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Abstra
t

This paper presents an approa
h based on the use

of geneti
 programming to synthesize logi
 fun
tions.

The proposed approa
h uses the 1-
ontrol line multi-

plexer as the only design unit, de�ning any logi
 fun
-

tion (de�ned by a truth table) through the repli
ation of

this single unit. Our �tness fun
tion �rst explores the

sear
h spa
e trying to �nd a feasible design and then


on
entrates in the minimization of su
h (fully feasi-

ble) 
ir
uit. The proposed approa
h is illustrated using

several sample Boolean fun
tions.

1. Introdu
tion

Although evolvable hardware is nowadays a very

popular area of resear
h, the use of evolutionary te
h-

niques to optimize 
ombinational 
ir
uits at the gate-

level has been approa
hed by only a few resear
hers

[12, 6, 3, 9, 8℄.

In the past, we have 
on
entrated on the optimum

design of 
ombinational 
ir
uits at the gate level using

geneti
 algorithms (GAs) [2, 3℄. In the past, we have

used the number of gates as the design metri
 to be

minimized in a 
ir
uit, so that our goal was to produ
e

fully fun
tional 
ir
uits that required the smallest pos-

sible number of gates (
hosen from a 
ertain set de�ned

by the user).

However, the use of this metri
 may not be realis-

ti
 in VLSI systems design where the emphasis is to

de
rease the whole manufa
turing 
ost rather than re-

du
ing the total number of 
omponents used [4℄. It is


ommon, therefore, to repli
ate the same unit as many

times as possible, although this may lead to 
ir
uits

with a larger number of gates. Furthermore, in this do-

main, the sili
on surfa
e needed to implement any log-

i
al 
omponent is another very important fa
tor that

deserves 
onsideration, and our previous work had not


onsidered either of these issues.

Our interest in VLSI systems design led us to restate

the 
ir
uit design problem in su
h a way that the issues

previously mentioned are taken into a

ount.

First, we emphasize the importan
e of repli
ation

by allowing the use of only one devi
e: the multiplexer

(Mux) with 1-
ontrol line. Then, we restate our goal

so that now we are interested in generating fully fun
-

tional 
ir
uits in whi
h the total number of multiplex-

ers used is minimum.

The organization of this paper is the following: �rst,



we will des
ribe the problem that we wish to solve

in a more detailed form. Then, we will introdu
e a

methodology based on geneti
 programming to synthe-

size logi
 fun
tions using multiplexers. Finally, we will

show some examples taken from the te
hni
al literature

and we will dis
uss some of our results. We 
ompare

the number of muxes found in the minimized 
ir
uits

against 2

n

� 1 muxes required by the standard imple-

mentation.

2. Statement of the problem

The problem of interest to us 
onsists of designing a


ir
uit that performs a desired logi
 fun
tion (spe
i�ed

by a truth table), using the least possible number of 1-


ontrol line multiplexers. As will be des
ribed below,

a logi
 fun
tion with n variables 
an be implemented

using 2

n

�1 1-
ontrol line multiplexers. Any implemen-

tation using less than that number of elements 
ould

be 
onsidered an improvement in the design. Sin
e the

optimal minimum number needed is unknown for most

of the logi
 fun
tions, the use of a heuristi
 su
h as

geneti
 programming [7℄ seems adequate.

The implementation 
ost measured in terms of sili-


on surfa
e has been studied for many years. Consider

an n-variable multiplexer realized by means of 2

n

� 1

multiplexers with 1-
ontrol signal. Assuming that the


ost of a single unit is K, the 
ost of su
h a realization

is proportional toK(2

n

�1). Therefore, any realization

with a fewer number of elements implies an improve-

ment of the total manufa
turing 
ost [4℄.

In our approa
h we permit only \1s" and \0s" to be

fed into the multiplexers. Due to our goal, this marks

a 
lear di�eren
e with other strategies where a variable


an be fed into a mux. We allow the variables to be

used only as the 
ontrol signal of the multiplexer.

3. Previous work

It is possible to �nd in the literature several reports


on
erning the design of 
ombinational logi
 
ir
uits

using GAs. Louis [11℄ was one of the �rst resear
hers

who reported this 
lass of work. Further work has been

reported by Koza

1

[7℄, Coello et al. [2, 3℄, Iba et al. [6℄,

and Miller et al. [12℄.

However, none of these approa
hes has 
on
entrated

on the ex
lusive use of multiplexers to design 
ombina-

tional 
ir
uits using evolutionary te
hniques, although

1

It is worth mentioning that Koza's approa
h to the design of


ombinational 
ir
uits has only 
on
entrated on the generation

of fully fun
tional 
ir
uits and not in their optimization.

some resear
hers su
h as Miller [12℄ have used multi-

plexers as another permissible gate whi
h 
an be 
om-

bined with the traditional Boolean fun
tions to design


ir
uits.

Several strategies for the design of 
ombinational 
ir-


uits using multiplexers have been reported after the


on
ept of universal logi
 modules [16℄. Chart te
h-

niques [10℄, graphi
al methods for up to 6 variables

[15℄, and other algorithms more suitable for program-

ming have been proposed [13, 5, 1, 14℄. The aim of

these approa
hes (muxes in 
as
ade or tree or a 
om-

bination of both), is either to minimize the number of

multiplexers, or to �nd p 
ontrol variables su
h that

a boolean fun
tion is realizable by a multiplexer with

p�
ontrol signals.

4. Multiplexers as universal logi
 basis

elements

A binary multiplexer with n sele
tion lines is a 
om-

binational 
ir
uit that sele
ts data from 2

n

input lines

and dire
ts it to a single output line. The rationale sup-

porting the use of this devi
e as an universal logi
 unit

is the following: any Boolean fun
tion of n variables


an be implemented by a multiplexer with n-
ontrol

signals. Furthermore, every n-
ontrol signals multi-

plexer 
an be synthesized by 2

n

� 1 1-
ontrol signal

multiplexers, as it is shown in Figure 1. Noti
e that

the number of layers or depth of the array is equal to

n.

Ea
h unit 
opies either one of its inputs to the out-

put depending on the state of the 
ontrol signal. Mul-

tiplexers have two forms that we simply name 
lass A

and 
lass B. For a 
lass A multiplexer, when the 
on-

trol is set to one the input labeled as \1" is 
opied to

the output, and vi
e-versa, the input labeled as \0"

is 
opied to the output when the 
ontrol is zero. For

a 
lass B multiplexer the logi
 is exa
tly the opposite:


opy the input labeled \0" when the 
ontrol line is one,

and 
opy the input labeled \1" when the 
ontrol is zero.

In order to di�erentiate this property, 
lass A muxes

have the 
ontrol signal on the right hand side and 
lass

B on the left, as 
an be seen in Figure 1. Therefore

the 
ontrol signal is lo
ated on the side of the input to

be propagated when the 
ontrol is in a
tive state (The

a
tive state will be \1" for all our examples).

It is possible to use both 
lasses of multiplexers si-

multaneously in a 
ir
uit. The design 
riteria 
ould

allow them as well. Two 
hara
teristi
 properties of


ir
uits of this nature should be taken into 
onsidera-

tion during the design pro
ess:

� Class Transformation Property: Class A and
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Figure 1. Implementation of a multiplexer of 3-control signals by means of 7 1-control signal muxes.
Muxes class “A” and class “B”. Functional equivalence betwe en both classes


lass B multiplexers 
an be 
onverted freely from

one 
lass into the other, by just swit
hing their in-

puts, thus input labeled \1" goes to input \0" and

input labeled \0" now goes into \1" (see Figure 1).

� Complement Fun
tion Property: For every

logi
 fun
tion F , its 
omplement F

0

is derivable

from the very same 
ir
uit that implements F by

just negating the inputs, that is, by 
hanging \0s"

to \1s" and \1s" to \0s" (see Figure 2).

The 
orrespondent 
onsequen
es of these properties

are the following:

� Implementation in One Class: Every 
ir
uit


an be implemented by means of multiplexers of

only one 
lass (by the 
lass transformation prop-

erty). Sin
e we are aiming to repli
ate the same

element as many times as possible, this is a highly

bene�
ial design quality, as 
an be appre
iated in

Figure 3.

� The Minimum Cir
uit Equivalen
e: If the

fun
tion F and its 
omplement F

0

are found to be

implemented by parti
ular and di�erent size (i.e.,

number of elements) 
ir
uits, then both 
ir
uits

are solutions for both fun
tions (by the 
omple-

ment fun
tion property). Therefore, the smallest


ir
uit is the desirable solution. This means that

in pra
ti
e the designer would have an alternate

pro
edure to verify the quality of the solution.

5. Applying geneti
 programming

There are several issues of interest 
on
erning the

use of geneti
 programming in this domain, su
h as the

en
oding of 
andidate solutions, and the 
rossover and

mutation operators. The representation 
hosen for our

work is a binary tree representing a 
andidate 
ir
uit.

Most of the elements of the population are fun
tional


ir
uits, therefore, they implement (at least partially)

the expe
ted logi
al behavior. Ea
h node of the tree

is a multiplexer whose 
hildren 
ould be either another

multiplexer or a leaf. The 
orresponding value of a

leaf is, of 
ourse, zero or one. Sin
e trees and lists are

natural stru
tures in Prolog we de
ided to use this pro-

gramming language to implement our system so that

our implementation 
ould be 
onsiderably simpler to

develop.

The issues taken into 
onsideration for this appli
a-

tion and the way in whi
h they were approa
hed are as

follows:

� Representation: Binary trees en
oding the pop-

ulation are represented by means of lists. Es-

sentially ea
h element of the list is the triplet

(mux; left�
hild; right�
hild) that en
odes sub-

trees as nested lists. The tree 
aptures the essen
e

of the 
ir
uit topology allowing only the 
hildren

to feed their parent node. In other words, the in-

puts of a multiplexer 
an only be 
hosen from the

previous level, as shown in Figure 4.

Both 
lasses of binary multiplexers (as des
ribed

in se
tion 4) are implemented, then, for instan
e,
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multiplexers A0 and B0 are a
tivated by the same


ontrol bit C0 (the least signi�
ant bit in Figure

4) but they respond in a parti
ular way to the

a
tivation state.

� Crossover operator: The ex
hange of geneti


information between two trees is a

omplished by

ex
hanging subtrees. Our implementation does

not impose any kind of restri
tion to the sele
-

tion of subtrees or 
rossover points. Node-node,

node-leaf, and leaf-leaf ex
hange are allowed. The

parti
ular 
ase when the root node is sele
ted to

be ex
hanged with a leaf is disallowed, so that, no

leaf may be mistakenly 
onverted into a node thus

avoiding the generation of invalid trees (in su
h


ases the valid 
hildren are repli
ated twi
e).

� Mutation operator: Mutation is implemented

in a simple way: �rst a mutation point is ran-

domly 
hosen among the nodes and leaves. When

a node (multiplexer) is sele
ted, its 
ontrol input

is 
hanged as follows (assuming n 
ontrol signals):

a

0

! a

1

, a

1

! a

2

, a

n�1

! a

n

, a

n

! a

0

. Similarly

simple is the mutation of a leaf: 0! 1, 1! 0.

� Fitness fun
tion: Our goal is to produ
e a

fully fun
tional design (i.e., one that produ
es

the expe
ted behavior stated by its truth table)

whi
h minimizes the number of multiplexers used.

Therefore, we de
ided to use a dynami
 �tness

fun
tion. At the beginning of the sear
h, only


omplian
e with the truth table is taken into a
-


ount, and the evolutionary approa
h is basi
ally

exploring the sear
h spa
e. On
e the �rst fun
-

tional solution appears, we swit
h to a new �tness

fun
tion in whi
h fully fun
tional 
ir
uits that use

less multiplexers are rewarded. Regardless of the


urrent stage of the �tness fun
tion, all members

of the population have their �tness 
al
ulated in

every generation. It is the �tness fun
tion the only

agent responsible for the life span of the individu-

als.

� Initial population: The depth of the trees ran-

domly 
reated for the initial population is set to

a maximum value equal to the number n of vari-

ables of the logi
 fun
tion (see Se
tion 4). Consid-

ering 
omplete binary trees, for n variables, 2

n

�1

is the upper bound on the number of nodes al-

lowed in the tree. However, we found in our ex-

periments that in the initial population trees of

shorter depth were 
reated in larger numbers than

trees of greater depth. This led us to adopt a

strategy in whi
h the size (depth and number of

nodes) of the trees dynami
ally 
hanged over gen-

erations. The goal was to allow our trees to grow

without any parti
ular boundaries as to allow a

ri
h phenotypi
 variation in the population. On
e

the �rst fully fun
tional 
ir
uit was found, then

we swit
hed to another �tness fun
tion that would

minimize the total number of multiplexers used.

6. An informal algebra for terminal

nodes

Our dynami
 �tness fun
tion does not take into a
-


ount the redundan
y of the terminal nodes (nodes

whose 
hildren are only 0 or 1), that is, identi
al ter-

minal nodes are pruned away from any solution and


ounted as just another node. The fun
tion performed

by a 
ir
uit 
learly is a 
omposition of node-fun
tions

over the 
hildren-node fun
tions, and so on, all the way

down to the bottom of the tree. With really low prob-

ability either one subtree might be identi
al to another

subtree, or one subtree may 
onsist of the same nodes.

Therefore there are some redundant nodes that 
ould

be deleted by means of further analysis of the solution

delivered by the geneti
 programming system. We have


alled it \redundan
y and algebrai
 analysis". Its goal

is to improve in at least two ways the best solution

found in the last generation. First, the number of el-

ements might be redu
ed sin
e redundant subtrees (if

present) will be removed, and se
ond, it opens the door

to implementation de
isions, for example, to sele
t the

preferred or re
ommendable 
lass of multiplexer.

The only two rules that we used on the trees are

shown in Figure 5.

Rule 1 is applied for transforming one multiplexer


lass into the other, aiming to maximize redundant

nodes that 
an be deleted and the entire set repla
ed

by just one of them. Subtrees as shown in rule 2 have

been observed o

asionally. By means of this rule we

redu
e the nodes of a subtree.

7. Comparison of results

We have used several 
ir
uits of di�erent degrees of


omplexity to test our approa
h. For the purposes of

this paper, 4 examples were 
hosen to illustrate the

\evolved 
ir
uits" and the quality of the solutions pro-

du
ed using the metri
 previously mentioned. So far

we have limited ourselves to the evolution of 
ir
uits

with only one output.
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7.1. Example 1

Our �rst example 
onsists of a fun
tion with three

inputs and one output, as shown in Table 1. It 
ould

be des
ribed in words as \the fun
tion whose output

is 1 when only one of its inputs is 1. Otherwise the

output is 0".

The solution has 5 multiplexers. Therefore, we have

saved (2

3

�1)�5 = 2 elements. This solution was found

using an initial population of 600 elements evolved dur-

ing 200 generations.

7.2. Example 2

In this se
ond example we implement a fun
tion

with four inputs and one output,as shown in Table 2.

Only minterms are shown.(
olumn F is shown for the

sake of 
larity)

The solution has 7 multiplexers. Therefore, we have

saved (2

4

�1)�7 = 8 elements. This solution was found

using an initial population of 600 individuals evolved

during 200 generations. The 
ir
uit found by the sys-

tem and its simpli�ed version after \redundan
y and

algebrai
 analysis" is shown in Figure 6

7.3. Example 3

In this third example we implement a fun
tion with

5 inputs and one output. The minterms of the fun
tion

are the following:

f =

X

(0; 1; 3; 6; 7; 8; 10; 13; 15; 18; 20; 21; 25; 26; 28;

30; 31)

The solution found has 15 multiplexers. Therefore,

we have saved (2

5

�1)�15 = 16 elements. This solution

was found using an initial population of 600 individuals

evolved during 1000 generations.

7.4. Example 4

In this last example we seek a solution for a more


omplex boolean fun
tion (6 variables). Next is the list

of minterms of the fun
tion.

f =

X

(0; 1; 3; 6; 7; 8; 10; 13; 15; 18; 20; 21; 25; 27; 28;

30; 31; 32; 33; 35; 38; 39; 40; 42; 45; 47; 50; 52; 53; 57; 59;

60; 62; 63)

The solution found has 21 multiplexers, Therefore,

we have saved (2

6

� 1)� 21 = 42 elements. This solu-

tion was found using a population of 1500 individuals

evolved during 700 generations.

Table 3 
ondenses the four examples. The 
olumn

n-Mux shows the number 1-
ontrol line multiplexers

needed to implement a n-
ontrol lines multiplexer. The


olumn GPOutput shows the number of nodes in the

best solution found by our geneti
 programming sys-

tem, and GPAlgebrai
 is the further re�ned solution

(the �nal 
ir
uit). TotalSaved is the di�eren
e between


olumns 3 and 5.

8. Con
lusions

We have shown a geneti
 programming approa
h for

the synthesis of logi
 fun
tions and minimization of

their number of elements. We have been able to �nd

solutions that require fewer elements than the standard

array of 2

n

� 1 multiplexers of 1-
ontrol signal. Sin
e

the topology of the minimized solutions is pretty mu
h

that of a tree, we expe
t the VLSI implementation of

this 
ir
uits to require very few extra work in routing

algorithms to redesign the optimal 
onne
tion paths or


ir
uit layout.
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Table 1. Truth table for the first example.
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0 1 1 0 1

0 1 1 1 1

1 0 0 0 1

1 0 0 1 1

1 0 1 0 1

1 1 0 1 1

1 1 1 1 1

Table 2. Minterms table for the second example.
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Figure 6. Circuit for the Example 2 and its simplified version after “redundancy and algebraic analysis”

Example Inputs n-Mux GP Output GP Algebrai
 Total Saved

1 3 7 6 5 2

2 4 15 8 7 8

3 5 31 22 15 16

4 6 63 27 21 42

Table 3. Comparison on the size of the delivered circuits, op timized circuits, and standard implemen-
tation



9. Future work

We are interested in the improvement of our �tness

fun
tion. We believe that a new �tness fun
tion that

takes into a

ount the number of repeated nodes 
ould

guide the sear
h towards better solutions, redu
ing the

amount of extra human work. We are 
on
erned by

the qui
k growth of some trees and the low in
rement

of their �tness. In su
h 
ases a \tree prune" opera-

tion seems mandatory and some strategies need to be

explored. Other design strategies will be implemented

thus allowing the variables to be used both as inputs

and as 
ontrol signals of the multiplexer. Di�erent size

multiplexers will be allowed as well.
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