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Abstract—This paper addresses a real-world optimization
problem in civil engineering. It lies in the dimensioning of
a 162m long bridge composed of 1584 bars so that both its
weight and its deformation are to be minimized. Evaluating
each possible configuration of the bridge takes several seconds
and, as a consequence, running a metaheuristic for several
thousands of evaluations would require many days on one single
processor. Our approach has been to develop a distributed
master/worker version of SMS-EMOA, an indicator-based multi-
objective algorithm. By combining the Java implementation of
the algorithm in jMetal with the Condor distributed scheduler,
we have been able to use more than 350 cores to obtain accurate
results in a reasonable amount of time.

I. INTRODUCTION

Civil Engineering is a discipline dealing with the design,
construction, and maintenance of bridges, canals, roads, and
buildings, as well as many other built environments. In this
field, as in other disciplines (telecommunications, biology,
finance, etc.), optimization problems constantly arise. In most
of the cases, these problems have a multi-objective nature,
requiring to optimise two in conflict criteria. As a particular
example, if we focus in civil engineering structures, there are
usually two goals to be achieved in a project realisation: to
minimise the investment (financial cost) and maximise the final
design safety.

Our focus on this paper is a real-world civil engineering
structural design problem. More specifically, our target is
a cable-strayed bridge having two towers from which steel
cables hold the bridge deck. Our aim is to design the bridge
minimising the overall weight of the whole structure (cost) and
the summation of deformations in fixed/certain parts of the
deck and towers (safety). As the two aforementioned goals
are in conflict, instead of a single design, the final solution
consists of a set of designs trading off cost and safety. The
total length of the bridge is 162m and it is composed of 837
nodes and 1584 bars. In this work, we adopt a relaxed version
of the problem consisting in grouping the bars having the same
shape, material, and similar placement in the structure, for

reducing the problem complexity. The resulting bi-objective
optimisation problem is characterized by 191 variables and
4942 side constraints.

In this work, we rely on multi-objective metaheuristics [1],
and more specifically Evolutionary Algorithms (EAs), for
computing the set of trade-off designs of the bridge. To this
end, we have chosen the S Metric Selection Evolutionary
Multi-Objective Algorithm (SMS-EMOA) [2], a recently pro-
posed method based on the idea of using quality indicators,
in this case the Hypervolume [3], within the reproductive
cycle of the algorithm. This kind of indicator based algorithms
are gaining popularity in the last few years despite their, in
some cases, slowness in comparison with other techniques.
In the problem targeted in this work, however, the computing
time is dominated by the evaluation of the objective functions
determining the cost and safety of each proposed design, being
required weeks or event months to complete.

We propose and evaluate in this paper a distributed version
of SMS-EMOA for solving the bridge design problem in
order to reduce the time to a satisfactory solution. Our ap-
proach, based on the master/worker paradigm, takes as a basis
the implementation of the sequential algorithm provided in
jMetal [4], and extends it for taking advantage of large number
of workers. The deployment of our master/worker infrastruc-
ture is carried out using the Condor distributed computing
software [5], used with success in previous works [6][7]. The
outcome of our proposal is a distributed SMS-EMOEA where
reproductive cycle is done in the master, and the evaluation of
the objective functions are done remotely on the workers. In
our experiments, our implementation has run smoothly using
up to 350 CPU cores, while providing solutions of high quality.
With the aim of assessing its performance, we have compare
it with a distributed version of NSGA-II following the same
principle.

The list of contributions of this paper can be summarized
as follows:
• Design and development of a distributed SMS-EMOA



algorithm using jMetal and Condor.
• To solve a real-world engineering bi-objective optimiza-

tion problem.
• Deployment and evaluation of our distributed SMS-

EMOA algorithm and a distributed version of NSGA-II
in a cluster of computers summing up to 350 cores.

The rest of this paper is structured as follows. Section II is
devoted to briefly introduce background concepts and related
works. The bridge design problem is detailed in Section III.
Section IV presents both SMS-EMOA and its parallelization.
The obtained results are analyzed in Section V. Finally,
Section VI summarizes the paper and outlines some lines of
further research.

II. BACKGROUND AND RELATED WORK

In this section, we provide the reader with a brief back-
ground of multi-objective optimization problems, metaheuris-
tics, and how these latter algorithms can be paralellized.

Multi-objective optimization refers to the process of opti-
mizing two or more conflicting objective functions of a given
problem. By conflicting objective it is meant that improving
one of them implies to make the others worse. In this kind
of problems, the set of solutions for which do not exist any
solution improving all the objective functions is referred as
Pareto optimal Set, and its corresponding mapping onto the
objective space is referred as the Pareto front. Solutions within
the Pareto optimal set are said to be non-dominated, since none
of them is better than the others for all the criteria. More
formal and detailed definitions of these concepts can be found
in [1][8]. The main goal of multi-objective optimisation is to
find an accurate approximation of the Pareto front in terms of
convergence (closeness to the Pareto optimal set) and diversity
(solutions uniformly distributed along the Pareto front).

Different techniques have been proposed in the research
community to address multi-objective optimization prob-
lems (MOPs). Unlike classical mathematical programming
approaches, metaheuristics [9] in general, and Evolutionary
Algorithms (EAs) [10] in particular, have attracted growing
attention over the last decade in the multi-objective community
because of two main facts [1]. On the one hand, MOEAs
are able to approximate the Pareto optimal set in one single
run, being capable of dealing with different front shapes.
On the other hand, as randomized black-box algorithms,
MOEAs can address optimization problems with non-linear,
non-differentiable, or noisy objective functions. Most of multi-
objective metaheuristic proposals are evolutionary algorithms
like NSGA-II [11], SPEA2 [12] or the more recent solvers
SMS-EMOA [2] or MOEA/D [13].

Despite their advantages, these algorithms may be compu-
tationally expensive. On the one hand, they need to explore
larger portions of the search space seeking for the entire Pareto
front, and this usually means to perform a lot of function
evaluations; on the other hand, and even more important, many
real-world problems typically use computationally expensive
methods for computing the objective functions and constraints.
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Fig. 1. Description of the bridge and its main components.

These issues are usually addressed in different ways, being
the utilization of parallel and distributed computing platforms
one of the most popular approaches to speedup the EA
search [14]. Due to their population-based approach, EAs are
suitable for parallelization because their main operations (i.e.,
crossover, mutation, and in particular function evaluation) can
be carried out independently on different individuals. There
is a vast amount of literature on how to parallelize EAs;
the reader is referred to [15], [14] for surveys on this topic.
In these scenarios where the computation of the objective
functions demands high computational resources, the most
simple and effective model to parallelize an EA (and a MOEA)
is based on the master/worker paradigm [6][7]. This is the
approach used in this work to introduce, to the best of
our knowledge, the first master/worker parallelization of the
SMS-EMOA algorithm. The parallelization has been carefully
designed to enable the algorithm to profit from hundreds of
workers (up to 350 here).

III. DESCRIPTION OF THE PROBLEM

The target problem of our work is the design of a cable-
strayed bridge with two pillars (towers), which is illustrated
in Fig. 1. The bridge has a total length of 162m and the deck
length and width are 90m and 9m, respectively. It has a two-
way roadway and a pedestrian circulation lane.

From a mechanical point of view, the structure is composed
of 837 nodes and 1584 elements, and two materials having
different elastic properties are used. The element can have one
out three different cross-sections: hollowed rectangle, I-beam,
and circular.

The bridge design is formulated as a bi-objective problem.
The first objective is to minimize the total weight of the
structure; the second one is to minimize the summation of the
deformations in certain points of the deck and the columns. To
simplify the problem, we optimize a group of 56 bars having
into account the design, size and structural performance (see
Table I for a summary of the details). The elements composing
the groups have the same shape, material and similar position
in the structure. The total number of decision variables is 191,
which correspond to the geometrical size of the cross-section.
The total number of side-constraints is 4948 (the sum of 3
mechanical constraints per element, 4 geometrical constraints



Optimal Pareto Front

Fig. 2. Hypervolume enclosed by the non-dominated solutions A, B, and C.

per groups of I-beam and hollowed rectangle elements, and
16 deflection constraints).

IV. PARALLEL SMS-EMOA
This section is devoted to presenting the SMS-EMOA algo-

rithm and the strategy used for its parallelization. Additinally,
the last part of the section describes the encoding of the
tentative solutions and the genetic operators used by SMS-
EMOA.

A. SMS-EMOA

As commented before, the chosen algorithm to address the
optimization of the bridge design problem is SMS-EMOA.
The general idea is to use a quality indicator to guide the
search of the algorithm. In other words, the algorithm aims
to compute a Pareto front optimising the vlue of that quality
indicator. SMS-EMOA makes use of the Hypervolume, which
is commonly accepted as one of the most reliable metric to
assess the performance of multi-objective algorithms.

The Hypervolume indicator, illustrated in Fig. 2, calculates
the volume, in objective function space, covered by members
of a non-dominated set of solutions Q = A,B,C and a refer-
ence point W , e.g., the region enclosed into the discontinuous
line in the figure, for problems where all the objectives are to
be minimized [3]. Mathematically, for each solution i ∈ Q, a
hypercube vi is constructed with a W and the solution i as the
diagonal corners of the hypercube. The reference point can be
simply found by constructing a vector with the worst objective
function values. Thereafter, the union of all hypercubes is
computed and its hypervolume (IHV ) is calculated as:

IHV = volume

 |Q|⋃
i=1

vi

 . (1)

The higher the value of IHV , the better the approximated
Pareto front is.

SMS-EMOA is based on the NSGA-II algorithm, but intro-
duces two main modifications: firstly, SMS-EMOA is a steady-
state evolutionary algorithm, while NSGA-II is a generational
one; secondly, instead of using the crowding distance as
density estimator, SMS-EMOA considers the contribution of
the solutions to the hypervolume of the current approximation
front. This way, in every iteration the algorithm discards the
solution contributing the less to the hypervolume. Algorithm 1
includes the Pseudo-code of SMS-EMOA.

Algorithm 1 Pseudo-code of the SMS-EMOA algorithm
1: population ← GenerateInitialPopulation()
2: while (not stopping condition is met) do
3: parents ← selection(pop)
4: newSol ← SBX(parents)
5: newSol ← PolynomialMut(newSol)
6: auxPop ← population ∪{newSol}
7: computeHVcontributions(auxPop)
8: population ← removeLessHVContributor(auxPop)
9: end while

10: return population
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Fig. 3. Encoding of solutions.

Fig. 4. Underlying parallel software architecture for both SMS-EMOA and
NSGA-II

The encoding used to represent the solutions is depicted in
Fig. 3. Each bar, depending on their shape, has a number of pa-
rameters to optimize; these parameters (diameter, height, etc,.)
are values in domain of real numbers. Therefore, in this work
SMS-EMOA considers the simulated binary (SBX) crossover
and polynomial mutation, typically used when dealing with
real-valued codifications.

B. Parallel algorithms

The parallelization of a steaty-state algorithm such as SMS-
EMOA poses several challenges since only one solution is
generated in the evolutionary loop of the algorithm. In this



TABLE I
VARIABLES AND CONSTRAINS

Shape Elements Groups Variables Geom. constraints Mech. constraints Defl. contraints
(per group) (per element)

Circle 42 11 1 3
16I-beam 1 392 41 4 4 3

Hollowed rectangle 150 4 4 4 3
Total 1 584 56 191 4948

case, only one processor is required at most, thus being the
parallelism only applicable to the computation of the objective
function, but not to the algorithm itself. Our approach to
enable SMS-EMOA to profit from a (potentially large) parallel
or distributed computing platform has been to break down
the synchronization requirements imposed by its evolutionary
loop.

The general architecture of the parallel algorithm is outlined
in Fig. 4. The idea is to follow a master/worker distributed
scheme. As it can be seen, a multi-threaded master has been
devised where there is a talker thread handling the commu-
nication with each worker. Talkers and workers communicate
via tasks, which are just containers of tentative solutions to
be evaluated remotely. Tasks are stored in a shared FIFO
list which concurrently accessed by all the talkers (in mutual
exclusion). A talker can both, remove and add, tasks to this
list. If this list gets empty it means that all the tasks have
been processed, i.e., all the solutions have been evaluated by
the workers, and the master stops (as well as all the workers).

Algorithm 2 Pseudo-code of the master thread
1: population ← GenerateInitialPopulation()
2: taskList ← addTasks(population)
3: threads ← runTalkerThreads(population, taskList)
4: waitForAllThreadsToComplete(threads)

The mapping of the parallel SMS-EMOA onto this archi-
tecture is as follows. Initially, the master randomly generates
as many parallel tasks (with the initial solutions) as the
population size to create the initial population (lines 1 and
2 in Algorithm 2). That is, the evaluation of the initial pop-
ulation is also performed in parallel. Then, the processing is
moved to the talker threads which manage the communications
concurrently with the workers (thus, the master can profit
from multi-core computers). These talkers pick tasks from the
list, send them to the workers (using sockets), and wait for
the evaluated individual to be returned. The operation in the
workers is fairly simple: upon reception of a task, the enclosed
solution is extracted, evaluated, and sent back to the master (a
pseudo-code is shown in Algorithm 3).

Algorithm 3 Pseudo-code of a worker
1: while (not receive finalization notification) do
2: task ← receiveFromTalker()
3: solution ← task.solution
4: evaluate(solution)
5: newTask ← new Task(solution)
6: sendToTalker(newTask)
7: end while

The two key issues of the implementation are: on the
one hand, all the MOEA components (population, archive,
etc.) are shared by all the talker threads; on the other hand,
all the genetic operations within the evolutionary loop are
performed in parallel as shown in Algorithm 4. A talker gets
(and removes) the first task of the master’s task list (line 2),
sends it out to its corresponding worker for evaluation (line 3),
and waits for the result (line 4). Then, the SMS-EMOA loop
starts. It does not matter whether the solution belongs to a
past iteration or not, the algorithm proceeds as in sequential.
When a newly evaluated solution arrives, its contribution to
the hypervolumen indicator is measured. This also implies re-
computing the contributions of the solutions already in the
population. A ranking procedure is applied and the solution
in the population that less contribute to the hypervolume is
removed so as to keep the population size constant. If there
are more evaluations to perform and there are not enough
tasks in the shared list, then a new individual is generated
by crossover and mutation, and packaged into a task for its
evaluation in a remote worker. Again, we have to remark
that all these operations are performed concurrently by all the
talker threads in the master node, thus using the appropriate
mechanism for a reliable access to all the structures. With such
an implementation, it can be seen that any number of workers
may be involved in the parallel computation, regardless of the
value of the population size of SMS-EMOA.

Algorithm 4 Pseudo-code of a talker thread
Require: population // the current SMS-EMOA population
Require: taskList // the list with the task to be remotely executed

1: while (not stopping condition is met) do
2: task ← getTask(taskList)
3: sendToWorker(task)
4: processedTask ← receiveFromWorker()
5: s ← processedTaks.solution
6: auxPop ← population ∪ {s}
7: computeRanks(auxPop)
8: computeHVcontributions(auxPop)
9: population ← removeLessHVContributor(auxPop)

10: if (taskList.size ≤ numWorkers) then
11: parents ← selection(pop)
12: newSol ← SBX(parents)
13: newSol ← PolynomialMut(newSol)
14: newTask ← new Task(newSol)
15: taksList.add(newTaks)
16: end if
17: end while

As to the NSGA-II parallelization developed to serve as a
comparison basis, we have used the asynchronous generational
NSGA-II, NSGA−IIasygen , version presented in [16] in order to



use the most standard, though parallel, version of NSGA-II. It
operates in a generational fashion as it waits to fill the auxiliary
population to proceed to the next generation, but generating
as many individuals as workers in the parallel platform.

In both distributed algorithms, the Condor system is used
to deploy the workers, which notably simplify finding idle
cores. It is worth mentioning that, once familiarized with this
distributed platform and with jMetal, developing a distributed
version of a metaheuristic such as SMS-EMOA roughly takes
about an hour, which is an additional advantage of our parallel
infrastructure.

V. EXPERIMENTATION

The commonly accepted methodology to assess the perfor-
mance of multi-objective metaheuristics consists in performing
a number of independent runs (a minimum of 30) and then to
apply quality indicators measuring convergence and diversity;
in this research work we have relaxed these issues. On the
one hand, to run the distributed SMS-EMOA and NSGA-
II we have needed a considerable amount of CPUs (cores)
from our teaching labs, so we could not use them all the
time; hence, we have completed only five independent runs
at the time of writing this paper. On the other hand, we
do not know the optimal Pareto front of the bridge design
problem, being our interest to find an approximation set of
valid solutions acceptable for a decision maker with expertise
in the problem domain; this a challenge given the high number
of side-constraints of the problem.
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After some pilot tests, we set the stopping condition to
compute 150000 function evaluations. Figure 5 shows the
Pareto front approximations obtained in one of the runs,
depicting the solutions found at 1000, 10000, 50000, 100000,
and 150000 evaluations. In particular, we include the solutions
satisfying all the constraints. We observe that many solutions
are dominated at the beginning of the iterations of the algo-
rithm; however, the front is composed only of non-dominated
solutions from 50000 evaluations. The shapes of the solution
sets with 100000 and 150000 evaluations suggest that the
algorithm has almost converged.
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To analyze the performance of the evaluated algorithms we
include the empirical attainment surfaces (EAF) [17] obtained
with the approximated fronts computed in the five independent
runs of each of them in Fig. 6. An EAF graph displays the
expected performance and its variability over multiple runs of
a multi-objective algorithm. In short, an EAF is a function α
from the objective space Rn to the interval [0, 1] that estimates
for each vector in the objective space the probability of being
dominated by the approximated Pareto front of one single run
of the multi-objective algorithm. We can observe that SMS-
EMOA is able to achieve a greater degree of convergence in
the middle of the front of solutions while NSGA-II produces a
wider coverage towards the extreme regions, so it is not trivial
to decide which algorithm performs the best. An explanation
of these differences is that the solutions in the central regions
of the fronts usually have a higher contribution to the hyper-
volume than those in the extreme regions, so SMS-EMOA
tends to discard solutions from these zones.

An important outcome of our research is the time reduction
achieved with the proposed distributed algorithm. Having into
account that we have used up to 350 cores and that the
computers in the labs have different hardware features, we
can make a rough estimation of the speed up of the parallel
computations. The average wall clock time of running the
algorithms until they have made 150000 function evaluations
was about 10 hours. Assuming that the full set of cores have
been used during that time, the total computing time would be
3500 hours, which means that 3500/24=146 days would have
been needed by a sequential algorithm.

To illustrate the kind of solutions reported by the distributed
SMS-EMOA, we include in Fig. 7 a partial view of the
bridge according to a selected solution from the Pareto front
approximation. We can observe the concrete dimensions of the
elements of the bridge, which is the information that is useful
to the civil engineer (i.e., the specialist in the problem).

VI. CONCLUSIONS AND FUTURE WORK

We have faced solving a real-world problem from the civil
engineering domain. In particular, the problem is the design
of a cable-strayed bridge, in which two objectives are to be



Longitudinal view

Fig. 7. Description of the bridge and its main components.

minimized: the total weight and the deformation in concrete
points. The resulting optimization problem has 191 variables
and 4948 side-constraints.

Our approach to optimize the problem has been to employ
a modern multi-objective metaheuristic, SMS-EMOA. As the
evaluation of each solution requires several seconds, we have
developed a distributed version of the algorithm, with the goal
in mind of taking advantage of hundreds of processors/cores.
Taking the Java implementation of SMS-EMOA provided by
the jMetal framework, we have applied a master/worker paral-
lel model to SMS-EMOA, yielding as a result to a distributed
algorithm where the master rules the logic of the metaheuristic
and the workers perform the evaluations in parallel. By using
the Condor system to deploy the workers, we have been able
to use up to 350 cores, which has allowed us to get in about
ten hours Pareto front approximations which otherwise would
had required more that one hundred days of computation in a
single computer.

For comparison purposes, we have compared the distributed
SMS-EMOA with a distributed NSGA-II algorithm. The re-
sults indicated that the first algorithm provided fronts with
better convergence, while the latter returned set of solutions
with a wider coverage. Our hypothesis is that the hypervolume
indicator, used by SMS-EMOA to guide the search, promotes
finding solutions in the central part of the front. This suggests
as future research line to study parameter setting configura-
tions of SMS-EMOA intended to foster the exploration in
the extreme regions by adjusting the reference point used to
calculate the hypervolume.

Other lines of further research include developing dis-
tributed versions of other state-of-the-art multi-objective al-
gorithms (e.g., MOEA/D) and comparing them with our dis-
tributed SMS-EMOA. These techniques could be also applied
to other engineering optimization problems requiring of par-
allel computing power to be solved in a short time.
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