

Multiobjective Optimization using Ideas from the
Clonal Selection Principle

Nareli Cruz Cortés and Carlos A. Coello Coello

CINVESTAV-IPN
Evolutionary Computation Group

Depto. de Ingenierı́a Eléctrica
Sección de Computación

Av. Instituto Politécnico Nacional No. 2508
Col. San Pedro Zacatenco

México, D. F. 07300, MEXICO
nareli@computacion.cs.cinvestav.mx,

ccoello@cs.cinvestav.mx

Abstract. In this paper, we propose a new multiobjective optimization approach
based on the clonal selection principle. Our approach is compared with respect to
other evolutionary multiobjective optimization techniques that are representative
of the state-of-the-art in the area. In our study, several test functions and metrics
commonly adopted in evolutionary multiobjective optimization are used. Our re-
sults indicate that the use of an immune system for multiobjective optimization is
a viable alternative.

Category: Artificial Immune Systems

1 Introduction

Most optimization problems naturally have several objectives to be achieved (normally
conflicting with each other), but in order to simplify their solution, they are treated as if
they had only one (the remaining objectives are normally handled as constraints). These
problems with several objectives, are called “multiobjective” or “vector” optimization
problems, and were originally studied in the context of economics. However, scientists
and engineers soon realized that such problems naturally arise in all areas of knowledge.
Over the years, the work of a considerable number of operational researchers has pro-
duced a wide variety of techniques to deal with multiobjective optimization problems
[13]. However, it was until relatively recently that researchers realized of the potential
of evolutionary algorithms (EAs) and other population-based heuristics in this area [7].
The main motivation for using EAs (or any other population-based heuristics) in solving
multiobjective optimization problems is because EAs deal simultaneously with a set of
possible solutions (the so-called population) which allows us to find several members
of the Pareto optimal set in a single run of the algorithm, instead of having to perform

a series of separate runs as in the case of the traditional mathematical programming
techniques [13]. Additionally, EAs are less susceptible to the shape or continuity of the
Pareto front (e.g., they can easily deal with discontinuous and concave Pareto fronts),
whereas these two issues are a real concern for mathematical programming techniques
[7, 3]. Despite the considerable amount of research on evolutionary multiobjective op-
timization in the last few years, there have been very few attempts to extend certain
population-based heuristics (e.g., cultural algorithms and particle swarm optimization)
[3]. Particularly, the efforts to extend an artificial immune system to deal with multiob-
jective optimization problems have been practically inexistent until very recently. In this
paper, we precisely provide one of the first proposals to extend an artificial immune sys-
tem to solve multiobjective optimization problems (either with or without constraints).
Our proposal is based on the clonal selection principle and is validated using several
test functions and metrics, following the standard methodology adopted in this area [3].

2 Basic Definitions

Definition 1 (Pareto Optimality:): A point ������� (� is the feasible region) is
Pareto optimal if for every ����� and 	�
��������������������� either,

������ "!$#%�&! �('
 #%��! � � '&' (1)

or, there is at least one) � 	 such that

� ! �('+* # � ! � � ' (2)

,

Definition 2 (Pareto Dominance): A vector -.
 !�/10 �������2� /43 ' is said to dominate5
 !�6"0 ��������� 6�3 ' (denoted by -87 5) if and only if u is partially less than v, i.e.,�) � �"�"�������2�����"� /��:9;6<�>=@?) � �"�"�������2�����BA /C�:D;6<� . ,

Definition 3 (Pareto Optimal Set): For a given MOP E !GF ' , the Pareto optimal set
(H �) is defined as:

H � AI
J� F ���LK�M ?�FON �P� E !GFCN ' 7QE !GF ' �"� (3)

,

Definition 4 (Pareto Front:): For a given MOP E !�F ' and Pareto optimal set H � , the
Pareto front (HSR �) is defined as:

HSR � AI
��-�
TE�
 !U#"0%!GF ' �������V� #�3W!GF 'X'YK F � H � �"� (4)

,

3 The Immune System

One of the main goals of the immune system is to protect the human body from the
attack of foreign (harmful) organisms. The immune system is capable of distinguishing
between the normal components of our organism and the foreign material that can cause
us harm (e.g., bacteria). Those molecules that can be recognized by the immune system
are called antigens that elicit an adaptive immune response.

The molecules called antibodies play the main role on the immune system response.
The immune response is specific to a certain foreign organism (antigen). When an
antigen is detected, those antibodies that best recognize an antigen will proliferate by
cloning. This proccess is called clonal selection principle [5]. The new cloned cells un-
dergo high rate somatic mutations or hypermutation. The main roles of that mutation
process are twofold: to allow the creation of new molecular patterns for antibodies, and
to maintain diversity.

These mutations experienced by the clones are proportional to their affinity to the
antigen. The highest affinity antibodies experiment the lowest mutation rates, whereas
the lowest affinity antibodies have high mutation rates. After this mutation process ends,
some clones could be dangerous for the body and should therefore be eliminated. After
these cloning and hypermutation processes finish, the immune system has improved the
antibodies’ affinity, which results on the antigen neutralization and elimination. At this
point, the immune system must return to its normal condition, eliminating the excedent
cells. However, some cells remain circulating throughout the body as memory cells.
When the immune system is later attacked by the same type of antigen (or a similar one),
these memory cells are activated, presenting a better and more efficient response. This
second encounter with the same antigen is called secondary response. The algorithm
proposed in this paper is based on the clonal selection principle previously described.

4 Previous Work

The first direct use of the immune system to solve multiobjective optimization problems
reported in the literature is the work of Yoo and Hajela [19]. This approach uses a
linear aggregating function to combine objective function and constraint information
into a scalar value that is used as the fitness function of a genetic algorithm. The use of
different weights allows the authors to converge to a certain (pre-specified) number of
points of the Pareto front, since they make no attempt to use any specific technique to
preserve diversity. Besides the limited spread of nondominated solutions produced by
the approach, it is well-known that linear aggregating functions have severe limitations
for solving multiobjective problems (the main one is that they cannot generate concave
portions of the Pareto front [4]. In this study, the approach is not compared to any other
technique.

There is an artificial immune system to solve machine learning problems, specif-
ically pattern recognition tasks and multimodal optimization problems called CLON-
ALG, it was proposed by De Castro and Von Zuben [6], and it is based on the clonal
selection principle. This is the first approach that use that principle to solve multimodal
optimization problems.

This paper is an extension of the work published in [2] with some important difer-
ences. It can be considered as the first attempt to use an artificial immune system using
the clonal selection principle to solve the general multiobjective optimization problem.
That previous work follows the clonal selection principle very close. However in this
proposal we do some changes which results in an improved performance of the algo-
rithm, even when it does not follow the clonal selection principle exactly.

1

To validate our proposal, we adopt the conventional methodology of the evolution-
ary multiobjective optimization community, which includes a comparison with respect
to other algorithms using several test functions and metrics.

5 The Proposed Approach

Our algorithm is the following:

1. The initial population is created by dividing decision variable space into a certain
number of segments with respect to the desired population size. Thus, we generate
an initial population with a uniform distribution of solutions such that every seg-
ment in which the decision variable space is divided has solutions. This is done to
improve the search capabilities of our algorithm instead of just relying on the use
of a mutation operator. Note however, that the solutions generated for the initial
population are still random.

2. Initialize the secondary memory so that it is empty.
3. Determine for each individual in the population, if it is (Pareto) dominated or not.

For constrained problems, determine if an individual is feasible or not.
4. Determine which are the “best antibodies”, since we will clone them adopting the

following criterion:
– If the problem is unconstrained, then all the nondominated individuals are

cloned.
– If the problem is constrained, then we have two further cases: a) there are fea-

sible individuals in the population, and b) there are no feasible individuals in
the population. For case b), all the nondominated individuals are cloned. For
case a), only the nondominated individuals that are feasible are cloned (non-
dominance is measured only with respect to other feasible individuals in this
case).

5. Copy all the best antibodies (obtained from the previous step) into the secondary
memory.

6. We determine for each of the “best” antibodies the number of clones that we want
to create. We wish to create the same number of clones of each antibody, and also
that the total number of clones created is equal to the 60% of the total population

1 The exception is a recent approach reported in [1] in which both lexicographic ordering and
Pareto-based selection are adopted in an evolutionary programming algorithm used to detect
attacks with an artificial immune system for virus and computer intrusion detection. In this
case, however, the paper is more focused on the application rather than on the approach and no
proper validation of the proposed algorithms is provided.

used. However, if the secondary memory is full, then we modify this quantity doing
the following:

– If the individual to be inserted into the secondary memory is not allowed access
either because it was repeated or because it belongs to the most crowded region
of objective function space, then the number of clones created is zero.

– When we have an individual that belongs to a cell whose number of solutions
contained is below average (with respect to all the occupied cells in the sec-
ondary memory), then the number of clones to be generated is duplicated.

– When we have an individual that belongs to a cell whose number of solutions
contained is above average (with respect to all the occupied cells in the adaptive
grid), then the number of clones to be generated is reduced by half.

7. We perform the cloning of the best antibodies based on the information from the
previous step. Note that the population size grows after the cloning process takes
place. Then, we eliminate the extra individuals giving preference (for survival) to
the new clones generated.

8. A mutation operator is applied to the clones in such a way that the number of
mutated genes in each chromosomic string is equal to the number of decision vari-
ables of the problem. This is done to make sure that at least one mutation occurs
per string, since otherwise we would have duplicates (the original and the cloned
string would be exactly the same)

9. We apply a non-uniform mutation operator to the “worst” antibodies (which are all
that not resulted selected as “best antibodies” in step 4). The initial mutation rate
adopted is high and it is decreased over time linearly (from 0.9 to 0.3).

10. If the secondary memory is full, we apply crossover to a fraction of its contents (we
proposed 60%). The new individuals generated that are nondominated with respect
to the secondary memory will then be added to it.

11. After that cloning process ends, the population size is increased, then it is necessary
to reset to its original value. We eliminate the excedent individuals but allowing to
survive those nondominated individuals.

12. We repeat this process from step 3 during a certain (predetermined) number of
times.

Note that in the previous algorithm there is no distinction between antigen and an-
tibody. In contrast, in this case all the individuals are considered as antibodies, and we
only distinguish between “better” antibodies and “not so good” antibodies. The reason
for using an initial population with a uniform distribution of solutions over the allow-
able range of the decision variables is to sample the search space uniformly. This helps
the mutation operator to explore the search space more efficiently. We apply crossover
to the individuals in the secondary memory once this is full so that we can reach inter-
mediate points between them. Such information is used to improve the performance of
our algorithm.

Even when the multimodal optimization CLONALG version apply cloning and hy-
permutation process, there are some differences with respect to MISA as the mutation
rate, number of clones created, selection strategy among others (and of course we are
solving different kind of optimization problems).

Despite that our algorithm is taken operators from Evolutionary Algorithms (EA),
as the crossover applied to the elements in the secondary memory (step 10), it is nos

a EA because the use of cloning (asexual reproduction) to the main population, the
mutation type and the change in the population size.

5.1 Secondary Memory

We use a secondary or external memory as an elitist mechanism in order to maintain
the best solutions found along the process. The individuals stored in this memory are
all nondominated not only with respect to each other but also with respect to all of
the previous individuals who attempted to enter the external memory. Therefore, the
external memory stores our approximation to the true Pareto front of the problem.

In order to enforce a uniform distribution of nondominated solutions that cover the
entire Pareto front of a problem, we use the adaptive grid proposed by Knowles and
Corne [11] (see Figure 1).

0 1 2 3 4 5

0

4

3

5

2

1

Space covered by the grid for objective 1

Sp
ac

e
co

ve
re

d
by

 th
e

gr
id

 f
or

 o
bj

ec
tiv

e
2

The lowest fit individual for objective 1
and the fittest individual for objective 2

T
he low

est fit individual for objective 2
and the fittest individual for objective 1

Fig. 1. An adaptive grid to hadle the secondary memory

Ideally, the size of the external memory should be infinite. However, since this is not
possible in practice, we must set a limit to the number of nondominated solutions that
we want to store in this secondary memory. By enforcing this limit, our external mem-
ory will get full at some point even if there are more nondominated individuals wishing
to enter. When this happens, we use an additional criterion to allow a nondominated
individual to enter the external memory: region density (i.e., individuals belonging to
less densely populated regions are given preference).

The algorithm for the implementation of the adaptive grid is the following:

1. Divide objective function space according to the number of subdivisions set by the
user.

2. For each individual in the external memory, determine the cell to which it belongs.
3. If the external memory is full, then determine which is the most crowded cell.

– To determine if a certain antibody is allowed to enter the external memory, do
the following:

� If it belongs to the most crowded cell, then it is not allowed to enter.� Otherwise, the individual is allowed to enter. For that sake, we eliminate
a (randomly chosen) individual that belongs to the most crowded cell in
order to have an available slot for the antibody.

6 Experiments

In order to validate our approach, we used several test functions reported in the standard
evolutionary multiobjective optimization literature [17, 3]. In each case, we generated
the true Pareto front of the problem (i.e., the solution that we wished to achieve) by
enumeration using parallel processing techniques. Then, we plotted the Pareto front
generated by our algorithm, which we call the multiobjective immune system algorithm
(MISA). The results indicated below were found using the following parameters for
MISA: Population size = 100, number of grid subdivisions = 25, size of the external
memory = 100 (this is a conventional value used by the researchers of the multiobjective
optimization area).

Number of iterations is determined by the number of fitness function evaluations re-
quiered. These parameters produce a total of 12,000 fitness function evaluations. MISA
was compared against the NSGA-II [9] and against PAES [11]. These two algorithms
were chosen because they are representative of the state-of-the-art in evolutionary mul-
tiobjective optimization and their codes are in the public domain. Nondominated Sort-
ing Genetic Algorithm (NSGA-II) was proposed by Srinivas and Deb (1994) [8, 9]. It
is based on several layers of classifications of the individuals. The population is ranked
on the basis of nondominnation: all nondominated individuals are classified into one
category sharing a dummy fitness value. Then this first group of classified individuals is
ignored and other layer of nondominated individuals is considered. The process contin-
ues until all individuals in the population are classified. Then a proportional selection
technique is applied. This allows to search for nondominated regions. NSGAII uses
elitism and a crowded comparison operator.

Pareto Archivied Evolution Strategy (PAES) proposed by Knowles and Corne [11]
is a evolution strategy where a single parent generates one single offspring

! � � � ' ,
additionally it uses a historical archive that keeps nondominated solutions previously
found, this archive is used as a reference set against which each mutated individual
is being copared (as a tournament comparison). As a diversity mechanism it uses a
geographically-based procedure which consists of a crowding procedure that divides
objective space in a recursive manner. This geographically-based procedure indicates
the number of solutions that reside in each grid location.

All the approaches performed the same number of fitness function evaluations as
MISA and they all adopted the same size for their external memories. In the following
examples, the NSGA-II was run using a population size of 100, a crossover rate of 0.75,
tournament selection, and a mutation rate of 1/vars, where vars = number of decision
variables of the problem. PAES was run using a mutation rate of ����� , where � refers to
the length of the chromosomic string that encodes the decision variables. Note that all
these three algorithms (NSGAII, PAES and MISA) use a secondary or external memory

as elitist mechanism. Besides the graphical comparisons performed, the three following
metrics were adopted to compare our results:

– Error Ratio (ER): This metric was proposed by Van Veldhuizen [16] to indicate
the percentage of solutions (from the nondominated vectors found so far) that are
not members of the true Pareto optimal set:

���

������ 0	� �
 � (5)

where
 is the number of vectors in the current set of nondominated vectors avail-
able; � � = 0 if vector) is a member of the Pareto optimal set, and � �
 � otherwise.
It should then be clear that

���
�� indicates an ideal behavior, since it would
mean that all the vectors generated by our algorithm belong to the Pareto optimal
set of the problem.

– Spacing (S): This metric was proposed by Schott [15] as a way of measuring the
range (distance) variance of neighboring vectors in the Pareto front known. This
metric is defined as:

�� ���� �
�� �
��
��� 0 ! � � � � '�� � (6)

where
� �
������ � ! K # �0 ! �(' � # �0 ! �('PK � K # �� ! �(' � # �� ! �('�K ' ,) �"!
 ���������2�
 ,�

is the mean of all
� �

, and
 is the number of vectors in the Pareto front found
by the algorithm being evaluated. A value of zero for this metric indicates all the
nondominated solutions found are equidistantly spaced.

– Generational Distance (GD): The concept of generational distance was introduced
by Van Veldhuizen & Lamont [18] as a way of estimating how far are the elements
in the Pareto front produced by our algorithm from those in the true Pareto front of
the problem. This metric is defined as:

#%$
�& � ���� 0 � ��
 (7)

where
 is the number of nondominated vectors found by the algorithm being ana-
lyzed and

� �
is the Euclidean distance (measured in objective space) between each

of these and the nearest member of the true Pareto front. It should be clear that a
value of

#%$
'� indicates that all the elements generated are in the true Pareto
front of the problem. Therefore, any other value will indicate how “far” we are
from the global Pareto front of our problem.

In all the following examples, we performed 20 runs of each algorithm. The graphs
shown in each case were generated using the average performance of each algorithm
with respect to generational distance.

Example 1

Our first example is a two-objective optimization problem proposed by Schaffer [14]:

Minimize
#�0<!GF '

���� ���
� F if

F 9 �� � � F
if � D�F 9��� � F if
� D�F 9 �� � � F

if
F * � (8)

Minimize
� !�F '
 !GF ��� ' � (9)

and �	� 9�F 9 � � .

0

2

4

6

8

10

12

14

16

18

-1 -0.5 0 0.5 1 1.5

f2

f1

PF true
MISA

0

2

4

6

8

10

12

14

16

18

-1 -0.5 0 0.5 1 1.5

f2

f1

PF true
NSGA2

0

2

4

6

8

10

12

14

16

18

-1 -0.5 0 0.5 1 1.5

f2

f1

PF true
PAES

Fig. 2. Pareto front obtained by MISA (left), the NSGA-II (middle) and PAES (right) in the first
example. The true Pareto front of the problem is shown as a continuous line (note that the vertical
segment is NOT part of the Pareto front and is shown only to facilitate drawing the front).

The comparison of results between the true Pareto front of this example and the
Pareto front produced by MISA, the NSGA-II, and PAES are shown in Figure 2. The
values of the three metrics for each algorithm are presented in Tables 1 and 2.

Spacing GD
MISA NSGA-II PAES MISA NSGA-II PAES

Average 0.236345 0.145288 0.268493 0.000375 0.000288 0.002377
Best 0.215840 0.039400 0.074966 0.000199 0.000246 0.000051

Worst 0.256473 0.216794 1.592858 0.001705 0.000344 0.034941
Std. Dev. 0.013523 0.079389 0.336705 0.000387 0.000022 0.007781
Median 0.093127 0.207535 0.137584 0.000387 0.000285 0.000239

Table 1. Spacing and Generational Distance for the first example.

In this case, MISA had the best average value with respect to generational dis-
tance. The NSGA-II had both the best average spacing and the best average error ratio.
Graphically, we can see that PAES was unable to find most of the true Pareto front
of the problem. MISA and the NSGA-II were able to produce most of the true Pareto
front and their overall performance seems quite similar from the graphical results with a
slight advantage for MISA with respect to closeness to the true Pareto front and a slight
advantage for the NSGA-II with respect to uniform distribution of solutions.

MISA NSGA-II PAES
Average 0.410094 0.210891 0.659406

Best 0.366337 0.178218 0.227723
Worst 0.445545 0.237624 1.000000

Std. Dev. 0.025403 0.018481 0.273242
Median 0.410892 0.207921 0.663366

Table 2. Error ratio for the first example.

Example 2

The second example was proposed by Kita [10]: Maximize �
 !U# 0 !GF ��� ' � # � !GF ��� '&'
where:

0 !GF ��� '
 � F � � � ,
� !GF ��� '
 0� F � � � � , F ����� � , ��� 0

� F � � � 0	�� ,�
� 0� F � � � 0��� , �
� � F � � � � � .

7.4

7.6

7.8

8

8.2

8.4

8.6

-8 -6 -4 -2 0 2 4 6 8

f2

f1

PF true
MISA

7.2

7.4

7.6

7.8

8

8.2

8.4

8.6

-3 -2 -1 0 1 2 3 4 5 6 7

f2

f1

PF true
NSGA2

7.4

7.6

7.8

8

8.2

8.4

8.6

-8 -6 -4 -2 0 2 4 6 8

f2

f1

PF true
PAES

Fig. 3. Pareto front obtained by MISA (left), the NSGA-II (middle) and PAES (right) in the sec-
ond example. The true Pareto front of the problem is shown as a continuous line.

The comparison of results between the true Pareto front of this example and the
Pareto front produced by MISA, the NSGA-II and PAES are shown in Figure 3. The
values of the three metrics for each algorithm are presented in Tables 3, and 4.

Spacing GD
MISA NSGA-II PAES MISA NSGA-II PAES

Average 0.905722 0.815194 0.135875 0.036707 0.049669 0.095323
Best 0.783875 0.729958 0.048809 0.002740 0.004344 0.002148

Worst 1.670836 1.123444 0.222275 0.160347 0.523622 0.224462
Std. Dev. 0.237979 0.077707 0.042790 0.043617 0.123888 0.104706
Median 0.826587 0.173106 0.792552 0.019976 0.066585 0.018640

Table 3. Spacing and Generational Distance for the second example.

In this case, MISA had again the best average value for the generational distance.
The NSGA-II had the best average error ratio and PAES had the best average spacing
value. Note however from the graphical results that the NSGA-II missed most of the true

Pareto front of the problem. PAES also missed some portions of the true Pareto front
of the problem. Graphically, we can see that MISA found most of the true Pareto front
and therefore, we argue that it had the best overall performance in this test function.

MISA NSGA-II PAES
Average 0.007431 0.002703 0.005941

Best 0.000000 0.000000 0.000000
Worst 0.010000 0.009009 0.009901

Std. Dev. 0.004402 0.004236 0.004976
Median 0.009901 0.0000 0.009901

Table 4. Error ratio for the second example.

Example 3

Our third example is a two-objective optimization problem defined by Kursawe [12]:

Minimize
0 ! �('

��� 0�
��� 0

� � � ������� � � �>� �
	 F �� � F ���� 0�� (10)

Minimize
� ! �('
 ��

��� 0�� K F � K ��� � � ��� ��� !GF � ' ��� (11)

where: �	� 9�F 0 � F � � F � 9 �

-12

-10

-8

-6

-4

-2

0

2

-20 -19 -18 -17 -16 -15 -14

f2

f1

PF true
MISA

-12

-10

-8

-6

-4

-2

0

2

-20 -19 -18 -17 -16 -15 -14

f2

f1

PF true
NSGA2

-12

-10

-8

-6

-4

-2

0

2

-20 -19 -18 -17 -16 -15 -14 -13

f2

f1

PF true
PAES

Fig. 4. Pareto front obtained by MISA (left), and the NSGA-II (middle) and PAES (right) in the
third example. The true Pareto front of the problem is shown as a continuous line.

The comparison of results between the true Pareto front of this example and the
Pareto front produced by MISA, the NSGA-II and PAES are shown in Figure 4. The
values of the three metrics for each algorithm are presented in Tables 5 and 6.

For this test function, MISA had again the best average generational distance (this
value was, however, only marginally better than the average value of the NSGA-II). The
NSGA-II had the best average spacing value and the best average error ratio. However,
by looking at the graphical results, it is clear that the NSGA-II missed the last (right

Spacing GD
MISA NSGA-II PAES MISA NSGA-II PAES

Average 3.188819 2.889901 3.019393 0.004152 0.004164 0.009341
Best 3.177936 2.705087 2.728101 0.003324 0.003069 0.002019

Worst 3.203547 3.094213 3.200678 0.005282 0.007598 0.056152
Std. Dev. 0.007210 0.123198 0.133220 0.000525 0.001178 0.013893
Median 3.186680 2.842901 3.029246 0.004205 0.003709 0.004468

Table 5. Spacing and Generational Distance for the third example.

lowerhand) portion of the true Pareto front, although it got a nice distribution of solu-
tions along the rest of the front. PAES missed almost entirely two of the three parts that
make the true Pareto front of this problem. Therefore, we argue in this case that MISA
was practically in a tie with the NSGA-II in terms of best overall performance, since
MISA covered the entire Pareto front, but the NSGA-II had a more uniform distribution
of solutions.

MISA NSGA-II PAES
Average 0.517584 0.262872 0.372277

Best 0.386139 0.178218 0.069307
Worst 0.643564 0.396040 0.881188

Std. Dev. 0.066756 0.056875 0.211876
Median 0.504951 0.252476 0.336634

Table 6. Error ratio for example 3

Even when it is necessary more statistical analysis (more test functions and analysis
of varianza), in general, we can see that MISA provides competitive results with respect
to the two other algorithms against which it was compared. Although it did not always
ranked first when using the three metrics adopted, in all cases it produced reasonably
good approximations of the true Pareto front of each problem under study (several other
test functions were adopted but not included due to space limitations), particularly with
respect to the generational distance metric.

7 Conclusions and Future Work

We have introduced a new multiobjective optimization approach based on the clonal
selection principle. The approach was found to be competitive with other algorithms
representative of the state-of-the-art in the area. Our main conclusion is that the sort of
artificial immune system proposed in this paper is a viable alternative to solve multiob-

jective optimization problems in a relatively simple way.2 We also believe that, given
the features of artificial immune systems, an extension of this paradigm for multiobjec-
tive optimization (such as the one proposed here) may be particularly useful to deal with
dynamic functions and that is precisely part of our future research. Also, it is desirable
to refine the mechanism to maintain diversity that our approach currently has, since that
is its main current weakness.

Ackowledgements

The first author acknowledges support from CONACyT through a scholarship to pursue
graduate studies at the Computer Science Section of the Electrical Engineering Depart-
ment at CINVESTAV-IPN. The second author gratefully acknowledges support from
CONACyT through project 34201-A.

References

1. Kevin P. Anchor, Jesse B. Zydallis, Gregg H. Gunsch, and Gary B. Lamont. Extending
the Computer Defense Immune System: Network Intrusion Detection with a Multiobjective
Evolutionary Programming Approach. In Jonathan Timmis and Peter J. Bentley, editors,
First International Conference on Artificial Immune Systems (ICARIS’2002), pages 12–21.
University of Kent at Canterbury, UK, September 2002. ISBN 1-902671-32-5.

2. Carlos A. Coello Coello and Nareli Cruz Cortés. An Approach to Solve Multiobjec-
tive Optimization Problems Based on an Artificial Immune System. In Jonathan Timmis
and Peter J. Bentley, editors, First International Conference on Artificial Immune Systems
(ICARIS’2002), pages 212–221. University of Kent at Canterbury, UK, September 2002.
ISBN 1-902671-32-5.

3. Carlos A. Coello Coello, David A. Van Veldhuizen, and Gary B. Lamont. Evolutionary
Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, New York,
May 2002. ISBN 0-3064-6762-3.

4. Indraneel Das and John Dennis. A Closer Look at Drawbacks of Minimizing Weighted Sums
of Objectives for Pareto Set Generation in Multicriteria Optimization Problems. Structural
Optimization, 14(1):63–69, 1997.

5. Leandro N. de Castro and Jonathan Timmis. Artificial Immune Systems: A New Computa-
tional Intelligence Approach. Springer, London, 2002.

6. Leandro Nunes de Castro and F. J. Von Zuben. Learning and Optimization Using the Clonal
Selection Principle. IEEE Transactions on Evolutionary Computation, 6(3):239–251, 2002.

7. Kalyanmoy Deb. Multi-Objective Optimization using Evolutionary Algorithms. John Wiley
& Sons, Chichester, UK, 2001. ISBN 0-471-87339-X.

8. Kalyanmoy Deb, Samir Agrawal, Amrit Pratab, and T. Meyarivan. A Fast Elitist Non-
Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. In
Marc Schoenauer, Kalyanmoy Deb, Günter Rudolph, Xin Yao, Evelyne Lutton, Juan Ju-
lian Merelo, and Hans-Paul Schwefel, editors, Proceedings of the Parallel Problem Solving
from Nature VI Conference, pages 849–858, Paris, France, 2000. Springer. Lecture Notes in
Computer Science No. 1917.

2 The algorithm proposed here is rather simple to implement, but in any case, our source code is
available upon request via email.

9. Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. A Fast and Elitist Mul-
tiobjective Genetic Algorithm: NSGA–II. IEEE Transactions on Evolutionary Computation,
6(2):182–197, April 2002.

10. Hajime Kita, Yasuyuki Yabumoto, Naoki Mori, and Yoshikazu Nishikawa. Multi-Objective
Optimization by Means of the Thermodynamical Genetic Algorithm. In Hans-Michael Voigt,
Werner Ebeling, Ingo Rechenberg, and Hans-Paul Schwefel, editors, Parallel Problem Solv-
ing from Nature—PPSN IV, Lecture Notes in Computer Science, pages 504–512, Berlin,
Germany, September 1996. Springer-Verlag.

11. Joshua D. Knowles and David W. Corne. Approximating the Nondominated Front Using the
Pareto Archived Evolution Strategy. Evolutionary Computation, 8(2):149–172, 2000.

12. Frank Kursawe. A Variant of Evolution Strategies for Vector Optimization. In H. P. Schwefel
and R. Männer, editors, Parallel Problem Solving from Nature. 1st Workshop, PPSN I, vol-
ume 496 of Lecture Notes in Computer Science, pages 193–197, Berlin, Germany, oct 1991.
Springer-Verlag.

13. Kaisa M. Miettinen. Nonlinear Multiobjective Optimization. Kluwer Academic Publishers,
Boston, Massachusetts, 1998.

14. J. David Schaffer. Multiple Objective Optimization with Vector Evaluated Genetic Algo-
rithms. PhD thesis, Vanderbilt University, 1984.

15. Jason R. Schott. Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm
Optimization. Master’s thesis, Department of Aeronautics and Astronautics, Massachusetts
Institute of Technology, Cambridge, Massachusetts, May 1995.

16. David A. Van Veldhuizen. Multiobjective Evolutionary Algorithms: Classifications, Analy-
ses, and New Innovations. PhD thesis, Department of Electrical and Computer Engineering.
Graduate School of Engineering. Air Force Institute of Technology, Wright-Patterson AFB,
Ohio, May 1999.

17. David A. Van Veldhuizen and Gary B. Lamont. MOEA Test Suite Generation, Design &
Use. In Annie S. Wu, editor, Proceedings of the 1999 Genetic and Evolutionary Computation
Conference. Workshop Program, pages 113–114, Orlando, Florida, July 1999.

18. David A. Van Veldhuizen and Gary B. Lamont. On Measuring Multiobjective Evolutionary
Algorithm Performance. In 2000 Congress on Evolutionary Computation, volume 1, pages
204–211, Piscataway, New Jersey, July 2000. IEEE Service Center.

19. J. Yoo and P. Hajela. Immune network simulations in multicriterion design. Structural
Optimization, 18:85–94, 1999.

