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ABSTRACT
A large number of Multi-Objective Evolutionary Algorithms em-
ploy reference directions in order to establish relative preferences
for each objective function. Uniform Design (UD), Simplex Lattice
Design (SLD) and their variants are techniques commonly used to
generate a set of uniformly distributed reference directions with
the aim of capturing the whole Pareto optimal front. In this paper,
we present a comparative study of UD and SLD methods when
solving Many-objective Optimization problems and we design a
new strategy that combines SLD with multiple layers and UD tech-
niques. Our preliminary results indicate that our proposed approach
is able to outperform state-of-the-art methods in many-objective
optimization problems.

CCS CONCEPTS
• Computing methodologies→ Continuous space search;

KEYWORDS
Reference directions, many-objective optimization, uniform design,
simplex-lattice design.
ACM Reference Format:
Miriam Pescador-Rojas and Carlos A. Coello Coello. 2018. Studying the effect
of techniques to generate reference vectors in many-objective optimization.
In GECCO ’18 Companion: Genetic and Evolutionary Computation Conference
Companion, July 15–19, 2018, Kyoto, Japan. ACM, New York, NY, USA,
3 pages. https://doi.org/10.1145/3205651.3205684

1 INTRODUCTION
We are interested in solving Many-objective Optimization Problems
(MaOPs), which are multi-objective problems having more than
three objective functions. Several Multi-objective Evolutionary Al-
gorithms (MOEAs) that tackle MaOPs use a set of reference vectors
also known as direction vectors, reference lines or weight vectors
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in order to establish the relative importance for each objective func-
tion via a set of N convex weight vectors Λ = {λ1, . . . ,λN } where
each λj = (λ

j
1, . . . ,λ

j
m )T must satisfy

∑m
i=1 λ

j
i = 1 and λ

j
i ≥ 0 for

all i ∈ {1, . . . ,m} objectives. MOEAs can capture the whole Pareto
optimal front if these reference vectors are evenly distributed in
the whole objective space. Reference vectors are adopted mainly by
decomposition-basedMOEAs and by approaches based on theR2 in-
dicator. Here, we present a review of techniques commonly adopted
to generate a set of uniformly distributed weight vectors such a
Simplex Lattice Design, Uniform Design and their variants. We
analyze their effect in solving MaOPs and we propose a new com-
bination of techniques to improve the distribution of the reference
vectors. We validate our proposal using the MOEA/D framework
and several MaOPs.

2 METHODS TO GENERATE UNIFORMLY
DISTRIBUTED REFERENCE VECTORS

The Simplex Lattice Design (SLD) method [5] has been widely used
in decomposition-based MOEAs. SLD generates N points arranged
in a uniform way on a {m − 1} unity simplex-lattice (hyperplane).
The number of weight vectors is N = Cm−1H+m−1, where H is a po-
sitive integer that represents the number of subdivisions for each
objective. Unfortunately, N increases exponentially with respect
to the number of objectives. To deal with this issue, the authors of
NSGA-III [1] proposed the use of the SLDwith two layers (boundary
and inside layers), each one with a different value of H . Recently,
Jiang and Yang [2] proposed a strategy that uses multiple layers (the
so-called MSLD) This method computes a central reference point
and partions the unit simplex intom sub-simplexes to generate k
subdivisions along each objective coordinate. The number of refe-
rence directions generated byMSLD is fixed at N = Ckm . In this case,
the increase of N is lower than when using the SLD method. The
Uniform Design (UD) method [4] is a space-filling approach that
generates uniform scattering points. Let (N ;h1, . . . ,hs ) be a vector
with integral components satisfying 1 ≤ hi < N , hi , hj (i , j )
and m < N . UD uses prime numbers to compute a sequence of
component values hi . An alternative is proposed in [6] replacing
prime numbers by trascendental numbers to generate different dis-
tributions of points. Ma et al. [3] employed a combination of SLD
and UD techniques via different UD measurements.

3 OUR PROPOSED APPROACH
We propose to combine the MSLD and UD methods as follows.
Given a number of reference vectors (N ), we apply the MSLD and
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Table 1: Mean hypervolume values (the standard deviations are shown in parentheses)

m MOP SLD MSLD UD (prime) UD (transc.) SLD+UD MSLD+UD

03D

DTLZ1 6.3845e+01(9.6895e-03) 6.3860e+01(2.2429e-02) 6.3839e+01(2.4008e-02) 6.3874e+01(1.7111e-02) 6.3853e+01(1.7896e-02) 6.3902e+01(2.0695e-02)
DTLZ3 6.3339e+01(2.5841e-02) 6.3305e+01(4.3467e-02) 6.3236e+01(5.8583e-02) 6.3253e+01(3.3543e-02) 6.3328e+01(3.0968e-02) 6.3294e+01(3.6717e-02)
DTLZ5 5.9425e+01(1.6462e-03) 5.9433e+01(3.7705e-03) 5.9582e+01(7.4090e-03) 5.9654e+01(4.4190e-03) 5.9411e+01(1.7725e-03) 5.9628e+01(3.5558e-03)
DTLZ7 5.5595e+01(9.8809e+00) 6.0509e+01(4.0647e+00) 5.8305e+01(6.5102e+00) 5.8482e+01(7.8085e+00) 5.8332e+01(6.5119e+00) 5.8606e+01(6.5202e+00)
WFG1 5.4901e+01(1.6490e+00) 5.4801e+01(1.8503e+00) 5.5168e+01(1.3374e+00) 5.4222e+01(1.4025e+00) 5.5024e+01(1.5132e+00) 5.4974e+01(1.6104e+00)
WFG2 9.9509e+01(9.5344e-01) 9.9415e+01(8.5808e-01) 9.8790e+01(1.2416e+00) 9.9095e+01(8.5094e-01) 9.9173e+01(9.8708e-01) 9.8926e+01(9.5866e-01)
WFG3 7.4427e+01(6.5659e-01) 7.4400e+01(5.2923e-01) 7.4895e+01(4.2265e-01) 7.4742e+01(5.6676e-01) 7.4559e+01(5.3659e-01) 7.4368e+01(3.6941e-01)

05D

DTLZ1 1.0236e+03(1.2674e-01) 1.0232e+03(2.8754e-01) 1.0235e+03(1.4836e-01) 1.0236e+03(1.1320e-01) 1.0238e+03(5.9120e-02) 1.0238e+03(7.5356e-02)
DTLZ3 1.0233e+03(1.7916e-01) 1.0230e+03(2.3260e-01) 1.0226e+03(2.1389e-01) 1.0227e+03(2.0909e-01) 1.0232e+03(3.0501e-01) 1.0233e+03(8.1759e-02)
DTLZ5 9.4339e+02(7.9288e-01) 9.0762e+02(1.3880e+01) 9.5436e+02(9.0703e-01) 9.5448e+02(2.1474e+00) 9.5416e+02(1.6589e+00) 9.5700e+02(4.4003e-01)
DTLZ7 1.3725e+03(2.3886e+02) 1.1950e+03(1.4316e+02) 1.4230e+03(1.8324e+02) 1.4552e+03(1.6845e+02) 1.4633e+03(2.5601e+02) 1.4557e+03(2.1674e+02)
WFG1 4.9716e+03(9.5905e+01) 4.9167e+03(1.3784e+02) 4.8739e+03(1.3850e+02) 4.9054e+03(1.5283e+02) 5.0158e+03(6.4513e+01) 4.9141e+03(1.4957e+02)
WFG2 9.9726e+03(1.2748e+02) 9.7444e+03(2.0201e+02) 9.8531e+03(1.7826e+02) 9.8306e+03(1.5083e+02) 1.0020e+04(6.1733e+01) 9.9750e+03(1.2811e+02)
WFG3 6.5071e+03(1.2130e+02) 5.9370e+03(1.6655e+02) 7.1785e+03(6.1070e+01) 7.1127e+03(6.9684e+01) 6.9655e+03(1.0966e+02) 7.0600e+03(8.4196e+01)

07D

DTLZ1 1.6379e+04(2.9019e+00) 1.6369e+04(5.0149e+00) 1.6379e+04(1.0603e+00) 1.6379e+04(1.0720e+00) 1.6381e+04(1.1547e+00) 1.6382e+04(7.0198e-01)
DTLZ3 1.6370e+04(1.8298e+01) 1.6375e+04(3.9086e+00) 1.6368e+04(4.7229e+00) 1.6364e+04(8.2971e+00) 1.6375e+04(4.0959e+00) 1.6376e+04(5.2650e+00)
DTLZ5 1.4616e+04(3.2112e+01) 1.4755e+04(5.3847e+01) 1.5135e+04(7.1776e+01) 1.5190e+04(4.1269e+01) 1.5157e+04(3.7834e+01) 1.5191e+04(9.7254e+01)
DTLZ7 2.4953e+04(4.3683e+03) 2.1583e+04(2.2366e+03) 2.7710e+04(4.5638e+03) 2.8721e+04(4.0265e+03) 2.9517e+04(3.2320e+03) 3.0371e+04(3.9915e+03)
WFG1 8.4562e+05(2.4569e+04) 6.4826e+05(5.3342e+04) 8.2521e+05(2.1132e+04) 8.3102e+05(1.1061e+04) 8.7547e+05(1.6101e+04) 8.4805e+05(1.9906e+04)
WFG2 1.9332e+06(3.2438e+04) 1.8771e+06(5.7370e+04) 1.9133e+06(3.5399e+04) 1.9242e+06(2.3325e+04) 1.9461e+06(1.3024e+04) 1.9216e+06(2.1272e+04)
WFG3 1.0356e+06(5.2868e+04) 1.0811e+06(1.9087e+04) 1.3469e+06(1.7406e+04) 1.2630e+06(2.5358e+04) 1.2750e+06(2.3843e+04) 1.2864e+06(2.1210e+04)

10D

DTLZ1 1.0476e+06(4.5505e+02) 1.0463e+06(9.7115e+02) 1.0482e+06(9.1661e+01) 1.0483e+06(6.5512e+01) 1.0483e+06(7.1079e+01) 1.0483e+06(7.9886e+01)
DTLZ3 1.0474e+06(8.3095e+02) 1.0451e+06(2.6238e+03) 1.0475e+06(3.0090e+02) 1.0473e+06(4.0236e+02) 1.0476e+06(5.7818e+02) 1.0476e+06(4.8984e+02)
DTLZ5 9.1297e+05(5.6492e+03) 9.1498e+05(1.6392e+04) 9.7259e+05(1.0131e+03) 9.7158e+05(2.1098e+03) 9.7054e+05(1.1569e+03) 9.7216e+05(2.9843e+03)
DTLZ7 1.5757e+06(7.1807e+04) 1.3130e+06(1.5193e+05) 2.1619e+06(2.7942e+05) 2.1867e+06(2.7655e+05) 2.2023e+06(2.2328e+05) 2.1876e+06(3.0165e+05)
WFG1 4.1765e+09(2.8532e+08) 3.5970e+09(2.0376e+08) 5.1407e+09(9.3265e+07) 5.0935e+09(5.5796e+07) 5.1238e+09(8.6872e+07) 5.1497e+09(5.9976e+07)
WFG2 1.1997e+10(9.7337e+08) 1.1630e+10(1.1788e+09) 1.3067e+10(2.3850e+08) 1.3008e+10(2.9158e+08) 1.3099e+10(2.5105e+08) 1.3008e+10(3.1363e+08)
WFG3 5.4884e+09(2.4860e+08) 6.5318e+09(2.1390e+08) 8.3818e+09(1.8390e+08) 8.4812e+09(1.5373e+08) 8.1622e+09(1.5084e+08) 8.6691e+09(1.3316e+08)

UD methods in an independent manner to generate 2 × N vectors.
We initialize our final set of vectors with extreme points of the
unit simplex. For each subset, we find iteratively the elements that
optimize the UD measure defined by:

D (λ) =
1
N

N∑
k=1

{
min

1≤j≤N ,j,k
d (λj ,λk )

}
(1)

where d is the Euclidean distance between two reference vectors.
In this proposal, a rate value r must be predefined to establish the
number of vectors obtained by each method. Algorithm 1 shows
the detailed steps of our proposed approach.

Algorithm 1: Our proposed method to generate distributed
reference directions
Input: N : the number of reference directions
m: the number of objective functions
r : rate of the boundary reference directions
Output: λMUD : A set of uniform distributed reference directions
λUD : Compute 2 × N reference directions applying the UD method
λMSLD : Compute 2 × N reference directions applying the MSLD method
Inialize λMUD ← {(1, 0, . . . , 0), . . . , (0, . . . , 1) }, it includes all the boundary vertices
of a unit simplex
while |λMUD | < (1 − r ) ∗ N do

Find the element λ j ∈ λUD with the optimal uniform design measure usign
equation (1)
Add this element to λMUD

while |λMUD | < N do
Find the element λ j ∈ λMSLD with the optimal uniform design measure usign
equation (1)
Add this element to λMUD

4 EXPERIMENTAL RESULTS
We compare the described techniques using the MOEA/D frame-
work to solve MOPs defined in two test suites: the Deb-Thiele-
Laumanns-Zitzler (DTLZ) and theWalking Fish Group (WFG). We
tested our approach with 3, 5, 7, and 10 objectives. The number of
weight vectors defined were {120,210,210,220}, respectively. The
number of objective function evaluations per MOPwas set to 50,000.

We performed 30 independent runs for each MOEA and problem
instance. For comparing our results, we adopted the hypervolume
indicator (HV)to assess both convergence andmaximum spread.We

established the following reference points: (4,4, . . . 4)T for DTLZ1,
DTLZ3, DTLZ5, (4,4, . . . 2m + 1)T for DTLZ7 and
(3,5, . . . ,2i + 1)T for WFG1, WFG2, WFG3. Table 1 presents the
mean and the standard deviation of hypervolume values that we
obtained. In the 3-objective MOPs, all methods obtained similar
hypervolume values. For MOPs with more than 3 objectives, the
combined strategies (SLD + UD and MSLD + UD) outperform the
sole use of SLD and UD. In general, our proposed MSLD + UD
obtained competitive results in almost all MOP instances.

5 CONCLUSIONS AND FUTUREWORK
The results presented here confirm that is more beneficial the use
of methods that cover a large area of objective space to deal with
different Pareto front shapes. Moreover, it is important to maintain
the extreme points of the unit simplex in order to reach higher HV
values. As part of our future work, we are interested in studying
other uniform design measures and in analyzing the effect of these
methods in other MOEAs. We also plan to combine the use of
adaptive reference vectors with methods to generate uniformly
distributed vectors in a particular area of objective search space.
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