
On the Optimal Computation of Finite Field

Exponentiation

Nareli Cruz-Cortés, Francisco Rodŕıguez-Henŕıquez and Carlos Coello Coello

Computer Science Section, Electrical Engineering Department
Centro de Investigación y de Estudios Avanzados del IPN
Av. Instituto Politécnico Nacional No. 2508, México D.F.

nareli@computacion.cs.cinvestav.mx, {francisco, coello}@cs.cinvestav.mx

Abstract. It has been shown that the optimal computation of finite
field exponentiation is closely related to the problem of finding a suit-
able addition chain with the shortest possible length. However, obtaining
the shortest addition chain for a given arbitrary exponent is an NP-hard
problem. Hence in general, we are forced to use some kind of heuristic in
order to compute field exponentiation with a semi-optimal number of un-
derlying arithmetic operations. In this paper we present a novel heuristic
for that problem which is based on an immune artificial system strategy.
The results obtained by our scheme yield the shortest reported lengths
for the exponents typically used when computing field multiplicative in-
verses for error-correcting and elliptic curve cryptographic applications.

1 Introduction

The problem of efficiently compute finite field or group exponentiation is an illus-
trious mathematical problem with a long and interesting history related to the
theoretical optimization problems found in computer science [1]. In addition to
its theoretical relevance, field exponentiation has many important practical ap-
plications in the areas of error-correcting codes and cryptography. For instance,
field or group exponentiation is used in several major public-key cryptosystems
such as RSA, Diffie-Hellman and DSA [2].

Let α be an arbitrary element of a finite field F , an e and arbitrary posi-
tive integer. Then, field exponentiation is defined as the problem of finding an
element β ∈ F such that the equation β = αe holds. In general one can follow
two strategies to obtain an efficient implementation of field exponentiation. One
approach is to implement field multiplication, the main building block required
for field exponentiation, as efficiently as possible. The other is to reduce the
total number of multiplications needed to compute β. In this paper we address
the latter approach, assuming that arbitrary choices of the base element α are
allowed but with the restriction that the exponent e is fixed.

There are a large number of reported algorithms to solve field exponentia-
tion. Reported strategies include: binary, m-ary, adaptive m-ary, power tree and
the factor method, to mention just a few [3, 1, 2]. All those algorithms have in
common that they strive to keep the number of required field multiplications



2

as low as possible through the usage of a particular heuristic. However, none of
those strategies can be considered to yield an optimal solution for every possible
scenario and/or application. On the other hand, all the aforementioned heuris-
tics can be mathematically described by using the concept of addition chains.
Indeed, taking advantage of the fact that the exponents are additive, the prob-
lem of computing powers of the base element α, can be directly translated to
an addition calculation. This observation leads us to the concept of an addition
chain for a given exponent e that can be informally defined as follows.

An addition chain for e of length l is a sequence U of positive integers,
u0 = 1, u1 . . . , ul = e such that for each i > 1, ui = uj + uk for some j and k
with 0 ≤ j ≤ k < i.

The solely purpose in life of an addition chain is to minimize the number of
multiplications required for an exponentiation. Indeed, if U is an addition chain
that computes e as mentioned above then for each α ∈ F we can find β = αe by
successively computing: α, αu1 , . . . , αul−1 , αe.

Let l(e) be the shortest length of any valid addition chain for a given positive
integer e. Then the theoretical minimum number of field multiplications required
for computing the field operation β = αe is precisely l(e). Unfortunately, the
problem of finding an addition chain for e with the shortest length l(e) is an
NP-hard problem [2]. In order to solve that optimization problem we present in
this work an approach based on the Artificial Immune System (AIS) paradigm.

AIS is a relatively new computational intelligence paradigm which borrows
ideas from the natural immune system to solve engineering problems. AIS has
been successfully applied to solve problems in different areas such as computer
and network security, scheduling, machine learning [4, 5] and optimization. Re-
ported optimization problems solved using AIS systems include multimodal,
numerical [6], and combinatorial optimization [7]. However to the best of our
knowledge, the algorithm presented in this work constitutes the first attempt
to use AIS as an heuristic to find optimal addition chains for field exponenti-
ation computations. As a specific design example, we describe how to use our
technique for computing field inversion via Fermat’s little theorem [8, 9].

The rest of this paper is organized as follows. In Section 2 we describe the
strategy followed in this paper in order to find optimal addition chains using an
AIS approach. Then, in section 3 we explain how an optimal addition chain can
be used in practice to solve finite field multiplicative inversion. A comparison
between our results and other reported works is given in Section 4. Finally, in
Section 5 some conclusions remarks are drawn.

2 Obtaining optimal Addition Chains using an AIS
Approach

In this section we indicate how the AIS paradigm can be used to solve the
problem of finding optimal addition chains. We start this section with a formal
definition of an addition chain followed by a brief description of artificial immune
systems. We end this section giving a description of the algorithm utilized.



3

2.1 Definition

An addition chain [2] U for a positive integer e of length l is a sequence of
positive integers U = {u0, u1, · · · , ul}, and an associated sequence of r pairs
V = {(v1, v2 · · · , vl} with vi = (i1, i2), 0 ≤ i2 ≤ i1 < i, such that:

– u0 = 1 and ul = e;
– for each ui, 1 ≤ i ≤ l, ui = ui1 + ui2 .

Example 1. Consider the case e = 415 = (110011111)2. Then, the binary
addition chain with length l = 14 for that e is,

U := 1 → 2 → 4 → 8 → 16 → 32 → 64 → 128 →
256 → 384 → 400 → 408 → 412 → 414 → 415

With the associated sequence governed by the rule, ui = ui−1 +ui−1 = 2ui−1

for 1 ≤ i ≤ 8 and, u9 = u8+u7, and u10+m = u9+m+u4−m, for m = 0, 1, . . . , 4.

2.2 Artificial Immune System and Problem Representation

Our algorithm is based on a mechanism called clonal selection principle [10],
that explains the way on which the antibodies eliminate a foreign antigen.

Fig. 1 depicts the clonal selection principle, that establishes the idea that
only those antibodies that best match the antigen are stimulated. These stimu-
lated antibodies are reproduced by cloning and the new clones suffer a mutation
process with high rates (called hypermutation). After this process is done some
of the newly created antibodies will increase their affinity to the antigens. Those
clones will neutralize and eliminate the antigens. Once that the foreign antigens
have been exterminated, the immune system must return to its normal values,
eliminating the exceeding antibodies cells. However, the best cells remain into
the body as memory cells. According to de Castro and Timmis [11] in every

Mutation

antibody

Antigen

low affinity

antibody 
high affinity

Cloning

Fig. 1. The Clonal Selection Principle of the Immune System

artificial immune system, as in any other computational system with biological
inspiration, the following elements must be defined:



4

A representation of the system components: A foreign antigen will be rep-
resented as the exponent e that we wish to reach. Antibodies will be represented
by the addition chain sequence that contains the arithmetic recipe that we need
to compute so that we can achieve the desired goal (the antigen). For instance,
if we wish to reach the antigen e = 415 we can execute the antibody addition
chain sequence: 1 → 2 → 3 → 5 → 10 → 20 → 40 → 80 → 90 → 180 → 360 →
400 → 410 → 415 which is a feasible problem solution (although not necessarily
the best as we will see below).
Mechanisms to evaluate the interaction of individuals with the envi-
ronment and each other: The fitness of a given antibody is determined by the
length of its corresponding addition chain. The shorter the length is the better
the associated fitness.
Procedures of adaptation that govern the dynamics of the system: The
dynamics of our system is based on the clonal selection principle.

Input: An exponent (antigen) e.

Output: An optimal addition chain (antibody) U .

Procedure AIS Optimal Addtion Chain(e, U)

1. Start with an initial population consisting of three antibodies Ab1, Ab2 and Ab3
constructed according to the following rules,

1.a If the antigen e is an even number of the form e = 2ke′ then save k and

work with e = e′, with e′ an odd number.

1.b Pre-initialize the antibody Ab1 using the sequence: 1 - 2 3

1.c Pre-initialize the antibody Ab2 using the sequence: 1 - 2 4

1.d Pre-initialize the antibody Ab3 using the sequence: 1 - 2 - 3 5

1.e Complete the addition chain sequence for the three germinal antibodies Ab1, Ab2
and Ab3 needed to achieve the antigen e = e′ trying to use the doubling rule,

ui = ui−1 + ui−1 = 2ui−1 as much as possible.

1.f Add to each antibody the k doubling remaining steps needed to reach the original

antigen e of step 1.a. Now we have three valid addition chains associated to each one

of the antibodies Ab1, Ab2 and Ab3, that allow us to achieve the desired antigen e.

2. Repeat:

3. Compute the associated fitness values of the three constructed antibodies, i.e.,

the corresponding addition sequence lengths. Assign a better fitness to the antibodies

with shorter lengths.

4. Determine how many clones (copies) will be made per each antibody. The better

the fitness the more clones to be made.

5. Antibody Cloning: Apply the mutation operator to each clone as follows,

5.a Randomly select a mutation point i and a random number j such that

0 ≤ j < i < e

5.b The new value of the clone’s addition chain at the mutation point ui will be

ui = ui−1 + uj

5.c Update the upper part of the clone’s addition chain so that the antigen e is still

reached by Applying as much doubling steps as possible.

6. From the set of original antibodies and modified clones, select the top three and

discard the rest. Those three survivor antibodies will make it to the next generation.

7. Go to step 2 a predetermined number of generations.

Fig. 2. Finding Optimal Addition Chains Using an AIS Strategy



5

2.3 AIS Algorithm

The AIS strategy to compute optimal addition chains is shown in Fig. 2. The
exponent e is named the antigen or goal that the artificial immune system is
trying to achieve. Starting with an initial population of three antibodies, the
algorithm of Fig. 2 uses the cloning mechanism to generate slightly different
replicas that are then selected based on the fitness of the individuals. A clone
fitness is measured in terms of the length of its corresponding addition chain. In
order to illustrate how our algorithm computes its task, let us consider the case
when we want to obtain an optimal addition chain for the antigen e = 415.

Example 2. Given the antigen e = 415, then the algorithm of Fig. 2 performs
as follows,

1. It starts with an initial population consisting of three antibodies Ab1, Ab2

and Ab3 constructed according to the following rules,
(a) Since the antigen e is an odd number, it proceeds directly to construct

the three original antibodies.
(b) Construction of the initial antibody Ab1 using: 1 - 2 - 3
(c) Construction of the init2ial antibody Ab2 using: 1 - 2 - 4
(d) Construction of the initial antibody Ab3 using: 1 - 2 - 3 - 5
(e) It proceeds to complete the antibodies. After performing as many dou-

bling steps as possible we get,
Ab1 : 1-2-3-6-12-24-48-96-192-384-408-414-415
Ab2 : 1-2-4-8-16-32-64-128-256-384-400-408-412-414-415
Ab3 : 1-2-3-5-10-20-40-80-160-320-400-410-415

2. Repeat
3. Therefore, the corresponding fitness values (addition chain lengths) for each

antibody are: Ab1 = 12, Ab2 = 14, Ab3 = 12.
4. Since the fittest antibodies are Ab1 and Ab2, four clones of each one of them

are made but only one clone of Ab3.
5. Antibody Cloning: As an illustrative example let us analyze a clone Cl

which is an exact replica of Ab3 given as,
Cl : 1-2-3-5-10-20-40-80-160-320-400-410-415.
For this case the mutation mechanism will be applied as follows:
(a) A mutation point i and a random number j, say 160 and 10, respectively,

are randomly selected.
(b) The number 160 will be changed by 90, which is obtained from the

addition of 80+10. Therefore, the mutated (and mutilated) clone will
look as, 1-2-3-5-10-20-40-80-90.

(c) The mutilated clone Cl must be restored by using as many doubling
steps as possible until the antigen e is reached. Hence:
Cl:1-2-3-5-10-20-40-80-90-180-360-400-410-415

6. From the whole population, the algorithm selects the best three solutions.
They will be the antibodies for the next generation.

7. Go to step 2 a predetermined number of generations.



6

As it was explained, the above procedure creates nine clones at each iteration.
After 100 generations our algorithm was able to find the following addition chain
of length l = 11,

U : 1 → 2 → 3 → 5 → 10 → 20 → 40 → 80 → 83 → 166 → 332 → 415 (1)

The result obtained means a saving of 3 operations with respect to the binary
method that, as it was seen in example 1, yields an addition chain of 14.

Proposition 1. The addition chain U of Eq. 1 is the shortest addition chain
for e = 415.

3 Multiplicative Inversion over GF(2m)

Since a quite long time it has been known that Fermat’s Little Theorem (FLT)
provides a mechanism to compute multiplicative inverses in finite fields [1]. Cer-
tainly, FLT establishes that for any nonzero element α ∈ GF (2m), the identity
α−1 ≡ α2m−2 holds. Therefore, multiplicative inversion can be performed by
computing,

α2m−2 = α21 × α21 × · · ·α2m−1
(2)

A straightforward implementation of Eq. 2 can be carried out using the binary
exponentiation method, which requires m − 1 field squarings and m − 2 field
multiplications. The Itoh-Tsujii Multiplicative Inverse Algorithm (ITMIA) [8]
on the other hand, reduces the required number of multiplications to k+hw(m−
1) − 2, where k = �log2(m − 1)� and hw(m − 1) are the number of bits and
the Hamming weight of the binary representation of m − 1, respectively. This
remarkably saving on the number of multiplications is based on the observation
that since 2m−2 = (2m−1−1) ·2, then the identity from Fermat’s little theorem
can be rewritten as α−1 ≡ α2m−2 ≡ α(2m−1−1)2 . Then ITMIA computes the field
element (2m−1−1) using a recursive re-arrangement of the finite field operations.
To see how this can be carried out let us first make some definitions.

Definition 1. Let α be any arbitrary nonzero element in the field GF (2m). Then
we define βk ∈ GF (2m), k a positive integer, as

βk = α2k−1 (3)

Lemma 1. Let k, j be two positive integers. Then, the element βk+j ∈ GF (2m)
can be expressed as,

βk+j = βk
2j · βj = βj

2k · βk (4)



7

Proof. Using Definition 1 to substitute βk and βj in terms of the variable α we
obtain,

βk
2j · βj = (α2k−1)2

j · α2j−1

= α2k+j−2j · α2j−1

= α2k+j−2j+2j−1

= α2k+j−1 = βk+j

��
Theorem 1 (Itoh-Tsujii Algorithm). Let α be any arbitrary nonzero ele-
ment in the field GF (2m). Let us consider the binary expansion of the k-bit
positive number m − 1 and let us assume that the nonzero components of that
binary expansion can be listed as,

m − 1 = 2l1 + 2l2 + · · · + 2lt−1 + 2lt .

Where l1 < l2 < · · · < lt−1 < lt = k − 1.
Then the multiplicative inverse of α, namely α−1 ∈ GF (2m), can be written

as,

α−1 = α2m−2 =
(
α2m−1−1

)2

=

⎡
⎢⎢⎢⎢⎣β2l1

⎛
⎜⎜⎝β2l2

⎛
⎝· · ·β2lt−2

[
β2lt−1 (β2lt )

22lt−1
]22lt−2

· · ·
⎞
⎠

22l2
⎞
⎟⎟⎠

22l1
⎤
⎥⎥⎥⎥⎦

2

(5)

Moreover, the overall complexity of Eq. 5 is m−1 field squarings plus N = k+
hw(m − 1) − 2 field multiplications, where k = �log2(m − 1)� and hw(m − 1)
are the number of bits and the Hamming weight of the binary representation of
m − 1, respectively

Proof. See [8, 9].

3.1 A Design Example

The concept of addition chains leads us to a natural way to generalize the Itoh-
Tsujii Algorithm. Consider the algorithm shown in Fig. 3. That algorithm iter-
atively computes the βi coefficients in the exact order stipulated by the addi-
tion chain U . Indeed, starting from β0 = (α)2

u0−1 = (α)2
u0−1 = α21−1,

the algorithm computes the other l βi coefficients. In the final iteration, after
having computed the coefficient βl = (α)2

m−1−1, the algorithm returns the
required multiplicative inversion by performing a regular field squaring, namely,
β2

l = (α2m−2) = α−1.



8

Input: An element α ∈ GF (2m), an addition chain U of length l for m − 1 and its

associated sequence V.

Output: α−1 ∈ GF (2m)

Procedure MultiplicativeInversion(α, U)

1. β0 = α

2. for i from 1 to l do:

3. βi = (βi1)2
ui2 · βi2

4. return (βt
2);

Fig. 3. An Algorithm for Multiplicative Inversion using a Generalized Itoh-Tsujii Ap-
proach

Table 1. Algorithm of Fig. 3: βi Coefficient Generation

i ui rule β2
ui2

i1
· βi2 βi = α2u

i −1

0 1 – – β0 = α21−1

1 2 2ui−1 β21
0 · β0 β1 = α22−1

2 3 ui−1 + ui−2 β21
1 · β0 β2 = α23−1

3 5 ui−1 + ui−2 β22
2 · β1 β3 = α25−1

4 10 2ui−1 β25
3 · β3 β4 = α210−1

5 20 2ui−1 β210
4 · β4 β5 = α220−1

6 40 2ui−1 β220
5 · β5 β6 = α240−1

7 80 2ui−1 β240
6 · β6 β7 = α280−1

8 83 ui−1 + u2 β23
7 · β2 β8 = α283−1

9 166 2ui−1 β283
8 · β8 β9 = α2166−1

10 332 2ui−1 β2166
9 · β9 β10 = α2332−1

11 415 ui−1 + ui−3 β2166
10 · β9 β11 = α2415−1

Example 3. Let α ∈ GF (2415) be an arbitrary nonzero field element. Then,
using the addition chain of Example 2, the algorithm of Fig. 3 will compute the
sequence of β coefficients as shown in Table 3.1. Once again, notice that after
having computed the coefficient β11 the only remaining step is to obtain α−1 as,
α−1 = β2

11

4 Result Comparison

We compare the results obtained by our algorithm against the modified factor
method presented by Takagi et al [9] (whose results are the best known to date)
and the ITMIA binary method [8]. Table 2 shows the optimal addition chains for
m=32k (which is an important exponent form for error-correcting code appli-
cations). The chains found by the AIS algorithm are summarized in the second
and third columns. On a total of seven cases the AIS algorithm presented here
outperforms the method of [9]. And in all the cases, those two algorithms out-
perform the ITMIA binary method.



9

m m − 1 AIS AIS Takagi [9] ITMIA Binary method [8]
32 31 1 2 3 6 7 14 28 31 7 7 8
64 63 1 2 3 6 7 14 28 56 63 8 8 10
96 95 1 2 3 5 10 20 40 80 90 95 9 9 11
128 127 1 2 3 6 12 24 48 96 120 126 127 10 10 12
160 159 1 2 3 6 12 24 48 96 144 156 159 10 10 12
192 191 1 2 4 8 16 17 34 68 136 170 187 191 11 11 13
224 223 1 2 3 6 12 13 26 52 104 208 221 223 11 11 13
256 255 1-2-3-5-10-20-40-80-85-170-255- 10 10 14
288 287 1-2-3-5-7-14-28-56-112-224-280-287- 11 11 13
320 319 1-2-3-6-12-18-36-72-144-288-306-318-319- 12 12 14
352 351 1-2-3-6-12-24-27-54-108-216-324-351- 11 11 14
384 383 1-2-3-5-10-20-40-80-160-320-360-380-383- 12 13 15
416 415 1-2-3-5-10-20-40-80-83-166-332-415- 11 12 14
448 447 1-2-3-6-12-18-36-72-144-288-432-444-447- 12 12 15
480 479 1-2-3-6-7-14-28-56-112-224-448-476-479- 12 13 15
512 511 1-2-3-5-10-15-30-60-120-240-480-510-511- 12 12 16
576 575 1-2-3-5-10-20-23-46-92-184-368-552-575- 12 13 15
608 607 1-2-3-6-12-18-36-72-144-288-576-594-606-607- 13 13 15
640 639 1-2-3-6-12-24-26-52-104-208-416-624-636-639- 13 13 16
704 703 1-2-3-5-10-20-40-80-160-320-640-680-700-703- 13 13 16
736 735 1-2-3-5-10-15-30-60-120-240-480-720-735- 12 12 16
768 767 1-2-3-5-10-20-40-80-83-166-332-664-747-767- 13 14 17
800 799 1-2-3-6-12-24-48-96-192-384-768-792-798-799- 13 13 15
832 831 1-2-3-6-12-24-48-96-192-384-768-816-828-831- 13 13 16
864 863 1-2-3-5-10-20-40-43-86-172-344-688-860-863- 13 15 16
896 895 1-2-3-5-10-20-40-80-160-163-326-652-815-895- 13 14 17

Table 2. Optimal addition chains for m = 32k. AIS=Artificial Immune System

p p − 1 AIS AIS ITMIA Binary method [8]
163 162 1 2 4 8 16 32 64 80 81 162 9 9
167 166 1 2 3 5 10 20 40 80 83 166 9 10
173 172 1 2 3 5 10 20 40 43 86 172 9 10
191 190 1 2 3 5 10 20 40 80 160 180 190 10 12
193 192 1 2 3 6 12 24 48 96 192 8 8
197 196 1 2 4 8 16 32 48 49 98 196 9 9
223 222 1 2 3 6 12 24 48 96 192 216 222 10 12

2 233 232 1 2 4 8 16 24 28 29 58 116 232 10 10
269 268 1 2 4 8 16 32 64 66 67 134 268 10 10
271 270 1 2 3 5 10 20 40 80 90 180 270 10 11
293 292 1 2 4 8 16 32 64 72 73 146 292 10 10
331 330 1 2 3 5 10 20 40 80 160 320 330 10 11
379 378 1 2 4 8 16 18 36 72 144 288 360 378 11 13
383 382 1 2 3 5 10 20 40 80 160 320 360 380 382 12 14
389 388 1 2 4 8 16 32 64 96 97 194 388 10 10
443 442 1 2 3 6 12 13 26 52 104 208 416 442 11 13
463 462 1 2 4 8 16 32 33 66 132 264 396 462 11 13
491 490 1 2 3 5 10 20 40 80 160 320 480 490 11 13
509 508 1 2 3 6 12 14 28 30 60 120 240 480 508 12 14
521 520 1 2 4 8 16 32 64 65 130 260 520 10 10

Table 3. Optimal addition chains for e = p − 1, p a prime.



10

Table 3 summarizes the results obtained by AIS and the binary method for
e = p number, with p a prime number (which is an important exponent form
for elliptic curve cryptography). In most of the cases, the immune algorithm
obtains better results than the ITMIA binary method.

5 Conclusions
In this paper we described how an artificial immune system can be applied to
the problem of finding optimal addition chains for field exponentiation compu-
tations. The results obtained by our scheme yield the shortest reported lengths
for exponents typically used when computing field multiplicative inverses for
error-correcting and elliptic curve cryptographic applications. Future work in-
cludes finding addition chains for bigger exponents such as the ones typically
used in RSA and DSA cryptosystems. We would like also to explore the feasibil-
ity of applying other biological-inspired heuristics to the optimal addition chain
problem.

References

1. Knuth, D.E.: The Art of Computer Programming 3rd. ed. Addison-Wesley,
Reading, Massachusetts (1997)

2. Menezes, A.J., van Oorschot, P.C., A.Vanstone, S.: Handbook of Applied Cryp-
tography. CRC Press, Boca Raton, Florida (1996)

3. Gordon, D.M.: A survey of fast exponentiation methods. Journal of Algorithms
27 (1998) 129–146

4. Lamont, G.B., Marmelstein, R.E., Veldhuizen, D.A.V.: A distributed architechture
for a self-adaptive computer virus immune system. In: New Ideas in Optimization.
Mc Graw-Hill (1999) 167–183

5. Forrest, S., Hofmeyr, S.A.: Immunology as Information Processing. In Segel, L.,
Cohen, I., eds.: Design Principles for the Immune System and Other Distributed
Autonomous Systems. Santa Fe Institute Studies in the Sciences of Complexity.
Oxford University Press (2000) 361–387

6. Coello Coello, C.A., Cruz-Cortés, N.: A parallel implementation of an artificial
immune system to handle constraints in genetic algorithms: Preliminary results.
In: Proceedings of the special sessions on artificial immune systems in the 2002
Congress on Evolutionary Computation, 2002 IEEE World Congress on Compu-
tational Intelligence, Honolulu, Hawaii (2002)

7. Toma, N., Endo, S., Yamada, K.: Immune Algorithm with Immune Network and
MHC for Adaptive Problem Solving. In: Proceedings of the IEEE System, Man,
and Cybernetics. Volume IV. (1999) 271–276

8. Itoh, T., Tsujii, S.: A fast algorithm for computing multiplicative inverses in
GF(2m) using normal basis. Information and Computing 78 (1988) 171–177

9. Takagi, N., Yoshiki, J., Tagaki, K.: A fast algorithm for multiplicative inversion
in GF(2m) using normal basis. IEEE Transactions on Computers 50(5) (2001)
394–398

10. Burnet, F.M.: Clonal selection and after. In Bell, G.I., Perelson, A.S., Jr., G.H.P.,
eds.: Theoretical Immunology, Marcel Dekker Inc. (1978) 63–85

11. de Castro, L., Timmis, J.: An Introduction to Artificial Immune Systems: A New
Computational Intelligence Paradigm. Springer-Verlag (2002)


