

A Geneti Programming Approah to Logi Funtion Synthesis by

means of Multiplexers

Arturo Hern�andez Aguirre

211 Stanley Thomas Hall

Department of Computer Siene, Tulane University

New Orleans, LA 70118, USA

hernanda�ees.tulane.edu

Carlos A. Coello Coello

Laboratorio Naional de Inform�atia Avanzada

R�ebsamen 80, A.P. 696

Xalapa, Veraruz, M�exio 91090

oello�xalapa.lania.mx

Bill P. Bukles

211 Stanley Thomas Hall

Department of Computer Siene, Tulane University

New Orleans, LA 70118, USA

bukles�ees.tulane.edu

Abstrat

This paper presents an approah based on the use

of geneti programming to synthesize logi funtions.

The proposed approah uses the 1-ontrol line multi-

plexer as the only design unit, de�ning any logi fun-

tion (de�ned by a truth table) through the repliation of

this single unit. Our �tness funtion �rst explores the

searh spae trying to �nd a feasible design and then

onentrates in the minimization of suh (fully feasi-

ble) iruit. The proposed approah is illustrated using

several sample Boolean funtions.

1. Introdution

Although evolvable hardware is nowadays a very

popular area of researh, the use of evolutionary teh-

niques to optimize ombinational iruits at the gate-

level has been approahed by only a few researhers

[12, 6, 3, 9, 8℄.

In the past, we have onentrated on the optimum

design of ombinational iruits at the gate level using

geneti algorithms (GAs) [2, 3℄. In the past, we have

used the number of gates as the design metri to be

minimized in a iruit, so that our goal was to produe

fully funtional iruits that required the smallest pos-

sible number of gates (hosen from a ertain set de�ned

by the user).

However, the use of this metri may not be realis-

ti in VLSI systems design where the emphasis is to

derease the whole manufaturing ost rather than re-

duing the total number of omponents used [4℄. It is

ommon, therefore, to repliate the same unit as many

times as possible, although this may lead to iruits

with a larger number of gates. Furthermore, in this do-

main, the silion surfae needed to implement any log-

ial omponent is another very important fator that

deserves onsideration, and our previous work had not

onsidered either of these issues.

Our interest in VLSI systems design led us to restate

the iruit design problem in suh a way that the issues

previously mentioned are taken into aount.

First, we emphasize the importane of repliation

by allowing the use of only one devie: the multiplexer

(Mux) with 1-ontrol line. Then, we restate our goal

so that now we are interested in generating fully fun-

tional iruits in whih the total number of multiplex-

ers used is minimum.

The organization of this paper is the following: �rst,

we will desribe the problem that we wish to solve

in a more detailed form. Then, we will introdue a

methodology based on geneti programming to synthe-

size logi funtions using multiplexers. Finally, we will

show some examples taken from the tehnial literature

and we will disuss some of our results. We ompare

the number of muxes found in the minimized iruits

against 2

n

� 1 muxes required by the standard imple-

mentation.

2. Statement of the problem

The problem of interest to us onsists of designing a

iruit that performs a desired logi funtion (spei�ed

by a truth table), using the least possible number of 1-

ontrol line multiplexers. As will be desribed below,

a logi funtion with n variables an be implemented

using 2

n

�1 1-ontrol line multiplexers. Any implemen-

tation using less than that number of elements ould

be onsidered an improvement in the design. Sine the

optimal minimum number needed is unknown for most

of the logi funtions, the use of a heuristi suh as

geneti programming [7℄ seems adequate.

The implementation ost measured in terms of sili-

on surfae has been studied for many years. Consider

an n-variable multiplexer realized by means of 2

n

� 1

multiplexers with 1-ontrol signal. Assuming that the

ost of a single unit is K, the ost of suh a realization

is proportional toK(2

n

�1). Therefore, any realization

with a fewer number of elements implies an improve-

ment of the total manufaturing ost [4℄.

In our approah we permit only \1s" and \0s" to be

fed into the multiplexers. Due to our goal, this marks

a lear di�erene with other strategies where a variable

an be fed into a mux. We allow the variables to be

used only as the ontrol signal of the multiplexer.

3. Previous work

It is possible to �nd in the literature several reports

onerning the design of ombinational logi iruits

using GAs. Louis [11℄ was one of the �rst researhers

who reported this lass of work. Further work has been

reported by Koza

1

[7℄, Coello et al. [2, 3℄, Iba et al. [6℄,

and Miller et al. [12℄.

However, none of these approahes has onentrated

on the exlusive use of multiplexers to design ombina-

tional iruits using evolutionary tehniques, although

1

It is worth mentioning that Koza's approah to the design of

ombinational iruits has only onentrated on the generation

of fully funtional iruits and not in their optimization.

some researhers suh as Miller [12℄ have used multi-

plexers as another permissible gate whih an be om-

bined with the traditional Boolean funtions to design

iruits.

Several strategies for the design of ombinational ir-

uits using multiplexers have been reported after the

onept of universal logi modules [16℄. Chart teh-

niques [10℄, graphial methods for up to 6 variables

[15℄, and other algorithms more suitable for program-

ming have been proposed [13, 5, 1, 14℄. The aim of

these approahes (muxes in asade or tree or a om-

bination of both), is either to minimize the number of

multiplexers, or to �nd p ontrol variables suh that

a boolean funtion is realizable by a multiplexer with

p�ontrol signals.

4. Multiplexers as universal logi basis

elements

A binary multiplexer with n seletion lines is a om-

binational iruit that selets data from 2

n

input lines

and direts it to a single output line. The rationale sup-

porting the use of this devie as an universal logi unit

is the following: any Boolean funtion of n variables

an be implemented by a multiplexer with n-ontrol

signals. Furthermore, every n-ontrol signals multi-

plexer an be synthesized by 2

n

� 1 1-ontrol signal

multiplexers, as it is shown in Figure 1. Notie that

the number of layers or depth of the array is equal to

n.

Eah unit opies either one of its inputs to the out-

put depending on the state of the ontrol signal. Mul-

tiplexers have two forms that we simply name lass A

and lass B. For a lass A multiplexer, when the on-

trol is set to one the input labeled as \1" is opied to

the output, and vie-versa, the input labeled as \0"

is opied to the output when the ontrol is zero. For

a lass B multiplexer the logi is exatly the opposite:

opy the input labeled \0" when the ontrol line is one,

and opy the input labeled \1" when the ontrol is zero.

In order to di�erentiate this property, lass A muxes

have the ontrol signal on the right hand side and lass

B on the left, as an be seen in Figure 1. Therefore

the ontrol signal is loated on the side of the input to

be propagated when the ontrol is in ative state (The

ative state will be \1" for all our examples).

It is possible to use both lasses of multiplexers si-

multaneously in a iruit. The design riteria ould

allow them as well. Two harateristi properties of

iruits of this nature should be taken into onsidera-

tion during the design proess:

� Class Transformation Property: Class A and

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0 1

X Y

Z

Ao

CLASS "A"

0 1

X Y

Z

Bo

CLASS "B"

f(000)

f(100)

f(010)

f(110)

f(001)

f(101)

f(011)

f(111)

X2 X1 X0

f(X2X1X0)

Figure 1. Implementation of a multiplexer of 3-control signals by means of 7 1-control signal muxes.
Muxes class “A” and class “B”. Functional equivalence betwe en both classes

lass B multiplexers an be onverted freely from

one lass into the other, by just swithing their in-

puts, thus input labeled \1" goes to input \0" and

input labeled \0" now goes into \1" (see Figure 1).

� Complement Funtion Property: For every

logi funtion F , its omplement F

0

is derivable

from the very same iruit that implements F by

just negating the inputs, that is, by hanging \0s"

to \1s" and \1s" to \0s" (see Figure 2).

The orrespondent onsequenes of these properties

are the following:

� Implementation in One Class: Every iruit

an be implemented by means of multiplexers of

only one lass (by the lass transformation prop-

erty). Sine we are aiming to repliate the same

element as many times as possible, this is a highly

bene�ial design quality, as an be appreiated in

Figure 3.

� The Minimum Ciruit Equivalene: If the

funtion F and its omplement F

0

are found to be

implemented by partiular and di�erent size (i.e.,

number of elements) iruits, then both iruits

are solutions for both funtions (by the omple-

ment funtion property). Therefore, the smallest

iruit is the desirable solution. This means that

in pratie the designer would have an alternate

proedure to verify the quality of the solution.

5. Applying geneti programming

There are several issues of interest onerning the

use of geneti programming in this domain, suh as the

enoding of andidate solutions, and the rossover and

mutation operators. The representation hosen for our

work is a binary tree representing a andidate iruit.

Most of the elements of the population are funtional

iruits, therefore, they implement (at least partially)

the expeted logial behavior. Eah node of the tree

is a multiplexer whose hildren ould be either another

multiplexer or a leaf. The orresponding value of a

leaf is, of ourse, zero or one. Sine trees and lists are

natural strutures in Prolog we deided to use this pro-

gramming language to implement our system so that

our implementation ould be onsiderably simpler to

develop.

The issues taken into onsideration for this applia-

tion and the way in whih they were approahed are as

follows:

� Representation: Binary trees enoding the pop-

ulation are represented by means of lists. Es-

sentially eah element of the list is the triplet

(mux; left�hild; right�hild) that enodes sub-

trees as nested lists. The tree aptures the essene

of the iruit topology allowing only the hildren

to feed their parent node. In other words, the in-

puts of a multiplexer an only be hosen from the

previous level, as shown in Figure 4.

Both lasses of binary multiplexers (as desribed

in setion 4) are implemented, then, for instane,

0 1

0 1 0 1

0 1 0 1

0 1

0 1

F

1

0 1
0

1

1

C2

C0 C3

C3 C0 C0

C1

0

0 1 0 1

0 1

0 1

0 1

F’

C2

C0 C3

C3 C0 C0

C1

0 1

0 1

0

1 0

0 1

1 0

Figure 2. Transformation of a function into its complement f unction

0 1

0 1 0 1

0 1 0 1

0 1

0 1

F

1

0 1
0

1

1

C2

C0 C3

C3 C0 C0

C1

0

0 1

0 1

0 1
C0

0 1
C1

0 1
C0

C2

C0

C3

0 1

0 1

0

1 0

C3

0 1

1 0

F

Figure 3. Transformation of a design into a circuit using onl y one class muxes (Class B shown)

0 1

0 1

0 1 0 10 1

10 0 1 1 0

0

C2

C0 C1 C1

0 1
C1 C0

FC2 C1 C0
0 0 0
0 0 1
0 1 0
0 1 1
1
1
1
1

0
0
1
1

0
1
0
1

F
0
0
0

0
1
1
0

1

(A2, (B1, (A0, 0, 1), 0), (B0, (B1, 0, 1), (B1, 1, 0)))

Figure 4. Truth table for logic function specification, circ uit generated, and its coding

multiplexers A0 and B0 are ativated by the same

ontrol bit C0 (the least signi�ant bit in Figure

4) but they respond in a partiular way to the

ativation state.

� Crossover operator: The exhange of geneti

information between two trees is aomplished by

exhanging subtrees. Our implementation does

not impose any kind of restrition to the sele-

tion of subtrees or rossover points. Node-node,

node-leaf, and leaf-leaf exhange are allowed. The

partiular ase when the root node is seleted to

be exhanged with a leaf is disallowed, so that, no

leaf may be mistakenly onverted into a node thus

avoiding the generation of invalid trees (in suh

ases the valid hildren are repliated twie).

� Mutation operator: Mutation is implemented

in a simple way: �rst a mutation point is ran-

domly hosen among the nodes and leaves. When

a node (multiplexer) is seleted, its ontrol input

is hanged as follows (assuming n ontrol signals):

a

0

! a

1

, a

1

! a

2

, a

n�1

! a

n

, a

n

! a

0

. Similarly

simple is the mutation of a leaf: 0! 1, 1! 0.

� Fitness funtion: Our goal is to produe a

fully funtional design (i.e., one that produes

the expeted behavior stated by its truth table)

whih minimizes the number of multiplexers used.

Therefore, we deided to use a dynami �tness

funtion. At the beginning of the searh, only

ompliane with the truth table is taken into a-

ount, and the evolutionary approah is basially

exploring the searh spae. One the �rst fun-

tional solution appears, we swith to a new �tness

funtion in whih fully funtional iruits that use

less multiplexers are rewarded. Regardless of the

urrent stage of the �tness funtion, all members

of the population have their �tness alulated in

every generation. It is the �tness funtion the only

agent responsible for the life span of the individu-

als.

� Initial population: The depth of the trees ran-

domly reated for the initial population is set to

a maximum value equal to the number n of vari-

ables of the logi funtion (see Setion 4). Consid-

ering omplete binary trees, for n variables, 2

n

�1

is the upper bound on the number of nodes al-

lowed in the tree. However, we found in our ex-

periments that in the initial population trees of

shorter depth were reated in larger numbers than

trees of greater depth. This led us to adopt a

strategy in whih the size (depth and number of

nodes) of the trees dynamially hanged over gen-

erations. The goal was to allow our trees to grow

without any partiular boundaries as to allow a

rih phenotypi variation in the population. One

the �rst fully funtional iruit was found, then

we swithed to another �tness funtion that would

minimize the total number of multiplexers used.

6. An informal algebra for terminal

nodes

Our dynami �tness funtion does not take into a-

ount the redundany of the terminal nodes (nodes

whose hildren are only 0 or 1), that is, idential ter-

minal nodes are pruned away from any solution and

ounted as just another node. The funtion performed

by a iruit learly is a omposition of node-funtions

over the hildren-node funtions, and so on, all the way

down to the bottom of the tree. With really low prob-

ability either one subtree might be idential to another

subtree, or one subtree may onsist of the same nodes.

Therefore there are some redundant nodes that ould

be deleted by means of further analysis of the solution

delivered by the geneti programming system. We have

alled it \redundany and algebrai analysis". Its goal

is to improve in at least two ways the best solution

found in the last generation. First, the number of el-

ements might be redued sine redundant subtrees (if

present) will be removed, and seond, it opens the door

to implementation deisions, for example, to selet the

preferred or reommendable lass of multiplexer.

The only two rules that we used on the trees are

shown in Figure 5.

Rule 1 is applied for transforming one multiplexer

lass into the other, aiming to maximize redundant

nodes that an be deleted and the entire set replaed

by just one of them. Subtrees as shown in rule 2 have

been observed oasionally. By means of this rule we

redue the nodes of a subtree.

7. Comparison of results

We have used several iruits of di�erent degrees of

omplexity to test our approah. For the purposes of

this paper, 4 examples were hosen to illustrate the

\evolved iruits" and the quality of the solutions pro-

dued using the metri previously mentioned. So far

we have limited ourselves to the evolution of iruits

with only one output.

An

X Y

Bn

RULE 1

Y X

Z Z

X Y

An

Z

An

AnX

X Y

Z

X Y X Y

An An

Am

X Y

Z Z

Am

RULE 2

Figure 5. Redundancy and Algebraic Analysis. Node equivale nce and subtree equivalence

7.1. Example 1

Our �rst example onsists of a funtion with three

inputs and one output, as shown in Table 1. It ould

be desribed in words as \the funtion whose output

is 1 when only one of its inputs is 1. Otherwise the

output is 0".

The solution has 5 multiplexers. Therefore, we have

saved (2

3

�1)�5 = 2 elements. This solution was found

using an initial population of 600 elements evolved dur-

ing 200 generations.

7.2. Example 2

In this seond example we implement a funtion

with four inputs and one output,as shown in Table 2.

Only minterms are shown.(olumn F is shown for the

sake of larity)

The solution has 7 multiplexers. Therefore, we have

saved (2

4

�1)�7 = 8 elements. This solution was found

using an initial population of 600 individuals evolved

during 200 generations. The iruit found by the sys-

tem and its simpli�ed version after \redundany and

algebrai analysis" is shown in Figure 6

7.3. Example 3

In this third example we implement a funtion with

5 inputs and one output. The minterms of the funtion

are the following:

f =

X

(0; 1; 3; 6; 7; 8; 10; 13; 15; 18; 20; 21; 25; 26; 28;

30; 31)

The solution found has 15 multiplexers. Therefore,

we have saved (2

5

�1)�15 = 16 elements. This solution

was found using an initial population of 600 individuals

evolved during 1000 generations.

7.4. Example 4

In this last example we seek a solution for a more

omplex boolean funtion (6 variables). Next is the list

of minterms of the funtion.

f =

X

(0; 1; 3; 6; 7; 8; 10; 13; 15; 18; 20; 21; 25; 27; 28;

30; 31; 32; 33; 35; 38; 39; 40; 42; 45; 47; 50; 52; 53; 57; 59;

60; 62; 63)

The solution found has 21 multiplexers, Therefore,

we have saved (2

6

� 1)� 21 = 42 elements. This solu-

tion was found using a population of 1500 individuals

evolved during 700 generations.

Table 3 ondenses the four examples. The olumn

n-Mux shows the number 1-ontrol line multiplexers

needed to implement a n-ontrol lines multiplexer. The

olumn GPOutput shows the number of nodes in the

best solution found by our geneti programming sys-

tem, and GPAlgebrai is the further re�ned solution

(the �nal iruit). TotalSaved is the di�erene between

olumns 3 and 5.

8. Conlusions

We have shown a geneti programming approah for

the synthesis of logi funtions and minimization of

their number of elements. We have been able to �nd

solutions that require fewer elements than the standard

array of 2

n

� 1 multiplexers of 1-ontrol signal. Sine

the topology of the minimized solutions is pretty muh

that of a tree, we expet the VLSI implementation of

this iruits to require very few extra work in routing

algorithms to redesign the optimal onnetion paths or

iruit layout.

C2 C1 C0 F

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 0

Table 1. Truth table for the first example.

C3 C2 C1 C0 F

0 0 0 0 1

0 1 0 0 1

0 1 0 1 1

0 1 1 0 1

0 1 1 1 1

1 0 0 0 1

1 0 0 1 1

1 0 1 0 1

1 1 0 1 1

1 1 1 1 1

Table 2. Minterms table for the second example.

0 1

0 1 0 1

0 1 0 1

0 1

1

C1

0

0 1
C1

0 1

0 1

F

1

0 1
0 1

C2

C0 C3

C3 C0 C0

0 1

0 1 0 1

0 1 0 1

0 1

0 1

F

1

0 1
0

1

1

C2

C0 C3

C3 C0 C0

C1

0

Figure 6. Circuit for the Example 2 and its simplified version after “redundancy and algebraic analysis”

Example Inputs n-Mux GP Output GP Algebrai Total Saved

1 3 7 6 5 2

2 4 15 8 7 8

3 5 31 22 15 16

4 6 63 27 21 42

Table 3. Comparison on the size of the delivered circuits, op timized circuits, and standard implemen-
tation

9. Future work

We are interested in the improvement of our �tness

funtion. We believe that a new �tness funtion that

takes into aount the number of repeated nodes ould

guide the searh towards better solutions, reduing the

amount of extra human work. We are onerned by

the quik growth of some trees and the low inrement

of their �tness. In suh ases a \tree prune" opera-

tion seems mandatory and some strategies need to be

explored. Other design strategies will be implemented

thus allowing the variables to be used both as inputs

and as ontrol signals of the multiplexer. Di�erent size

multiplexers will be allowed as well.

10. Aknowledgments

This paper desribes researh done in the Depart-

ment of Eletrial Engineering and Computer Siene

at Tulane University. Support for this work was pro-

vided in part by DoD EPSCoR and the Board of Re-

gents of the State of Louisiana under grant F49620-98-

1-0351.

The seond author akowledges support from

CONACyT through projet number I-29870 A.

Referenes

[1℄ A. E. A. Almaini, J. Miller, and L. Xu. Automated

Synthesis of Digital Multiplexer Networks. IEE Pro-

eedings Pt E, 139(4):329{334, July 1992.

[2℄ C. A. Coello, A. D. Christiansen, and A. H. Aguirre.

Using Geneti Algorithms to Design Combinational

Logi Ciruits. In C. H. Dagli, M. Akay, C. L. P.

Chen, B. R. Farn�andez, and J. Ghosh, editors, In-

telligent Engineering Systems Through Arti�ial Neu-

ral Networks. Volume 6. Fuzzy Logi and Evolutionary

Programming, pages 391{396. ASME Press, St. Louis,

Missouri, USA, nov 1996.

[3℄ C. A. C. Coello, A. D. Christiansen, and A. H. Aguirre.

Automated Design of Combinational Logi Ciruits

using Geneti Algorithms. In D. G. Smith, N. C.

Steele, and R. F. Albreht, editors, Proeedings of the

International Conferene on Arti�ial Neural Nets and

Geneti Algorithms, pages 335{338. Springer-Verlag,

University of East Anglia, England, April 1997.

[4℄ M. Davio, J. P. Deshamps, and A. Thayse. Digital

systems, with algorithm implementation. Wiley, New

York, USA, 1983.

[5℄ R. Gorai and A. Pal. Automated synthesis of ombi-

national iruits by asade networks of multiplexers.

IEE Proedings Pt E, 137(2):164{170, Marh 1990.

[6℄ H. Iba, M. Iwata, and T. Higuhi. Gate-Level Evolv-

able Hardware: Empirial Study and Appliation.

In D. Dasgupta and Z. Mihalewiz, editors, Evolu-

tionary Algorithms in Engineering Appliations, pages

260{275. Springer-Verlag, Berlin, 1997.

[7℄ J. R. Koza. Geneti Programming. On the Program-

ming of Computers by Means of Natural Seletion. The

MIT Press, Cambridge, Massahusetts, 1992.

[8℄ J. R. Koza, D. Andre, I. Forrest H. Bennett, and M. A.

Keane. Use of automatially de�ned funtions and

arhiteture-altering operations in automated iruit

synthesis with geneti programming. In J. R. Koza,

D. E. Goldberg, D. B. Fogel, and R. L. Riolo, editors,

Proeedings of the First Annual Conferene on Geneti

Programming, pages 132{140, Cambridge, Masahus-

setts, jul 1996. Stanford University, The MIT Press.

[9℄ J. R. Koza, I. Forrest H. Bennett, D. Andre, and M. A.

Keane. Automated WYWIWYG design of both the

topology and omponent values of eletrial iruits

using geneti programming. In J. R. Koza, D. E. Gold-

berg, D. B. Fogel, and R. L. Riolo, editors, Proeedings

of the First Annual Conferene on Geneti Program-

ming, pages 123{131, Cambridge, Masahussetts, jul

1996. Stanford University, The MIT Press.

[10℄ G. G. Langdon. A deomposition hart tehnique to

aid in realizations with multiplexers. IEEE Transa-

tions on Computers, C{27(2):157{159, February 1978.

[11℄ S. J. Louis. Geneti Algorithms as a Computational

Tool for Design. PhD thesis, Department of Computer

Siene, Indiana University, August 1993.

[12℄ J. F. Miller, P. Thomson, and T. Fogarty. Designing

Eletroni Ciruits Using Evolutionary Algorithms.

Arithmeti Ciruits: A Case Study. In D. Quagliarella,

J. P�eriaux, C. Poloni, and G. Winter, editors, Geneti

Algorithms and Evolution Strategy in Engineering and

Computer Siene, pages 105{131. Morgan Kaufmann,

Chihester, England, 1998.

[13℄ A. Pal. An algorithm for optimal logi design using

multiplexers. IEEE Transations on Computers, C-

35(8):755{757, August 1986.

[14℄ S. G. Shiva. Introdution to Logi Design. Sott, Fores-

man and Company, 1988.

[15℄ A. Tosser and D. Aoulad-Syad. Casade networks of

logi funtions built in multiplexer units. IEE Pro-

eedings Pt E, 127(2):64{68, Marh 1980.

[16℄ S. S. Yau and C. K. Tang. Universal Logi Modules

and Their Appliation. IEEE Transations on Com-

puters, C{19(2):141{149, February 1970.

