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Abstract

This paper presents an approach based on the use
of genetic programming to synthesize logic functions.
The proposed approach uses the 1-control line multi-
plexer as the only design unit, defining any logic func-
tion (defined by a truth table) through the replication of
this single unit. Our fitness function first explores the
search space trying to find a feasible design and then
concentrates in the minimization of such (fully feasi-
ble) circuit. The proposed approach is illustrated using
several sample Boolean functions.

1. Introduction

Although evolvable hardware is nowadays a very
popular area of research, the use of evolutionary tech-
niques to optimize combinational circuits at the gate-
level has been approached by only a few researchers
[12, 6, 3, 9, 8].

In the past, we have concentrated on the optimum
design of combinational circuits at the gate level using
genetic algorithms (GAs) [2, 3]. In the past, we have
used the number of gates as the design metric to be

minimized in a circuit, so that our goal was to produce
fully functional circuits that required the smallest pos-
sible number of gates (chosen from a certain set defined
by the user).

However, the use of this metric may not be realis-
tic in VLSI systems design where the emphasis is to
decrease the whole manufacturing cost rather than re-
ducing the total number of components used [4]. It is
common, therefore, to replicate the same unit as many
times as possible, although this may lead to circuits
with a larger number of gates. Furthermore, in this do-
main, the silicon surface needed to implement any log-
ical component is another very important factor that
deserves consideration, and our previous work had not
considered either of these issues.

Our interest in VLSI systems design led us to restate
the circuit design problem in such a way that the issues
previously mentioned are taken into account.

First, we emphasize the importance of replication
by allowing the use of only one device: the multiplexer
(Mux) with 1-control line. Then, we restate our goal
so that now we are interested in generating fully func-
tional circuits in which the total number of multiplex-
ers used is minimum.

The organization of this paper is the following: first,



we will describe the problem that we wish to solve
in a more detailed form. Then, we will introduce a
methodology based on genetic programming to synthe-
size logic functions using multiplexers. Finally, we will
show some examples taken from the technical literature
and we will discuss some of our results. We compare
the number of muxes found in the minimized circuits
against 2" — 1 muxes required by the standard imple-
mentation.

2. Statement of the problem

The problem of interest to us consists of designing a
circuit that performs a desired logic function (specified
by a truth table), using the least possible number of 1-
control line multiplexers. As will be described below,
a logic function with n variables can be implemented
using 2™ —1 1-control line multiplexers. Any implemen-
tation using less than that number of elements could
be considered an improvement in the design. Since the
optimal minimum number needed is unknown for most
of the logic functions, the use of a heuristic such as
genetic programming [7] seems adequate.

The implementation cost measured in terms of sili-
con surface has been studied for many years. Consider
an n-variable multiplexer realized by means of 2" — 1
multiplexers with 1-control signal. Assuming that the
cost of a single unit is K, the cost of such a realization
is proportional to K (2" —1). Therefore, any realization
with a fewer number of elements implies an improve-
ment of the total manufacturing cost [4].

In our approach we permit only “1s” and “0s” to be
fed into the multiplexers. Due to our goal, this marks
a clear difference with other strategies where a variable
can be fed into a mux. We allow the variables to be
used only as the control signal of the multiplexer.

3. Previous work

It is possible to find in the literature several reports
concerning the design of combinational logic circuits
using GAs. Louis [11] was one of the first researchers
who reported this class of work. Further work has been
reported by Kozal[7], Coello et al. [2, 3], Iba et al. [6],
and Miller et al. [12].

However, none of these approaches has concentrated
on the exclusive use of multiplexers to design combina-
tional circuits using evolutionary techniques, although

1t is worth mentioning that Koza’s approach to the design of
combinational circuits has only concentrated on the generation
of fully functional circuits and not in their optimization.

some researchers such as Miller [12] have used multi-
plexers as another permissible gate which can be com-
bined with the traditional Boolean functions to design
circuits.

Several strategies for the design of combinational cir-
cuits using multiplexers have been reported after the
concept of wniversal logic modules [16]. Chart tech-
niques [10], graphical methods for up to 6 variables
[15], and other algorithms more suitable for program-
ming have been proposed [13, 5, 1, 14]. The aim of
these approaches (muxes in cascade or tree or a com-
bination of both), is either to minimize the number of
multiplexers, or to find p control variables such that
a boolean function is realizable by a multiplexer with
p—control signals.

4. Multiplexers as universal logic basis
elements

A binary multiplezer with n selection lines is a com-
binational circuit that selects data from 2™ input lines
and directs it to a single output line. The rationale sup-
porting the use of this device as an universal logic unit
is the following: any Boolean function of n variables
can be implemented by a multiplexer with n-control
signals. Furthermore, every n-control signals multi-
plexer can be synthesized by 2™ — 1 1-control signal
multiplexers, as it is shown in Figure 1. Notice that
the number of layers or depth of the array is equal to
n.

Each unit copies either one of its inputs to the out-
put depending on the state of the control signal. Mul-
tiplexers have two forms that we simply name class A
and class B. For a class A multiplexer, when the con-
trol is set to one the input labeled as “1” is copied to
the output, and vice-versa, the input labeled as “0”
is copied to the output when the control is zero. For
a class B multiplexer the logic is exactly the opposite:
copy the input labeled “0” when the control line is one,
and copy the input labeled “1” when the control is zero.
In order to differentiate this property, class A muxes
have the control signal on the right hand side and class
B on the left, as can be seen in Figure 1. Therefore
the control signal is located on the side of the input to
be propagated when the control is in active state (The
active state will be “1” for all our examples).

It is possible to use both classes of multiplexers si-
multaneously in a circuit. The design criteria could
allow them as well. Two characteristic properties of
circuits of this nature should be taken into considera-
tion during the design process:

e Class Transformation Property: Class A and
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Figure 1. Implementation of a multiplexer of

Muxes class “A” and class “B”. Functional equivalence betwe

class B multiplexers can be converted freely from
one class into the other, by just switching their in-
puts, thus input labeled “1” goes to input “0” and
input labeled “0” now goes into “1” (see Figure 1).

e Complement Function Property: For every
logic function F, its complement F’ is derivable
from the very same circuit that implements F' by
just negating the inputs, that is, by changing “0s”
to “1s” and “1s” to “0s” (see Figure 2).

The correspondent consequences of these properties
are the following:

e Implementation in One Class: Every circuit
can be implemented by means of multiplexers of
only one class (by the class transformation prop-
erty). Since we are aiming to replicate the same
element as many times as possible, this is a highly
beneficial design quality, as can be appreciated in
Figure 3.

e The Minimum Circuit Equivalence: If the
function F' and its complement F’ are found to be
implemented by particular and different size (i.e.,
number of elements) circuits, then both circuits
are solutions for both functions (by the comple-
ment function property). Therefore, the smallest
circuit is the desirable solution. This means that
in practice the designer would have an alternate
procedure to verify the quality of the solution.
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5. Applying genetic programming

There are several issues of interest concerning the
use of genetic programming in this domain, such as the
encoding of candidate solutions, and the crossover and
mutation operators. The representation chosen for our
work is a binary tree representing a candidate circuit.
Most of the elements of the population are functional
circuits, therefore, they implement (at least partially)
the expected logical behavior. Each node of the tree
is a multiplexer whose children could be either another
multiplexer or a leaf. The corresponding value of a
leaf is, of course, zero or one. Since trees and lists are
natural structures in Prolog we decided to use this pro-
gramming language to implement our system so that
our implementation could be considerably simpler to
develop.

The issues taken into consideration for this applica-
tion and the way in which they were approached are as
follows:

e Representation: Binary trees encoding the pop-
ulation are represented by means of lists. Es-
sentially each element of the list is the triplet
(muzx,left—child, right —child) that encodes sub-
trees as nested lists. The tree captures the essence
of the circuit topology allowing only the children
to feed their parent node. In other words, the in-
puts of a multiplexer can only be chosen from the
previous level, as shown in Figure 4.

Both classes of binary multiplexers (as described
in section 4) are implemented, then, for instance,
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multiplexers A0 and B0 are activated by the same
control bit CO (the least significant bit in Figure
4) but they respond in a particular way to the
activation state.

Crossover operator: The exchange of genetic
information between two trees is accomplished by
exchanging subtrees. Our implementation does
not impose any kind of restriction to the selec-
tion of subtrees or crossover points. Node-node,
node-leaf, and leaf-leaf exchange are allowed. The
particular case when the root node is selected to
be exchanged with a leaf is disallowed, so that, no
leaf may be mistakenly converted into a node thus
avoiding the generation of invalid trees (in such
cases the valid children are replicated twice).

Mutation operator: Mutation is implemented
in a simple way: first a mutation point is ran-
domly chosen among the nodes and leaves. When
a node (multiplexer) is selected, its control input
is changed as follows (assuming n control signals):
ag = a1, A1 — A2, Ap—1 — Gp, Gp — G- Similarly
simple is the mutation of a leaf: 0 — 1, 1 — 0.

Fitness function: Our goal is to produce a
fully functional design (i.e., one that produces
the expected behavior stated by its truth table)
which minimizes the number of multiplexers used.
Therefore, we decided to use a dynamic fitness
function. At the beginning of the search, only
compliance with the truth table is taken into ac-
count, and the evolutionary approach is basically
exploring the search space. Once the first func-
tional solution appears, we switch to a new fitness
function in which fully functional circuits that use
less multiplexers are rewarded. Regardless of the
current stage of the fitness function, all members
of the population have their fitness calculated in
every generation. It is the fitness function the only
agent responsible for the life span of the individu-
als.

Initial population: The depth of the trees ran-
domly created for the initial population is set to
a maximum value equal to the number n of vari-
ables of the logic function (see Section 4). Consid-
ering complete binary trees, for n variables, 2" — 1
is the upper bound on the number of nodes al-
lowed in the tree. However, we found in our ex-
periments that in the initial population trees of
shorter depth were created in larger numbers than
trees of greater depth. This led us to adopt a
strategy in which the size (depth and number of

nodes) of the trees dynamically changed over gen-
erations. The goal was to allow our trees to grow
without any particular boundaries as to allow a
rich phenotypic variation in the population. Once
the first fully functional circuit was found, then
we switched to another fitness function that would
minimize the total number of multiplexers used.

6. An informal algebra for terminal
nodes

Our dynamic fitness function does not take into ac-
count the redundancy of the terminal nodes (nodes
whose children are only 0 or 1), that is, identical ter-
minal nodes are pruned away from any solution and
counted as just another node. The function performed
by a circuit clearly is a composition of node-functions
over the children-node functions, and so on, all the way
down to the bottom of the tree. With really low prob-
ability either one subtree might be identical to another
subtree, or one subtree may consist of the same nodes.
Therefore there are some redundant nodes that could
be deleted by means of further analysis of the solution
delivered by the genetic programming system. We have
called it “redundancy and algebraic analysis”. Its goal
is to improve in at least two ways the best solution
found in the last generation. First, the number of el-
ements might be reduced since redundant subtrees (if
present) will be removed, and second, it opens the door
to implementation decisions, for example, to select the
preferred or recommendable class of multiplexer.

The only two rules that we used on the trees are
shown in Figure 5.

Rule 1 is applied for transforming one multiplexer
class into the other, aiming to maximize redundant
nodes that can be deleted and the entire set replaced
by just one of them. Subtrees as shown in rule 2 have
been observed occasionally. By means of this rule we
reduce the nodes of a subtree.

7. Comparison of results

We have used several circuits of different degrees of
complexity to test our approach. For the purposes of
this paper, 4 examples were chosen to illustrate the
“evolved circuits” and the quality of the solutions pro-
duced using the metric previously mentioned. So far
we have limited ourselves to the evolution of circuits
with only one output.
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7.1. Example 1

Our first example consists of a function with three

inputs and one output, as shown in Table 1. It could
be described in words as “the function whose output
is 1 when only one of its inputs is 1. Otherwise the
output is 0”.
The solution has 5 multiplexers. Therefore, we have
saved (2°—1)—5 = 2 elements. This solution was found
using an initial population of 600 elements evolved dur-
ing 200 generations.

7.2. Example 2

In this second example we implement a function

with four inputs and one output,as shown in Table 2.
Only minterms are shown.(column F is shown for the
sake of clarity)
The solution has 7 multiplexers. Therefore, we have
saved (2 —1)—7 = 8 elements. This solution was found
using an initial population of 600 individuals evolved
during 200 generations. The circuit found by the sys-
tem and its simplified version after “redundancy and
algebraic analysis” is shown in Figure 6

7.3. Example 3

In this third example we implement a function with
5 inputs and one output. The minterms of the function
are the following:

f=3(0,1,3,6,7,8,10,13,15,18,20,21, 25, 26, 28,

30,31)

The solution found has 15 multiplexers. Therefore,
we have saved (2°—1)—15 = 16 elements. This solution
was found using an initial population of 600 individuals
evolved during 1000 generations.
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7.4. Example 4

In this last example we seek a solution for a more
complex boolean function (6 variables). Next is the list
of minterms of the function.

f=3(0,1,3,6,7,8,10,13,15,18,20,21,25,27, 28,

30,31, 32, 33, 35, 38, 39, 40, 42, 45, 47, 50, 52, 53, 57, 59,
60,62, 63)

The solution found has 21 multiplexers, Therefore,
we have saved (26 — 1) — 21 = 42 elements. This solu-
tion was found using a population of 1500 individuals
evolved during 700 generations.

Table 3 condenses the four examples. The column
n-Mux shows the number 1-control line multiplexers
needed to implement a n-control lines multiplexer. The
column G POutput shows the number of nodes in the
best solution found by our genetic programming sys-
tem, and GPAlgebraic is the further refined solution
(the final circuit). TotalSaved is the difference between
columns 3 and 5.

8. Conclusions

We have shown a genetic programming approach for
the synthesis of logic functions and minimization of
their number of elements. We have been able to find
solutions that require fewer elements than the standard
array of 2" — 1 multiplexers of 1-control signal. Since
the topology of the minimized solutions is pretty much
that of a tree, we expect the VLSI implementation of
this circuits to require very few extra work in routing
algorithms to redesign the optimal connection paths or
circuit layout.
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Table 1. Truth table for the first example.

C3 C2 C1 CO|F
0 0 0 0 1
0 1 0 0 1
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 1
1 0 1 0 1
1 1 0 1 1
1 1 1 1 1

Table 2. Minterms table for the second example.
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Figure 6. Circuit for the Example 2 and its simplified version after “redundancy and algebraic analysis”
Example | Inputs | n-Mux | GP Output | GP Algebraic | Total Saved
1 3 7 6 5 2
2 4 15 8 7 8
3 5 31 22 15 16
4 6 63 27 21 42

Table 3. Comparison on the size of the delivered circuits, op timized circuits, and standard implemen-
tation



9. Future work

We are interested in the improvement of our fitness
function. We believe that a new fitness function that
takes into account the number of repeated nodes could
guide the search towards better solutions, reducing the
amount of extra human work. We are concerned by
the quick growth of some trees and the low increment
of their fitness. In such cases a “tree prune” opera-
tion seems mandatory and some strategies need to be
explored. Other design strategies will be implemented
thus allowing the variables to be used both as inputs
and as control signals of the multiplexer. Different size
multiplexers will be allowed as well.
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