das — 626 < O

g7(Z) = 0.5(z1 — 8)% + 2(z2 —4)2 + 322 —26 —30< 0

100. The optimum solution
*) = —6961.81388. Both con-

10.

11.

12,

13.

98(Z) = —3x1 + 622 + 12(z9 — 8)%2 — Tw10 < 0

where—10 < z; < 10 (i = 1, ,10). The global optimum isc* =
(2.171996, 2. 363683 8. 773926 5 095984 0.9906548, 1.430574,
1.321644, 9.828726, 8.280092, 8.375927) Wheref(:c ) = 24.3062091.
Constrainty1, g2, 93, 94, g5 andge are active.

. go8

.3 .
Maximize: =) _ sin (27xq) sin(27xg)
aximize: f (&) T (a1 ta2)
subject to:

g1(T) =22 —x2+1<0

g2(F) =1—ax1 + (xz2 —4)2 <0

where0 < z; < 10and0 < z2 < 10. The optimum solution is located at
x* = (1.2279713, 4.2453733) where f(z*) = 0.095825.

. g09

Minimize: f(&) = (x1 — 10)2 4+ 5(z2 — 12)2 + x5 + 3(zq — 11)% +
1012 + 7:E§ + z‘; — 4xgx7y — 1026 — 87

subject to:

g1(%) = —127+ 21? + 31:;1 + x3 + 413 + 525 <0
g2(&) = —282 + Txy + 3z2 + 1022 + 24 — 25 < 0
93(&) = —196 + 231 + x3 + 622 — 8z7 < 0

ga(T) = 41‘? + xg — 3z1x2 + 21:% + 5x6 — 1127 <0

where—10 < z; < 10 (¢ = 1,...,7). The global optimum isc* =
(2.330499, 1.951372, —0.4775414, 4.365726, —0.6244870, 1.038131,
1.594227) where f(z*) = 680.6300573. Two constraints are activey{
andgy).

gl0

Minimize: f(Z) = 1 + 2 + x3

subject to:gy () = —1 4 0.0025(x4 + z6) < 0

g2(Z) = =1+ 0.0025(z5 + 7 — x4) <O

93(%) = -1+ 0.01(zg —x5) <0

g4 (%) = —z126 + 833.33252x4 + 100x1 — 83333.333 < 0
g5(%) = —zow7 + 125025 + 224 — 125024 < 0

ge,(f) = —z3xg + 1250000 + z3z5 — 25005 < 0

where100 < z; < 10000, 1000 < z; < 10000, (i = 2,3), 10 <
z; <1000, (i = 4,...,8). The global optimum isz* = (579.19,
1360.13,5109.92, 182.0174, 295.5985, 217.9799, 286.40, 395.5979),
wheref(z*) = 7049.248. g1, g2 andgs are active.

gl1

Minimize: f(Z) = 23 + (z2 — 1)?

subject to:

h(Z) =22 —22 =0

where: —1 < 27 < 1, -1 < zo < 1.
x* = (+1/+/2,1/2) wheref (z*) = 0.75.
gl2

Maximize: f(Z) =
subject to:

91(&) = (z1 = p)® + (w2 — @)® + (w3 — 7)? = 0.0625 < 0

The optimum solution is

100— (21 =5)% — (w5 =5)2 — (23 —5)?
100

where0 < z; < 10 (¢« = 1,2,3) andp,q,r = 1,2,...,9. The fea-
sible region of the search space consist®dfdisjointed spheres. A point
(z1,z2,x3) is feasible if and only if there exigt, g, r such the above in-
equality (12) holds. The global optimum is locatedvdt = (5, 5, 5) where
fla™) = 1.

g13

Minimize: f(Z) = e®172¥374%5

subject to:

h@) =22+ 23 +ai+a?+22-10=0

hz(w) = T3 — 5Z4Z5 =0

hg(ZL’)_I1+$g+1_O

where—2.3 < x; < 2.3 (i = 1,2)and—3.2 < x; < 3.2 (i = 3,4, 5).
The optimum solution is™ = (—1.717143,1.595709, 1.827247,

— 0.7636413, —0.763645) wheref(z*) = 0.0539498.



