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Abstrat


This paper presents an approah based on the use


of geneti programming to synthesize logi funtions.


The proposed approah uses the 1-ontrol line multi-


plexer as the only design unit, de�ning any logi fun-


tion (de�ned by a truth table) through the repliation of


this single unit. Our �tness funtion �rst explores the


searh spae trying to �nd a feasible design and then


onentrates in the minimization of suh (fully feasi-


ble) iruit. The proposed approah is illustrated using


several sample Boolean funtions.


1. Introdution


Although evolvable hardware is nowadays a very


popular area of researh, the use of evolutionary teh-


niques to optimize ombinational iruits at the gate-


level has been approahed by only a few researhers


[12, 6, 3, 9, 8℄.


In the past, we have onentrated on the optimum


design of ombinational iruits at the gate level using


geneti algorithms (GAs) [2, 3℄. In the past, we have


used the number of gates as the design metri to be


minimized in a iruit, so that our goal was to produe


fully funtional iruits that required the smallest pos-


sible number of gates (hosen from a ertain set de�ned


by the user).


However, the use of this metri may not be realis-


ti in VLSI systems design where the emphasis is to


derease the whole manufaturing ost rather than re-


duing the total number of omponents used [4℄. It is


ommon, therefore, to repliate the same unit as many


times as possible, although this may lead to iruits


with a larger number of gates. Furthermore, in this do-


main, the silion surfae needed to implement any log-


ial omponent is another very important fator that


deserves onsideration, and our previous work had not


onsidered either of these issues.


Our interest in VLSI systems design led us to restate


the iruit design problem in suh a way that the issues


previously mentioned are taken into aount.


First, we emphasize the importane of repliation


by allowing the use of only one devie: the multiplexer


(Mux) with 1-ontrol line. Then, we restate our goal


so that now we are interested in generating fully fun-


tional iruits in whih the total number of multiplex-


ers used is minimum.


The organization of this paper is the following: �rst,







we will desribe the problem that we wish to solve


in a more detailed form. Then, we will introdue a


methodology based on geneti programming to synthe-


size logi funtions using multiplexers. Finally, we will


show some examples taken from the tehnial literature


and we will disuss some of our results. We ompare


the number of muxes found in the minimized iruits


against 2


n


� 1 muxes required by the standard imple-


mentation.


2. Statement of the problem


The problem of interest to us onsists of designing a


iruit that performs a desired logi funtion (spei�ed


by a truth table), using the least possible number of 1-


ontrol line multiplexers. As will be desribed below,


a logi funtion with n variables an be implemented


using 2


n


�1 1-ontrol line multiplexers. Any implemen-


tation using less than that number of elements ould


be onsidered an improvement in the design. Sine the


optimal minimum number needed is unknown for most


of the logi funtions, the use of a heuristi suh as


geneti programming [7℄ seems adequate.


The implementation ost measured in terms of sili-


on surfae has been studied for many years. Consider


an n-variable multiplexer realized by means of 2


n


� 1


multiplexers with 1-ontrol signal. Assuming that the


ost of a single unit is K, the ost of suh a realization


is proportional toK(2


n


�1). Therefore, any realization


with a fewer number of elements implies an improve-


ment of the total manufaturing ost [4℄.


In our approah we permit only \1s" and \0s" to be


fed into the multiplexers. Due to our goal, this marks


a lear di�erene with other strategies where a variable


an be fed into a mux. We allow the variables to be


used only as the ontrol signal of the multiplexer.


3. Previous work


It is possible to �nd in the literature several reports


onerning the design of ombinational logi iruits


using GAs. Louis [11℄ was one of the �rst researhers


who reported this lass of work. Further work has been


reported by Koza


1


[7℄, Coello et al. [2, 3℄, Iba et al. [6℄,


and Miller et al. [12℄.


However, none of these approahes has onentrated


on the exlusive use of multiplexers to design ombina-


tional iruits using evolutionary tehniques, although


1


It is worth mentioning that Koza's approah to the design of


ombinational iruits has only onentrated on the generation


of fully funtional iruits and not in their optimization.


some researhers suh as Miller [12℄ have used multi-


plexers as another permissible gate whih an be om-


bined with the traditional Boolean funtions to design


iruits.


Several strategies for the design of ombinational ir-


uits using multiplexers have been reported after the


onept of universal logi modules [16℄. Chart teh-


niques [10℄, graphial methods for up to 6 variables


[15℄, and other algorithms more suitable for program-


ming have been proposed [13, 5, 1, 14℄. The aim of


these approahes (muxes in asade or tree or a om-


bination of both), is either to minimize the number of


multiplexers, or to �nd p ontrol variables suh that


a boolean funtion is realizable by a multiplexer with


p�ontrol signals.


4. Multiplexers as universal logi basis


elements


A binary multiplexer with n seletion lines is a om-


binational iruit that selets data from 2


n


input lines


and direts it to a single output line. The rationale sup-


porting the use of this devie as an universal logi unit


is the following: any Boolean funtion of n variables


an be implemented by a multiplexer with n-ontrol


signals. Furthermore, every n-ontrol signals multi-


plexer an be synthesized by 2


n


� 1 1-ontrol signal


multiplexers, as it is shown in Figure 1. Notie that


the number of layers or depth of the array is equal to


n.


Eah unit opies either one of its inputs to the out-


put depending on the state of the ontrol signal. Mul-


tiplexers have two forms that we simply name lass A


and lass B. For a lass A multiplexer, when the on-


trol is set to one the input labeled as \1" is opied to


the output, and vie-versa, the input labeled as \0"


is opied to the output when the ontrol is zero. For


a lass B multiplexer the logi is exatly the opposite:


opy the input labeled \0" when the ontrol line is one,


and opy the input labeled \1" when the ontrol is zero.


In order to di�erentiate this property, lass A muxes


have the ontrol signal on the right hand side and lass


B on the left, as an be seen in Figure 1. Therefore


the ontrol signal is loated on the side of the input to


be propagated when the ontrol is in ative state (The


ative state will be \1" for all our examples).


It is possible to use both lasses of multiplexers si-


multaneously in a iruit. The design riteria ould


allow them as well. Two harateristi properties of


iruits of this nature should be taken into onsidera-


tion during the design proess:


� Class Transformation Property: Class A and
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Figure 1. Implementation of a multiplexer of 3-control signals by means of 7 1-control signal muxes.
Muxes class “A” and class “B”. Functional equivalence betwe en both classes


lass B multiplexers an be onverted freely from


one lass into the other, by just swithing their in-


puts, thus input labeled \1" goes to input \0" and


input labeled \0" now goes into \1" (see Figure 1).


� Complement Funtion Property: For every


logi funtion F , its omplement F


0


is derivable


from the very same iruit that implements F by


just negating the inputs, that is, by hanging \0s"


to \1s" and \1s" to \0s" (see Figure 2).


The orrespondent onsequenes of these properties


are the following:


� Implementation in One Class: Every iruit


an be implemented by means of multiplexers of


only one lass (by the lass transformation prop-


erty). Sine we are aiming to repliate the same


element as many times as possible, this is a highly


bene�ial design quality, as an be appreiated in


Figure 3.


� The Minimum Ciruit Equivalene: If the


funtion F and its omplement F


0


are found to be


implemented by partiular and di�erent size (i.e.,


number of elements) iruits, then both iruits


are solutions for both funtions (by the omple-


ment funtion property). Therefore, the smallest


iruit is the desirable solution. This means that


in pratie the designer would have an alternate


proedure to verify the quality of the solution.


5. Applying geneti programming


There are several issues of interest onerning the


use of geneti programming in this domain, suh as the


enoding of andidate solutions, and the rossover and


mutation operators. The representation hosen for our


work is a binary tree representing a andidate iruit.


Most of the elements of the population are funtional


iruits, therefore, they implement (at least partially)


the expeted logial behavior. Eah node of the tree


is a multiplexer whose hildren ould be either another


multiplexer or a leaf. The orresponding value of a


leaf is, of ourse, zero or one. Sine trees and lists are


natural strutures in Prolog we deided to use this pro-


gramming language to implement our system so that


our implementation ould be onsiderably simpler to


develop.


The issues taken into onsideration for this applia-


tion and the way in whih they were approahed are as


follows:


� Representation: Binary trees enoding the pop-


ulation are represented by means of lists. Es-


sentially eah element of the list is the triplet


(mux; left�hild; right�hild) that enodes sub-


trees as nested lists. The tree aptures the essene


of the iruit topology allowing only the hildren


to feed their parent node. In other words, the in-


puts of a multiplexer an only be hosen from the


previous level, as shown in Figure 4.


Both lasses of binary multiplexers (as desribed


in setion 4) are implemented, then, for instane,
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Figure 2. Transformation of a function into its complement f unction
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Figure 3. Transformation of a design into a circuit using onl y one class muxes ( Class B shown)
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Figure 4. Truth table for logic function specification, circ uit generated, and its coding







multiplexers A0 and B0 are ativated by the same


ontrol bit C0 (the least signi�ant bit in Figure


4) but they respond in a partiular way to the


ativation state.


� Crossover operator: The exhange of geneti


information between two trees is aomplished by


exhanging subtrees. Our implementation does


not impose any kind of restrition to the sele-


tion of subtrees or rossover points. Node-node,


node-leaf, and leaf-leaf exhange are allowed. The


partiular ase when the root node is seleted to


be exhanged with a leaf is disallowed, so that, no


leaf may be mistakenly onverted into a node thus


avoiding the generation of invalid trees (in suh


ases the valid hildren are repliated twie).


� Mutation operator: Mutation is implemented


in a simple way: �rst a mutation point is ran-


domly hosen among the nodes and leaves. When


a node (multiplexer) is seleted, its ontrol input


is hanged as follows (assuming n ontrol signals):


a


0


! a


1


, a


1


! a


2


, a


n�1


! a


n


, a


n


! a


0


. Similarly


simple is the mutation of a leaf: 0! 1, 1! 0.


� Fitness funtion: Our goal is to produe a


fully funtional design (i.e., one that produes


the expeted behavior stated by its truth table)


whih minimizes the number of multiplexers used.


Therefore, we deided to use a dynami �tness


funtion. At the beginning of the searh, only


ompliane with the truth table is taken into a-


ount, and the evolutionary approah is basially


exploring the searh spae. One the �rst fun-


tional solution appears, we swith to a new �tness


funtion in whih fully funtional iruits that use


less multiplexers are rewarded. Regardless of the


urrent stage of the �tness funtion, all members


of the population have their �tness alulated in


every generation. It is the �tness funtion the only


agent responsible for the life span of the individu-


als.


� Initial population: The depth of the trees ran-


domly reated for the initial population is set to


a maximum value equal to the number n of vari-


ables of the logi funtion (see Setion 4). Consid-


ering omplete binary trees, for n variables, 2


n


�1


is the upper bound on the number of nodes al-


lowed in the tree. However, we found in our ex-


periments that in the initial population trees of


shorter depth were reated in larger numbers than


trees of greater depth. This led us to adopt a


strategy in whih the size (depth and number of


nodes) of the trees dynamially hanged over gen-


erations. The goal was to allow our trees to grow


without any partiular boundaries as to allow a


rih phenotypi variation in the population. One


the �rst fully funtional iruit was found, then


we swithed to another �tness funtion that would


minimize the total number of multiplexers used.


6. An informal algebra for terminal


nodes


Our dynami �tness funtion does not take into a-


ount the redundany of the terminal nodes (nodes


whose hildren are only 0 or 1), that is, idential ter-


minal nodes are pruned away from any solution and


ounted as just another node. The funtion performed


by a iruit learly is a omposition of node-funtions


over the hildren-node funtions, and so on, all the way


down to the bottom of the tree. With really low prob-


ability either one subtree might be idential to another


subtree, or one subtree may onsist of the same nodes.


Therefore there are some redundant nodes that ould


be deleted by means of further analysis of the solution


delivered by the geneti programming system. We have


alled it \redundany and algebrai analysis". Its goal


is to improve in at least two ways the best solution


found in the last generation. First, the number of el-


ements might be redued sine redundant subtrees (if


present) will be removed, and seond, it opens the door


to implementation deisions, for example, to selet the


preferred or reommendable lass of multiplexer.


The only two rules that we used on the trees are


shown in Figure 5.


Rule 1 is applied for transforming one multiplexer


lass into the other, aiming to maximize redundant


nodes that an be deleted and the entire set replaed


by just one of them. Subtrees as shown in rule 2 have


been observed oasionally. By means of this rule we


redue the nodes of a subtree.


7. Comparison of results


We have used several iruits of di�erent degrees of


omplexity to test our approah. For the purposes of


this paper, 4 examples were hosen to illustrate the


\evolved iruits" and the quality of the solutions pro-


dued using the metri previously mentioned. So far


we have limited ourselves to the evolution of iruits


with only one output.
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Figure 5. Redundancy and Algebraic Analysis. Node equivale nce and subtree equivalence


7.1. Example 1


Our �rst example onsists of a funtion with three


inputs and one output, as shown in Table 1. It ould


be desribed in words as \the funtion whose output


is 1 when only one of its inputs is 1. Otherwise the


output is 0".


The solution has 5 multiplexers. Therefore, we have


saved (2


3


�1)�5 = 2 elements. This solution was found


using an initial population of 600 elements evolved dur-


ing 200 generations.


7.2. Example 2


In this seond example we implement a funtion


with four inputs and one output,as shown in Table 2.


Only minterms are shown.(olumn F is shown for the


sake of larity)


The solution has 7 multiplexers. Therefore, we have


saved (2


4


�1)�7 = 8 elements. This solution was found


using an initial population of 600 individuals evolved


during 200 generations. The iruit found by the sys-


tem and its simpli�ed version after \redundany and


algebrai analysis" is shown in Figure 6


7.3. Example 3


In this third example we implement a funtion with


5 inputs and one output. The minterms of the funtion


are the following:


f =


X


(0; 1; 3; 6; 7; 8; 10; 13; 15; 18; 20; 21; 25; 26; 28;


30; 31)


The solution found has 15 multiplexers. Therefore,


we have saved (2


5


�1)�15 = 16 elements. This solution


was found using an initial population of 600 individuals


evolved during 1000 generations.


7.4. Example 4


In this last example we seek a solution for a more


omplex boolean funtion (6 variables). Next is the list


of minterms of the funtion.


f =


X


(0; 1; 3; 6; 7; 8; 10; 13; 15; 18; 20; 21; 25; 27; 28;


30; 31; 32; 33; 35; 38; 39; 40; 42; 45; 47; 50; 52; 53; 57; 59;


60; 62; 63)


The solution found has 21 multiplexers, Therefore,


we have saved (2


6


� 1)� 21 = 42 elements. This solu-


tion was found using a population of 1500 individuals


evolved during 700 generations.


Table 3 ondenses the four examples. The olumn


n-Mux shows the number 1-ontrol line multiplexers


needed to implement a n-ontrol lines multiplexer. The


olumn GPOutput shows the number of nodes in the


best solution found by our geneti programming sys-


tem, and GPAlgebrai is the further re�ned solution


(the �nal iruit). TotalSaved is the di�erene between


olumns 3 and 5.


8. Conlusions


We have shown a geneti programming approah for


the synthesis of logi funtions and minimization of


their number of elements. We have been able to �nd


solutions that require fewer elements than the standard


array of 2


n


� 1 multiplexers of 1-ontrol signal. Sine


the topology of the minimized solutions is pretty muh


that of a tree, we expet the VLSI implementation of


this iruits to require very few extra work in routing


algorithms to redesign the optimal onnetion paths or


iruit layout.
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Table 1. Truth table for the first example.
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Table 2. Minterms table for the second example.
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Figure 6. Circuit for the Example 2 and its simplified version after “redundancy and algebraic analysis”


Example Inputs n-Mux GP Output GP Algebrai Total Saved


1 3 7 6 5 2


2 4 15 8 7 8


3 5 31 22 15 16


4 6 63 27 21 42


Table 3. Comparison on the size of the delivered circuits, op timized circuits, and standard implemen-
tation







9. Future work


We are interested in the improvement of our �tness


funtion. We believe that a new �tness funtion that


takes into aount the number of repeated nodes ould


guide the searh towards better solutions, reduing the


amount of extra human work. We are onerned by


the quik growth of some trees and the low inrement


of their �tness. In suh ases a \tree prune" opera-


tion seems mandatory and some strategies need to be


explored. Other design strategies will be implemented


thus allowing the variables to be used both as inputs


and as ontrol signals of the multiplexer. Di�erent size


multiplexers will be allowed as well.
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