Engineering Optimization Using a Simple Evolutionary Algorithm

Efrén Mezura-Montes, Carlos A. Coello Coello and Ricardo Landa-Becerra
Evolutionary Computation Group (EVOCINV)
Departamento de Ingenieria Eléctrica
Seccion de Computacion
Av. Instituto Politécnico Nacional No. 2508
Col. San Pedro Zacatenco
México D.F. 07300, MEXICO
{emezur a, rl anda}@onput aci on. cs. ci nvest av. nx
ccoel l o@s. ci nvest av. nx

Abstract

This paper presents a simple (1 +) Evolution Strat-
egy and three simple selection criteria to solve engineer-
ing optimization problems. This approach avoids the use of
a penalty function to deal with constraints. Its main advan-
tage is that it does not require the definition of extra pa-
rameters, other than those used by the evolution strategy.
A self-adaptation mechanism allows the algorithm to main-
tain diversity during the process in order to reach compet-
itive solutions at a low computational cost. The approach
was tested in four well-known engineering design prob-
lems and compared against several penalty-function-based
approaches and other state-of-the-art technique. The re-
sults obtained indicate that the proposed technique is highly
competitive in terms of quality, robustness and computa-
tional cost.

1. Introduction

Several approaches have been suggested in the litera-
ture to solve engineering optimization problems [17]. Evo-
lutionary Algorithms (EAs) are heuristic techniques that
have been found particularly useful to solve this kind of
optimization problems [9]. However, EAs lack a mecha-
nism able to bias efficiently the search towards the feasi-
ble region in constrained search spaces. This has motivated
a considerable amount of research and a wide variety of ap-
proaches have been suggested in the last few years to incor-
porate constraints into the fitness function of an evolution-
ary algorithm [5, 16].

The most common approach adopted to deal with con-
strained search spaces is the use of penalty functions. When

using a penalty function, the amount of constraint viola-
tion is used to punish or “penalize” an infeasible solution
so that feasible solutions are favored by the selection pro-
cess. Despite the popularity of penalty functions, they have
several drawbacks from which the main one is that they re-
quire a careful fine tuning of the penalty factors that accu-
rately estimates the degree of penalization to be applied as
to approach efficiently the feasible region [18, 5]. There-
fore, other alternative approaches have been suggested. Our
approach is based on a simple evolution strategy (1 + A)-
ES and three simple selection rules to guide the evolution-
ary search to the feasible region of the search space. More-
over, this approach does not use a penalty function, it does
not require the definition of any extra parameters, other than
those required by an evolution strategy and it is easy to im-
plement.

This paper is organized as follows: In Section 2 the math-
ematical definition of the problemis presented. In Section 3,
we describe some previous work. A detailed description of
our approach is given in Section 4. In Section 5 we describe
the selected problems to test our technique. In Section 6, we
show the results obtained in the experiments performed and
in Section 7 we discuss them. Finally, some conclusions and
future work are established in Section 8.

2. Basic Concepts

We are interested in the general non linear programming
problem in which we want to: Find Z which optimizes f(Z)

subject to: ¢;(¥) < 0, ¢ = 1,...,n hj(@) =
0, j = 1,...,p where ¥ is the vector of solutions
¥ = [21,T2,...,2,]T, n is the number of inequality con-

straints and p is the number of equality constraints (in both
cases, constraints could be linear or nonlinear). If we de-

Child vs Current Solution / \ ‘With 50 % of probability
Using Selection Criteria

Best Parent Using

Best f(x) Parent replaces
Selection Criteriareplaces
the current solution

the current solution

Figure 1. Diagram that illustrates the diversity
mechanism implemented for our approach.

Figure 2. Center and end section of the pres-
sure vessel used for problem 1.

note with F to the feasible region and with S to the whole
search space, then it should be clear that 7 C S.

3. PreviousWork

Several authors have used EAs to solve engineering de-
sign problems:

Deb [8] proposed a Genetic Adaptive Search (GeneAS)
to solve engineering optimization problems. He proposed
to use a both, binary and real encoding for each solution.
This approach was tested on three engineering problems [8],
making emphasis in problems that have discrete and con-
tinuous variables. The obvious drawback of the approach is
the need of implementing combined operators for the spe-
cial encoding adopted.

Coello and Mezura [6] implemented a version of the
Niched-Pareto Genetic Algorithm (NPGA) [13] to handle
constraints in single-objective optimization problems. The
NPGA is a multiobjective optimization approach in which
individuals are selected through a tournament based on
Pareto dominance. However, unlike the [original] NPGA,
Coello and Mezura’s approach does not require niches (or
fitness sharing [7]) to maintain diversity in the population.
The NPGA is a more efficient technique than traditional
multiobjective optimization algorithms, because it only uses
a sample of the population to estimate Pareto dominance.

Akhtar et al. [1] proposed a swarm-like based approach
solve engineering optimization problems. They simulate so-

cieties that conform a civilization. In each society there is a
leader which is followed by the other members of its soci-
ety. Besides these societies, there is a leader’s society which
is formed with the leaders of each society. They are called
”general leaders”. Constraints are handled by ranking the
solutions based on nondominace checking inside their cor-
responding society. They also use a special operator to al-
low an individual to be assigned with a variable value that
does not exists neither in the leader nor in the solution se-
lected from the society. It can be seen as an individual that
is not following its leader. Its main advantage is that the ap-
proach requires a low number of evaluations of the objec-
tive function to obtain good results, but not the optimum. Its
main drawback is that the implementation is not easy. Be-
sides this, the computational cost increases because of the
ranking process and the clustering algorithm that the ap-
proach requires to initialize the societies.

4. Our approach

Our approach is based on an Evolution Strategy because
this technique has been found not only efficient in solving
a wide variety of optimization problems [10], but also has a
strong theoretical background [3].

The motivation of this work is divided in three parts: (1)
We hypothesized that the use of an evolution strategy for
constrained optimization would be beneficial to sample the
search wide enough, (2) we were aware that having a good
mechanism to maintain diversity is one of the keys to pro-
duce a constraint-handling approach that is competitive and
(3) we did not want to add any extra parameter to the ap-
proach in order to make it easy to use.

The three simple selection criteria used in our tourna-
ments are the following (binary tournaments are adopted):

1. Between 2 feasible solutions, the one with the highest
fitness value wins.

2. If one solution is feasible and the other one is infeasi-
ble, the feasible solution wins.

3. If both solutions are infeasible, the one with the lowest
sum of constraint violation is preferred.

Our approach uses the 1/5-success rule for self-adapting
the o value of our ES. By using just one ¢ value and one fit-
ness function evaluation per generation, the resulting com-
putational cost (per generation) is very low.

We use a modified version of a (1 + X)-ES [3]. In the
original (1 4+ X)-ES, X solutions are generated from the cur-
rent solution and if one of the X is better than the current
one, it replaces it. The modifications are the following:

e The selection process was modified in order to allow
either infeasible solutions with a good value of the ob-
jective function or the best parent (based on the selec-
tion criteria) to replace the current solution. Therefore,

besides the A solutions, they are combined to gener-
ate just one child.

This modified selection process is controlled by a pa-
rameter (that is not defined by the user) called Selec-
tion Ratio (S,.). This parameter was introduced in [6]
and it refers to the percentage of selections that will
take place only between the current solution and the
child generated by all the A parents, based on the three
selection criteria previously indicated. In the remain-
ing 1 — S, selections, there are two choices: (1) either
the parent with the best value of the objective function
will replace the current solution (regardless of its fea-
sibility) or (2) the best parent (based on the three selec-
tion criteria) will replace the current solution. Both op-
tions are given a 50% probability each (see Figure 1).

The S, parameter is adapted online using the fitness
value of the current solution during an interval of time
(number of generations). The “mean deviation” (M)
of the current solution over a certain number of gener-
ations is calculated in order to know how different has
been the current solution. All the fitnesses are normal-
ized in order to obtain a value between 0 and 1. The
expression to adapt the S,. value is the following:

Sy (t —interval)/1.001 if My < 0.1

Sp(t) =< S.(t—interval) = 1.001 if My > 0.2
S-(t —interval) if0.1 < M;<0.2
1)

where interval is defined as a percentage of the
maximum number of generations. For example if the
interval is defined as 0.05 and the number of gener-
ations is 100, the update process will take place at
every 5 generations. As can be seen, S, will be de-
creased if the current solution has not significantly
changed during the given interval (i.e., My < 0.1) al-
lowing a parent (which may be infeasible) with a good
fitness value to replace the current solution. This is
meant to increase diversity. On the other hand, S,. will
increase if the solution has been significantly differ-
ent (i.e., My > 0.2) during the interval, thus favor-
ing deterministic selection to impel convergence. S,
will keep its current value if the variation of the cur-
rent solution in the interval has been moderated (i.e.,
0.1 < M;<0.2).

In order to always keep the best solution found dur-
ing the process a superelitist mechanism is included.
Its only goal is to keep the best feasible solution
found. This is required because the diversity mecha-
nism adopted makes the current solution to be replaced
by another solution which is not necessarily better and
may be infeasible. Its implementation does not add any

el

Figure 3. The welded beam used for problem
2.

significant extra computational or storage cost to the
algorithm.

The pseudo-code of this approach is shown in Figure 4.

Begin
t=0, S;-=0.9, interval=0.9
Create a random initial solution = © and store it as the superelitist solution z
Evaluate f(mo)
For t=1 to MAX_GENERATIONS Do
Produce X mutatlons of 2 (8=1) ysing:
mg:zt +oft] - Nj(0,1)Vi € n,j =1,2,...,A
Generate one child ¢ by the combination of the X mutations using
m=randint(1, X)
a:: = zZ" Vi E€n
If (flip(S) Then
Evaluate f(z)
Apply comparison criteria to select the best individual = t petween = (t—1) and = ¢
else
Evaluate all the A mutations obtained
If (flip(0.5) Then
2t = parent with best objective function value regardless of feasibility
ese
2t = best parent based on the comparison criteria
endif
endif
If (zi better than =5) (using selection criteria) Then

z° ==

s

If (t modn = 0)Then
o[t —n]/e ifps >1/5
o[t] = olt—mn]-c ifps <1/5
o[t — n] ifps =1/5
End If
I1f (¢t mod interval = 0)Then
Calculate the mean deviation (M g) of the current solutions in the interval
If (Mg < 0.1) Then
Sp(t) = Sp(t — interval) /1.001
else
If (Mg > 0.2) Then
Sp(t) = Sp(t — interval) /1.001
End If
End If
End If
End For
End

Figure 4. SES algorithm (n is the number of
decision variables of the problem, flip(P) is
a function that returns TRUE with probability
P).

5. Test Problems

To test our technique we decided to implement four

penalty-based approaches: Death penalty, a static penalty
[12], a dynamic penalty [14] and an adaptive penalty [11].

We selected four well known engineering design prob-

lems to validate our approach . The full description of each
of them is provided below:

e Problem 1: (Design of a Pressure Vessdl)

A cylindrical vessel is capped at both ends by hemi-
spherical heads as shown in Figure 2. The objective is
to minimize the total cost, including the cost of the ma-
terial, forming and welding. There are four design vari-
ables: T, (thickness of the shell), T}, (thickness of the
head), R (inner radius) and L (length of the cylindri-
cal section of the vessel, not including the head). T
and T}, are integer multiples of 0.0625 inch, which are
the available thicknesses of rolled steel plates, and R
and L are continuous. Using the same notation given
by Kannan and Kramer [15], the problem can be stated
as follows:

Minimize : f(%) = 0.6224z1z324 + 1.7781z273 +
3.1661ziz,s + 19.847%x;

93(%) = —mzdzy — 7zl + 1,296,000 < 0

) =24—240<0

where 1 < 27 < 99,1 < 25 < 99,10 < z3 < 200
y 10 < z4 < 200.

e Problem 2: (Design of a Welded Beam)

A welded beam is designed for minimum cost sub-
ject to constraints on shear stress (7), bending stress in
the beam (o), buckling load on the bar (7,), end deflec-
tion of the beam (9), and side constraints [17]. There
are four design variables as shown in Figure 3 [17]: h
(z1), I (z2), t (z3) and b (z4).

The problem can be stated as follows:

Minimize: (&) = 11047123z, +

(

g2(%) = —x2 + 0.00954z3 < 0
(
(

Subject to
91(f) = 7—(-73') — Tmaz <0
92(3_7’) = U(-'L') — Omaz <0
g3(f) =21 — 24 <0
g4(T) = 0.10471;17%—{—0.048111'3;174(14.0—}—:(:2)—5.0 <
0
95(%) =0.125 — 21 <0
96(%) = 0(%) — Omaz <0

where 7(Z) = \/(7')2 + 277" 22 + ()2
"= ME M =P (Lt %)
R=%+(252)°

=2 { o [+ (5

— 3
o(F) = 9% §(X) = AEL

2,6
4.01364/ 2334
P.(F) = i . (— o \/%)
P =60001b, L =14in, E =30 x 10° psi, G =
12 x 108 psi Tpae = 13,600 psi, Omaz =
30,000 psi, Omaz = 0.25 in
where 0.1 < z; < 2.0,0.1 < 25 < 10.0, 0.1 <
23 <10.0y0.1 < 24 < 2.0.

Problem 3: (Minimization of the Weight of a Ten-
sion/Compression String)

This problem was described by Arora [2] and Bele-
gundu [4], and it consists of minimizing the weight of
a tension/compression spring (see Figure 5) subject to
constraints on minimum deflection, shear stress, surge
frequency, limits on outside diameter and on design
variables. The design variables are the mean coil di-
ameter D (z3), the wire diameter d (x1) and the num-
ber of active coils N (z3). Formally, the problem can
be expressed as:

Minimize: (N + 2) Dd?
Subject to: .

91(%) =1- 71?% <0

92(%) = 1252?(13}%?&) + 51018d2
g3(7) =1 4524 <0

94(#) = £ —1<0

where 0.05 < z; < 2,025 < 25 < 1.3y 2 <
z3 < 15.

-1<0

Problem 4: (Minimization of the Weight of a Speed
Reducer)

The weight of the speed reducer is to be mini-
mized subject to constraints on bending stress of the
gear teeth, surfaces stress, transverse deflections of
the shafts and stresses in the shafts. The variables
T1,To, - ,2y are the face width, module of teeth,
number of teeth in the pinion, length of the first shaft
between bearings, length of the second shaft between
bearings and the diameter of the first and second shafts.
The third variable is integer, the rest of them are con-
tinuous.

Minimize : f(Z) = 0.7854x123(3.333322 +
14.9334z3 — 43.0934) — 1.508z1(zZ + z2) +
TATTT (23 + 28) + 0.7854(z42% + 2522)

w27
Z) = oreles 1<0

(

9@ =255 -1<0
(
(

T1THT3

1.93z5
f) = zi —-1<0
21‘31‘6

(@) = 355k 10

1'21'31'17

1/2
5 ((7:25—;;)2+16.9x106)

110.0z3

—1<0r

AT

Figure 5. Tension/compression string used
for problem 3

745 2 1z
2 6
o5) T +157.5x10)

|
N
—

96(%) = 85.023 —1<0
g1() = 522 ~1<0

g8(#) =32 -1<0

90(%) = 133, —1<0

g10(F) = FEEL —1<0

gll(f) — 1.13:;:—1.9 -1 S 0

where2.6 < 21 <3.6,0.7 <15 <0.8,17< 23 <
28,73<14<83,78<1x5<83,29<26<39
and 5.0 < z7 < 5.5.

6. Comparison of Results

A total of 30 runs per technique per problem were per-
formed. The number of evaluations of the objective function
was fixed to 36,000 for the four penalty-based approaches
and also for our approach. For the penalty-based approaches
we used a gray-coded genetic algorithm with roulette wheel
selection, one point crossover and uniform mutation. The
population size was 100 individuals and the number of gen-
erations 360. The rate of crossover was 0.6 and the mutation
rate was 0.01. The parameters for the dynamic and adaptive
approaches were defined after a trial-and-error process. The
reported parameters were those which provided better re-
sults and they are the following: Dynamic approach: a = 2,
B = 2, C = 0.5. Adaptive approach: 8; = 2.0, 82 = 4.0,
k = 50, dinitia = 5000

The initial values for the (14 X)-ES parameters were: ini-
tial stepsize value o = 4.0, the factor of update of stepsize
C = 0.99, number of parents generated A = 3, and maxi-
mum number of generations = 30, 000. The interval of the
S, updates was 0.1. It means that the update will take place
at every 3000 generations (10% of the total number of gen-
erations). In every run, the initial value for the S,. is 0.9. The
results obtained are shown in Table 1 for the Pressure Ves-
sel Design, in Table 2 for the Welded Beam design, in Table
3 for the Tension/Compression Spring design and, finally,
in Table 4 for the Speed Reducer Design Problem.

7. Discussion of Results

The discussion is divided in two parts: (1) comparison
of our simple evolution strategy against the penalty-based

Details of the best solution found
Problem 1 | Our approach SB
1 0.812500 0.8125
T2 0.437500 0.4375
T3 42.098370 41.9768
T4 176.637146 182.2845
91(x) —0.000001 —0.0023
g2(x) —0.035882 —0.0370
g3(x) —0.835772 —23420.5966
94(x) —63.362858 —57.7155
f(zx) 6059.714355 6171.0

Table 7. Best solution found for the Pressure
Vessel Design Problem.

Details of the best solution found
Problem 2 | Our approach SB

1 0.203642 0.2407

T2 3.593228 6.4851

T3 8.980190 8.2399

T4 0.208393 0.2497
g1(x) —165.394302 —129.8545
g2(z) —10.008150 —270.4023
g3 () —0.004751 —.009008
g4(z) —3.411678 —2.9663
g5(x) —0.078642 —0.1157
ge6(x) —0.235454 —0.2343
g7(x) —210.369049 —372.4990
f(x) 1.748594 2.4426

Table 8. Best solution found for the Welded
Beam Design Problem.

approaches and (2) comparison of our approach against the
Socio-Behavioral approach [1]. Both comparisons are based
on two aspects: quality and robustness of the solutions.

In the Pressure Vessel problem, our evolution strategy
found the best result and it was also the most robust (Table
1). The dynamic penalty approach ranked second. In third
place was the death penalty approach. The remaining tech-
niques failed to reach the feasible region consistently (Ta-
ble 5). For the Welded Beam problem, our technique was
slightly surpassed by the static approach. Nonetheless, our
approach was the most robust (Table 2).

For the Spring problem, our approach found the best so-
lution and it was the second most consistent approach, only
slightly surpassed by the adaptive penalty approach. For the
last problem, the four penalty-based approaches failed to
reach the feasible region of the problem. However, the Sim-
ple Evolution Strategy found it in every single run (Table
5).

These results evidence the lack of consistency of the
penalty-function-based approaches (based on the difficult
to define their required parameters). On the other hand, the

Pressure Vessel Statistical Comparison
Design Death Penalty Static Dynamic Adaptive Our approach
Best 6129.827637 | 52.177204x | 6104.700195 88.063927x 6059.714355
Mean 7191.641992 53.757520 | 6670.045085 | 3335.592351 6355.343115
Median 7239.383545 | 52.870346x | 6688.087646 | 604.228973x 6392.557129
Worst 8876.304688 67.266701x | 7788.871094 | 11983.214844 6846.628418
St. Dev 636.043280 2.897835 397.492272 4172.602199 256.043795

Table 1. Statistical values obtained with each approach for the Pressure Vessel design problem. “*”
means infeasible

Welded Beam Statistical Comparison
Design Death Penalty Static Dynamic Adaptive | Our approach
Best 1.748899 1.742388 | 1.752588 | 1.657890x 1.748594
Mean 2.032251 1.910210 | 2.067771 | 2.108092 1.870860
Median 1.998613 1.876692 | 1.982786 | 2.016899 1.852371
Worst 2.973882 2.252468 | 2.855598 | 3.351592x 2.232832
St. Dev 0.263312 0.135383 | 0.277771 | 0.361124 0.106377

Table 2. Statistical values obtained with each approach for the Welded Beam design problem. “*”
means infeasible

Ten./Comp. Spring Statistical Comparison
Design Death Penalty Static Dynamic | Adaptive | Our approach
Best 0.012732 0.012729 | 0.012689 | 0.012729 0.012688
Mean 0.014527 0.013774 | 0.013681 | 0.013675 0.013014
Median 0.014141 0.013621 | 0.013436 | 0.013606 0.012756
Worst 0.017723 0.016407 | 0.016597 | 0.015933 0.017037
St. Dev 0.001457 0.001045 | 0.000934 | 0.000720 0.000801

Table 3. Statistical values obtained with each approach for the Tension/Compression Spring design
problem.

Speed Reducer Statistical Comparison
Design Death Penalty Static Dynamic Adaptive Our approach
Best 1399.237427x 1671.386475% 1265.959229x 1679.101318x 3025.005127
Mean 1399.237427 267997861.844320 20032.261825 12174.159896 3088.777816
Median 524036.802128:x 3661.611328x% 3179.876343x 3272.115234 3078.591797
Worst 2913.118042x 8024214016.0% 243416.062500% | 244393.671875x% 3226.248291
St. Dev 15600199.00 1440295898.14 59873.421388 43472.043832 47.361890

Table 4. Statistical values obtained with each approach for the Speed Reducer design problem. “*”
means infeasible

Per centage of runsin wich the feasible region was reached

Problem Death Penalty | Static | Dynamic | Adaptive | Our approach
Pressure Vessel 100% 0% 100% 33% 100%
Welded Beam 100% 100% 100% 80% 100%
Spring 100% 100% 100% 100% 100%
Speed Reducer 0% 0% 0% 0% 100%

Table 5. Percentage of runs that converged to a feasible solution.

Best Result M ean Result Wor st Result
Problem Qurs SB Ours SB Ours SB
Press.Vessdl 6059.728027 | 6171.00 | 6295.362964 | 6335.05 | 6887.999023 | 6453.65
Welded Beam 1.742510 2.4426 1.876213 2.5215 2.023696 2.6315
Speed Red. 3038.684082 | 3008.08 | 3088.530505 | 3012.12 | 3199.294922 | 3028.28

Table 6. Comparison of Results Between Our Approach and the Socio Behavioral approach [1]

Details of the best solution found
Problem 4 | Our approach SB
1 3.506163 3.503122
T2 0.700831 0.700006
T3 17 17
T4 7.460181 7.549126
T5 7.962143 7.859330
T6 3.362900 3.365576
7 5.308949 5.289773
g1(x) —0.077734 —0.075548
g2(x) —0.201305 —0.199413
g3(x) —0.474119 —0.456175
ga(x) —0.897068 —0.899442
g5(z) —0.011021 —0.013213
g6(x) —0.012500 —0.001740
g7(x) —0.702147 —0.702497
gs(x) —0.000573 —0.001738
go(x) —0.583095 —0.582608
g10() —0.069144 —0.079580
911(z) —0.027920 —0.017887
f(z) 3025.005127 3008.08

Table 9. Best solution found for the Speed Re-
ducer Design Problem.

Simple Evolution Strategy obtained the lowest standard de-
viations so far. Also, the quality of results of our approach,
generally speaking, was also better.

The comparison against the Socio-Behavioral Approach
(SB) was made using only three of the four problems, be-
cause there were no results available for the Spring prob-
lem. As can be seen in Table 6, our technique provided bet-
ter quality and robustness of results on two of three prob-
lems. For the Speed Reducer problem, our approach was
close to the best solution found by the SB. However, de-
spite the fact that the SB approach performs less evaluations
of the objective function (20, 000), the additional computa-
tional cost derived from the ranking and clustering process

Statistical Results with A = 3 and No. of generations=60, 000
Beam Spring Sp
1.739163 0.012680
1.885300 0.013050
1.860463 0.012738
2.183147 0.015465
0.112471 0.000672

eed Red.

2998.011963
3056.206999
3066.821777
3162.881104
49.406654

Pressure V.
Best 6059.898926
Mean 6238.507764

Median 6187.255615
Worst 6556.407227

St. Dev 158.320180

Table 10. Statistical values obtained for the
four design problem when the number of
generations is increased to 60,000 with 30 in-
dependent runs.

makes the computational cost of our approach to be lower
than the SB technique. Also, we argue that our algorithm is
much easier to implement.

In order to know if both the quality and robustness of
the approach get better when the number of evaluations in-
creases, we performed 2 experiments: (1) Increase the num-
ber of generations to the double (60, 000) while fixing the
value of A = 3 and (2) increase the value of A = 6 while the
number of generations remained unchanged (30, 000). The
results are shown in Tables 10 and 11. It is clear that there
is a moderate improvement in the robustness of the results
when the number of generations increases and there is a im-
provement in the quality of the results in problem 4. On the
other hand, when we increase the number of parents in the
population, there is just a slight improvement in the robust-
ness and the quality of the results. Then, we can say that,
in general, by increasing the number of generations, our ap-
proach improves in terms of robustness and slightly in terms
of quality.

8. Conclusions and Future Work

A novel approach to solve engineering design problems
based on a simple evolution strategy was presented. The

Statistical Results with A = 6 and No. of generations=30, 000
Pressure V. Beam Spring Speed Red.
Best 6060.504883 1.735141 0.012692 3013.404297
Mean 6242.881201 1.844146 0.013468 3072.620256
Median 6140.236328 1.818958 0.013058 3059.338379
Worst 7052.284668 2.046225 0.016100 3163.569824
St. Dev 213.559758 0.085546 0.000983 36.736896

Table 11. Statistical values obtained for the
four design problem when \ = 6 with 30 inde-
pendent runs.

main advantage of our approach is that it does not require
a penalty function or any extra parameters (other than the
original parameters of an evolution strategy). Also, the com-
putational cost of our approach (measured in terms of the
number of evaluations of the objective function) is very low
(36, 000). Furthermore, the proposed approach is very sim-
ple and easy to implement. Our simple evolution strategy
provided better results than traditional penalty-based ap-
proaches and it was very competitive with respect to an al-
gorithm representative of the state-of-the-art in evolution-
ary optimization.

Our future paths of research are to test the approach in
other real world problems (with a high dimensionality) and
to improve its local search power in order to obtain results
of even higher quality at a lower computational cost.

Acknowledgments

The first and third authors acknowledge support
from the mexican Consejo Nacional de Ciencia y Tec-
nologla (CONACyYT) through a scholarship to pursue
graduate studies at CINVESTAV-IPN’s Electrical Engi-
neering Department. The second author acknowledges
support from CONACyYT through project number 32999-A.

References

[1] S. Akhtar, K. Tai, and T. Ray. A Socio-Behavioural Simula-
tion Model for Engineering Design Optimization. Engineer-
ing Optimization, 34(4):341-354, 2002.

[2] J.S. Arora. Introduction to Optimum Design. McGraw-Hill,
New York, 1989.

[3] T. Béck. Evolutionary Algorithms in Theory and Practice.
Oxford University Press, New York, 1996.

[4] A. D. Belegundu. A Study of Mathematical Programming
Methods for Structural Optimization. Department of civil
and environmental engineering, University of lowa, lowa,
lowa, 1982.

[5] C. A. Coello Coello. Theoretical and Numerical Constraint
Handling Techniques used with Evolutionary Algorithms: A
Survey of the State of the Art. Computer Methods in Ap-
plied Mechanics and Engineering, 191(11-12):1245-1287,
January 2002.

(6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

C. A. Coello Coello and E. Mezura-Montes. Handling
Constraints in Genetic Algorithms Using Dominance-Based
Tournaments. In I. Parmee, editor, Proceedings of the Fifth
International Conference on Adaptive Computing Design
and Manufacture (ACDM 2002), volume 5, pages 273-284,
University of Exeter, Devon, UK, April 2002. Springer-
Verlag.

K. Deb and D. E. Goldberg. An Investigation of Niche and
Species Formation in Genetic Function Optimization. In
J. D. Schaffer, editor, Proceedings of the Third International
Conference on Genetic Algorithms, pages 42-50, San Ma-
teo, California, June 1989. George Mason University, Mor-
gan Kaufmann Publishers.

K. Deb and M. Goyal. A Combined Genetic Adaptive Search
GeneAS for Engineering Design. Computer Science and In-
formatics, 26(4):30-45, 1996.

D. E. Goldberg. Genetic Algorithms in Search, Optimization
and Machine Learning. Addison-Wesley Publishing Co.,
Reading, Massachusetts, 1989.

M. Gorges-Schleuter, 1. Sieber, and W. Jakob. Local inter-
action evolution strategies for design optimization. In 1999
Congress on Evolutionary Computation, pages 2167-2174,
Piscataway, NJ, 1999. IEEE Service Center.

A. B. Hadj-Alouane and J. C. Bean. A Genetic Algorithm
for the Multiple-Choice Integer Program. Operations Re-
search, 45:92-101, 1997.

F. Hoffmeister and J. Sprave. Problem-independent han-
dling of constraints by use of metric penalty functions. In
L. J. Fogel, P. J. Angeline, and T. Béck, editors, Proceed-
ings of the Fifth Annual Conference on Evolutionary Pro-
gramming (EP’96), pages 289-294, San Diego, California,
February 1996. The MIT Press.

J. Horn, N. Nafpliotis, and D. E. Goldberg. A Niched Pareto
Genetic Algorithm for Multiobjective Optimization. In Pro-
ceedings of the First IEEE Conference on Evolutionary Com-
putation, IEEE World Congress on Computational Intelli-
gence, volume 1, pages 82-87, Piscataway, New Jersey, June
1994. IEEE Service Center.

J. Joines and C. Houck. On the use of non-stationary penalty
functions to solve nonlinear constrained optimization prob-
lems with GAs. In D. Fogel, editor, Proceedings of the first
IEEE Conference on Evolutionary Computation, pages 579—
584, Orlando, Florida, 1994. IEEE Press.

B. K. Kannan and S. N. Kramer. An Augmented Lagrange
Multiplier Based Method for Mixed Integer Discrete Contin-
uous Optimization and Its Applications to Mechanical De-
sign. Journal of Mechanical Design. Transactions of the
ASME, 116:318-320, 1994.

Z. Michalewicz and M. Schoenauer. Evolutionary Algo-
rithms for Constrained Parameter Optimization Problems.
Evolutionary Computation, 4(1):1-32, 1996.

S. S. Rao. Engineering Optimization. John Wiley and Sons,
third edition, 1996.

A. E. Smith and D. W. Coit. Constraint Handling
Techniques—Penalty Functions. In T. Béck, D. B. Fo-
gel, and Z. Michalewicz, editors, Handbook of Evolutionary
Computation, chapter C 5.2. Oxford University Press and In-
stitute of Physics Publishing, 1997.

