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ABSTRACT
This paper investigates the influence of genotype size on evolution-
ary algorithms’ performance. We consider genotype compression
(where genotype is smaller than phenotype) and expansion (geno-
type is larger than phenotype) and define different strategies to
reconstruct the original variables of the phenotype from both the
compressed and expanded genotypes. We test our approach with
several evolutionary algorithms over three sets of optimization
problems: COCO benchmark functions, modeling of Physical Un-
clonable Functions, and neural network weight optimization. Our
results show that genotype expansion works significantly better
than compression, and in many scenarios, outperforms the original
genotype encoding. This could be attributed to the change in the
genotype-phenotype mapping introduced with the expansion meth-
ods: this modification beneficially transforms the domain landscape
and alleviates the search space traversal.
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1 INTRODUCTION
The dimensionality of an optimization problem significantly im-
pacts any optimization procedure used to solve it, including evo-
lutionary algorithms (EAs) [3, 16]. However, there is still an open
question of whether the difficulties of EAs with high dimensional
problems are mainly due to the larger number of variables or the
problem becoming harder to solve. Often, these two factors are
correlated: a higher number of variables increases the search space
size, which in turn makes the problem more complex – for example,
by increasing the number of local minima, as in the case of rugged
fitness landscapes [9]. Therefore, from existing research, it is diffi-
cult to deduce how increasing the dimension space influences the
algorithms’ performance since changes in performance could also
be due to an increase in difficulty.

This paper aims to observe how the performance of EAs corre-
lates with different dimension sizes while keeping the same problem
size. This means that the algorithms operate on a different num-
ber of variables than required by the optimization problem. These
algorithm-side variables are then transformed in a specific way to
obtain the correct number of problem-specific variables before the
evaluation procedure. In this way, the complexity of the original
problem is preserved (i.e., the problem does not become easier or
more difficult to solve), whereas the search space size is artificially
enlarged or reduced. Doing so makes it possible to obtain a more
objective estimation of the influence of the problem dimensionality
for the performance of optimization methods.

Approaches that artificially increase or decrease the search space
did not receive much attention in the literature yet. Salcedo-Sanz
et al. [20] proposed a genotype compression-expansion strategy to
improve the convergence speed of a Genetic Algorithm (GA) on the
Inductive Query By Example (IQBE) optimization problem related
to information retrieval systems. The GA genotype encodes the
Boolean terms in a query, and the compression step groups in fixed-
size subsets the terms belonging to the same topic, representing
them with a single bit. The compressed individual is then expanded
back for fitness evaluation. Koutnik et al. [11] considered the prob-
lem of reducing the search space in the context of neuroevolution.
In that work, the weight matrix of a neural network is represented
in the frequency domain utilizing a Fourier transform. Evolutionary
algorithms are then used to search in this compressed represen-
tation, where high-frequency coefficients are removed. Steenkiste
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et al. [22] adopted a similar approach but used a wavelet trans-
form instead. In both cases, the underlying assumption for this
compression strategy is that successful networks have spatially
correlated weights. Moreno et al. [13] proposed methods based on
artificial neural network autoencoders for the automatic genera-
tion of genotype-phenotype mappings to improve evolvability. One
of the proposed methods uses the encoder part of a bottlenecked
autoencoder to reduce the genotype size and the decoder segment
for the genotype-phenotype mapping. Stanley et al. [21] developed
a taxonomy for Artificial Embriogeny, a subdiscipline of evolution-
ary computation, where some genes from the genotype are used
multiple times while mapping from genotype to phenotype. This
allows for a simpler representation of a complex phenotype, which
therefore reduces the search space. Similarly, Bongard et al. [2] used
a developmental encoding scheme based on Artificial Ontogeny to
map the genotype in a phenotype that represents a complete agent.

From the above examples, the few works focusing on genotype
compression and expansion mainly consider specific optimization
problems, and the proposed strategies leverage domain-specific
knowledge. As far as we know, this paper represents the first study
on the influence of genotype compression/expansion for evolu-
tionary algorithms, where the compression and expansion strate-
gies are independent of the underlying optimization problem. Our
experimental setup considers continuous optimization problems
and several evolutionary algorithms to draw conclusions. More
precisely, we consider three problems: the COCO benchmark func-
tions, Physical Unclonable Functions (PUF) modeling, and neural
network weights optimization. For the compression procedure, we
investigate the scenario where two variables are combined into
a single variable (reducing the dimensionality of the problem by
half). The compression procedure is conducted via two strategies:
interleaving and concatenation. We experiment with several sizes
of the expanded variables for the expansion procedure and two
procedures to obtain those: summation and multiplication. Our re-
sults show that the compression procedure consistently gives poor
results, but expansion can significantly improve the performance
of the algorithm (as evaluated by the final solution).

2 GENOTYPE COMPRESSION AND
EXPANSION

2.1 Genotype Compression
The compression strategies presume that a number of original vari-
ables are combined into a single compressed variable. Let𝑚 represent
the number of original variables combined into a single one; then
the total number of variables after the compression will be equal to
⌈ 𝑡
𝑚 ⌉. Regardless of the original uncompressed variables’ scope, we

keep every value of the compressed variable in the interval [0, 1].
In the floating-point representation, the number of decimal places
is denoted by 𝑝 and given by the precision of the number format
used to store those values. In our experiments, we used a standard
double-precision format with 16 significant digits. Since the values
of the compressed variables are in [0, 1] range, the decimal part of
the compressed value is used to decode𝑚 uncompressed numbers.
As a result, each original variable will use 𝑑 =

⌈ 𝑝
𝑚

⌉
decimal digits

of the compressed number.

A compressed variable is decompressed by the following two
strategies: sequential and alternating. In the sequential strategy
(concatenated), the decoding is performed so that the first 𝑝/𝑚
digits represent the first original value, the following 𝑝/𝑚 digits
the next value, etc.

In the alternating scheme (interleaved), the digits of the com-
pressed variable are distributed so that each𝑚-th digit is used for
recreating one original variable. After the decomposition, in both
schemes, the resulting values are additionally mapped to the desired
domain interval with a simple linear transformation, i.e., the value
0 represents the lower, while the value 1 the upper bound.

Regardless of the decoding scheme, the described compression
approach inevitably incurs a loss of precision to the original vari-
ables; in the above example, the original variable would have only
half of the significant digits representing its value. Depending on
the actual problem domain, the loss of precision may affect the algo-
rithm performance; unfortunately, this is not immediately evident
in every case. In all experiments in this paper, we limit the division
factor to𝑚 = 2, so the resulting precision is 𝑝/2 significant digits
in the original domain.

2.2 Genotype Expansion
Let 𝑡 denote the number of variables of a particular continuous
optimization problem, referred to as the original variables. In the
genotype expansion, each original variable is represented with
several expanded variables; let𝑚 represent the number of expanded
variables for a single original variable. The optimization algorithm
operates on individuals comprised of expanded variables; onlywhen
evaluating a potential solution, the corresponding original values
are recreated, and the fitness is calculated and assigned to the
individual.

To recover the original variables, we consider the following
two strategies: summation and multiplication. In the summation
scheme, the original variable 𝑥𝑖 can be split into the sum of 𝑚
variables 𝑥𝑖 = 𝑥𝑖1 + 𝑥𝑖2 + . . . + 𝑥𝑖𝑚 . In the multiplication scheme,
the original variable 𝑥𝑖 is represented as a product of𝑚 variables
𝑥𝑖 = 𝑥𝑖1 ·𝑥𝑖2 · . . . ·𝑥𝑖𝑚 . This means that the expanded representation
can be decoded into the original variable by consecutively summing
or multiplying𝑚 expanded variables. In both cases,𝑚 can be an
arbitrary integer number larger than 1. The number of variables in
the expanded scheme is then 𝑡 ·𝑚.

The expansion strategies were selected with both simplicity
and efficiency in mind to demonstrate the applicability of such an
approach, although more complex transformations can be defined.
However, one potential pitfall of the multiplication strategy has to
be outlined. When the allowed domain is defined only between 0
and 1, then as the number ofmultiplications increases, the result will
approach 0. This can be resolved either by increasing the domain
to have multiplications with larger numbers or by decreasing the
number of multiplications.

The expanded variables use the same domain (defined with lower
and upper bound) as the original variables. The decoded original
value can be clipped to the bound value if it exceeds a specific
interval to facilitate constrained optimization with explicit bounds.
Unlike in [11] where certain elements are discarded from the search
space, both proposed strategies use the entire genotype during the
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transformation to phenotype. In that way, all elements are directly
considered during optimization.

3 EXPERIMENTAL RESULTS AND
DISCUSSION

3.1 Experimental Setup
The genotype expansion or compression is used independently
of the optimization algorithm; however, the efficiency of the ap-
proach may still be influenced by the chosen algorithm. We have
performed the experiments using several well-known evolutionary
algorithms, each using the original variables (denoted as “default”),
the expanded, and the compressed variables. We investigate the
genetic algorithm (GA), evolutionary strategy (ES), differential evo-
lution (DE), and clonal selection algorithm (CLONALG). However,
as GA and DE achieved the best results and the tested approaches
exhibited a similar behavior on the other algorithms as well, we
report the detailed results only for GA and DE.

The GA uses a steady-state selection scheme where, in each
iteration, three individuals are selected at random. The worst one
is eliminated and replaced with the crossover offspring from the
remaining two. The resulting new individual is additionallymutated
with a mutation rate of 0.3. The differential evolution uses a scaling
constant (differential weight) 𝐹 = 1 and the crossover rate𝐶𝑅 = 0.9.
The population size in all experiments is set to 100. The parameters
we use are selected based on a short preliminary tuning.

All the algorithms operate on the same genotype, where individ-
uals are represented as vectors of floating-point values. In GA, a
single mutation operator is used, which alters a randomly chosen
gene (a single floating-point value) to a new random value from the
domain with a uniform distribution. For the crossover in GA, we
use multiple operators where a random one is selected every time
crossover is performed. The crossover operator is selected from
the following: discrete crossover [7], simple and whole arithmetic
crossover [7], local crossover [6], SBX crossover [17][4], BLX-alpha
crossover [8], flat crossover [19], BGA crossover [14], heuristic
crossover[23], and average crossover [15].

We use the Mann-Whitney non-parametric test to check whether
the proposed approaches’ results are significantly better than the
standard (default) number of variables (pair-wise comparison). First,
we test the hypothesis that the proposed approach is significantly
better than the standard one. If this hypothesis is rejected, we per-
form an additional test to check whether the proposed approach is
significantly worse than the default one. The results are considered
significant if the obtained 𝑝-values are less than 0.05. Each table
will include the results of the statistical tests between the proposed
approach and the default approach. The test results are listed after
each value in the tables and denoted as +, - or =, representing the
result is significantly better, significantly worse, or that there is no
significant difference, respectively.

3.2 Benchmark Problems
The COCO platform is used to analyze the performance of the pro-
posed expansion/compression approaches [10]. From this platform,
the set of 24 noiseless functions of arbitrary variable sizes is selected
for the experiments. Based on their properties, the functions can
be grouped into five categories:

• Separable functions - variables of the function are mutually
independent, meaning that the optimum can be obtained
by performing optimization in each dimension separately
(functions 𝑓 1 - 𝑓 5).

• Functionswith low ormoderate conditioning - non-separable
unimodal functions (which contain a singleminimum), where
a small change in the input variables does not lead to a large
change in the function value (functions 𝑓 6 - 𝑓 9).

• Unimodal functions with high conditioning - non-separable
unimodal functions, where a small change in the input vari-
ables leads to a large change in the function value, making
it more difficult to obtain the correct solution (functions 𝑓 10
- 𝑓 14).

• Multi-modal functions with adequate global structure - non-
separable functions with multiple minima that are uniformly
distributed over the search space (functions 𝑓 15 - 𝑓 19).

• Multi-modal functions with weak global structure - non-
separable functionswithmultipleminimawith a non-uniform
distribution over the search space (functions 𝑓 20 - 𝑓 24).

The benchmark problems were optimized with all four algo-
rithms, but the results are only shown for GA and DE. Each algo-
rithm used the maximum number of function evaluations as the
stopping criterion, which is set to the value of 𝐷 · 100 000, where 𝐷
represents the number of dimensions for the considered problems.
The approaches are benchmarked on 2, 5, 10, and 20-dimensional
functions. The search space is defined as the interval [−5, 5] in
every dimension. For each tested function, 50 instances are created
in the standard procedure used by the COCO platform by shifting
or rotating the functions (for example, the separable functions are
only shifted). Additionally, the COCO platform defines a run as
successful if an objective value of 1𝑒 − 8 or less is reached, which is
then denoted as a hit.

The experiments indicate that the GA obtained the best results
among the tested methods, followed by DE. The GA results will be
outlined for most of this paper, as the observations made there are
also applicable for the other tested algorithms.

Table 1 shows the results obtained by GA for optimizing the set
of test functions in two dimensions. The columns in the table repre-
sent different encodings, with “exp” corresponding to the expansion
and “com” to genotype compression, while “def ” denotes the de-
fault encoding in which the number of variables is unchanged. We
also report the expansion factor (2 or 3) and the decoding scheme;
summation (s) and multiplication (m) for the expansion, sequential
(seq), and alternating (alt) for the compression. Each row denotes
the median fitness value obtained over the 50 executed instances,
the number of hits for each function (denoted in brackets), and
whether the approach in this column is significantly better, equal,
or worse concerning the default genotype encoding. The experi-
ments in which the proposed methods obtained significantly better
results than the default encoding are emphasized with grey cells.

It can be observed that compressing the search space to fewer
variables leads to poor results, even for the simplest functions. This
is backed up by statistical tests, demonstrating that the compression-
based approaches achieve significantly worse results than the de-
fault encoding with the original number of variables for each func-
tion. For the expansion of variables, the results are more interesting.
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For the group of separable functions, the results show that all vari-
ants achieved the maximum number of hits. This shows that none
of the expansion approaches has difficulties converging to the mini-
mum on simple functions. On the second group of functions, we see
that the expanded representations achieve a larger number of hits
than the default method, except for function f7, where all methods
achieved the maximum number of hits. Additionally, the expansion-
based approaches obtained significantly better results in most cases
for the other functions. As such, the proposed approaches perform
better on non-separable functions that are not ill-conditioned.

In the next group of functions, we observe a difference between
the effectiveness of the summation and multiplication-based exten-
sion. While the summation-based approach has a similar perfor-
mance to the default one, the multiplication-based one encounters
problems and has a smaller number of hits, and in some cases, ob-
tains significantly worse results. For unimodal functions (functions
f1-f5), there is little difference between the default and summation-
based approach, as both can obtain the optimum. For the third
group of functions, we observe no significant difference between
the summation-based and default approaches.We postulate that this
happens as those functions exhibit a strong dependence between
small changes in the specific gene values and the fitness value. On
the fourth group of functions, multi-modal with an adequate global
structure, the expansion-based approaches achieve their best re-
sults compared to the default one. The summation-based approach
obtained significantly better results for all five functions, whereas
the multiplication-based approach is slightly less successful. On
the final set of functions (weak global structure), the improvements
over the default approach are less prominent but present in two
cases. To conclude, the proposed expansion approaches seem to
perform better for multi-modal problems than the default approach,
while for unimodal cases, the differences are smaller.

Unfortunately, as the number of dimensions increases, the dif-
ference between the results becomes less prominent; this can be
observed from Table 2, which shows the results obtained when
optimizing 20-dimensional functions. The compression-based ap-
proaches still achieve inferior results, whereas the expansion-based
approaches, in most cases, obtain results that are not significantly
different from the reference encoding. In this case, the expansion
approach based on summation achieves equally good results as
without expansion. However, this is not the case with the expan-
sion based on multiplication, which achieves significantly worse
results for around 40% of tested functions, both when the number
of variables is doubled and tripled. It can be concluded that the
summation-based approach scales better with the dimensionality
of the problem. Still, note that relatively poor results here do not
necessarily mean that the expansion procedure does not work. The
default approach results suggest that the considered optimization
procedures are not powerful enough for high-dimensional problems
(at least with the experimental setup as considered in this paper).

Figure 1 displays the empirical runtime distributions of the re-
sults obtained by GA and DE for the 2-dimensional function set.
The x-axis shows the number of function evaluations, while the y-
axis represents the proportion of problems for which the algorithm
achieved the desired target values 𝛿𝑖 , where 𝛿𝑖 ∈ {102, 101.8, 101.6,
101.4, . . . , 10−8}. More precisely, the figure depicts the ratio of the

number of targets hit across all functions and the number of func-
tion, target pairs for a specific number of function evaluations.
Figure 1a, presenting the total results on all functions, shows that
the expansion-based approaches reach the desired function value
in more cases than the default setup. For the first group of functions
denoted in Figure 1b, there is little difference between the expanded
and the default approach for the GA. Similar results can also be
observed in other function groups, with slightly larger differences
being observed only on the last group of functions. DE is constantly
performing worse than GA, except for the multi-modal group of
functions with adequate local structure, on which it obtained the
desired results more often than the GA.

In all results for DE, we observe that the expansion approaches
perform better than the default DE approach. This supports the ob-
servation from the GA, where the same behavior is noticed. As such,
the choice of the algorithm only slightly influences the performance
of the considered approaches.

Additionally, tests are performed on the two-dimensional set
of functions to test the number of variables to which the original
representation should be expanded. The tested expansions are 2𝑡 , 3𝑡 ,
5𝑡 , and 10𝑡 . In all cases, the obtained results are quite similar, and the
approaches did not show a significant deterioration in the results
as the expanded number of variables increased. For that reason,
we decided to keep the number of expanded variables minimal, as
there is no benefit of using larger values.

3.3 Modeling Physical Unclonable Functions
(PUFs).

Physical Unclonable Functions (PUFs) are lightweight hardware
devices commonly used in authentication schemes and anti-counter-
feiting applications. PUFs use inherent manufacturing differences
within every physical object to give each physical instance (a PUF)
a unique identity. PUFs are usually divided into two categories:
weak PUFs and strong PUFs. A strong PUF can be queried with an
exponential number of challenges to receive an exponential number
of responses (challenge-response pairs - CRP). Existing strong PUFs
can be simulated in software, and the required parameters for such
a software model can be approximated by using machine learning
or evolutionary algorithms [1, 18]. Usually, strong PUFs rely on
delayed-based Arbiter PUFs (APUFs) as their main building blocks
for PUF constructs and protocols [24]. Such APUFs can be modeled
by a linear function, which is at the foundation of various AI-based
attacks using challenge-response pairs [5].

Arbiter PUF consists of one or more chains of two 2-bit multi-
plexers that have identical layouts. Each multiplexer pair is denoted
as a stage, with 𝑛 stages in a single chain. A single input signal
is introduced to the first stage to both the bottom and top multi-
plexer in the pair. The chain is fed a control signal of 𝑛 bits called a
challenge, where each bit determines whether the two input sig-
nals in that stage would be switched (crossed over) or not. In ideal
conditions, the input signal would propagate at the same speed
through each stage, and both the lower and upper signal would
arrive at the arbiter (at the end of the chain) at the same time. Due
to the manufacturing inconsistencies, each delay of a multiplexer
is slightly different, and the top and bottom input signals are not
synchronized. The arbiter at the end of the chain determines which
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Table 1: Results obtained by GA for the COCO benchmark with 2 dimensional functions.

def exp-s-2 exp-s-3 exp-m-2 exp-m-3 com-seq com-alt

f1 0.00e+00 (50) 0.00e+00 (50) = 0.00e+00 (50) = 0.00e+00 (50) + 0.00e+00 (50) + 5.51e-05 (0) - 7.99e-08 (22) -
f2 0.00e+00 (50) 0.00e+00 (50) = 0.00e+00 (50) - 0.00e+00 (50) = 0.00e+00 (50) = 1.57e-02 (0) - 1.87e-01 (0) -
f3 0.00e+00 (50) 0.00e+00 (50) = 0.00e+00 (50) = 0.00e+00 (50) + 0.00e+00 (50) = 4.88e-02 (0) - 8.27e-04 (1) -
f4 0.00e+00 (50) 0.00e+00 (50) + 0.00e+00 (50) + 0.00e+00 (50) + 0.00e+00 (50) + 1.05e-01 (0) - 2.29e-03 (1) -
f5 0.00e+00 (50) 0.00e+00 (50) = 0.00e+00 (50) = 0.00e+00 (50) = 0.00e+00 (50) = 6.93e-03 (23) - 1.20e-06 (23) -

f6 3.37e-09 (31) 2.38e-10 (43) + 4.88e-12 (50) + 3.03e-10 (45) + 1.10e-10 (48) + 2.79e-03 (0) - 2.81e-04 (1) -
f7 0.00e+00 (50) 0.00e+00 (50) = 0.00e+00 (50) = 0.00e+00 (50) = 0.00e+00 (50) = 3.19e-08 (12) - 2.24e-13 (48) -
f8 2.73e-09 (31) 1.98e-11 (44) + 3.84e-12 (42) + 6.14e-11 (40) + 2.71e-09 (34) = 5.81e-04 (0) - 9.48e-05 (1) -
f9 1.84e-10 (34) 1.55e-11 (43) = 1.46e-12 (46) + 2.86e-11 (45) + 2.43e-12 (46) + 8.22e-04 (0) - 9.44e-05 (3) -

f10 9.82e-06 (9) 3.67e-06 (9) = 2.83e-05 (6) = 5.00e-04 (5) - 5.11e-03 (2) - 1.75e-01 (0) - 8.49e-02 (0) -
f11 2.69e-06 (10) 9.29e-07 (14) = 1.60e-06 (13) = 4.81e-03 (10) - 4.62e-04 (8) - 1.18e-01 (0) - 9.70e-02 (0) -
f12 3.48e-05 (15) 6.92e-06 (20) = 3.07e-05 (19) = 1.28e-04 (19) = 1.52e-04 (17) = 1.97e-01 (0) - 8.26e-02 (0) -
f13 6.11e-05 (0) 3.74e-05 (2) = 5.86e-05 (0) = 2.98e-04 (2) - 1.48e-04 (0) = 7.19e-02 (0) - 3.79e-02 (0) -
f14 7.32e-07 (7) 4.75e-07 (10) = 9.27e-07 (7) = 1.78e-06 (8) = 1.80e-06 (3) = 7.30e-04 (0) - 8.21e-05 (0) -

f15 8.11e-11 (39) 0.00e+00 (48) + 0.00e+00 (50) + 0.00e+00 (48) + 0.00e+00 (47) + 2.93e-02 (0) - 3.15e-04 (4) -
f16 1.32e-11 (32) 0.00e+00 (36) + 0.00e+00 (41) + 0.00e+00 (36) = 0.00e+00 (37) + 4.43e-03 (0) - 4.29e-04 (3) -
f17 3.32e-05 (13) 2.04e-10 (29) + 2.18e-11 (31) + 1.21e-12 (30) + 1.60e-14 (32) + 1.94e-02 (0) - 3.64e-03 (0) -
f18 9.90e-04 (0) 9.85e-04 (2) + 1.62e-04 (6) + 9.87e-04 (1) = 9.90e-04 (1) = 9.78e-02 (0) - 3.25e-02 (0) -
f19 1.93e-12 (50) 2.66e-14 (50) + 5.95e-14 (50) + 3.55e-15 (49) + 7.11e-15 (50) + 9.43e-06 (0) - 7.56e-07 (7) -

f20 2.23e-12 (50) 0.00e+00 (50) + 0.00e+00 (50) + 0.00e+00 (50) + 0.00e+00 (50) + 3.64e-03 (0) - 9.84e-04 (3) -
f21 0.00e+00 (50) 0.00e+00 (50) = 0.00e+00 (50) = 0.00e+00 (50) = 0.00e+00 (50) = 2.34e-08 (18) - 2.04e-12 (45) -
f22 0.00e+00 (50) 0.00e+00 (50) = 0.00e+00 (50) = 0.00e+00 (50) = 0.00e+00 (50) = 5.79e-08 (14) - 5.75e-10 (35) -
f23 4.86e-03 (6) 7.70e-04 (17) + 2.30e-04 (16) + 1.52e-04 (15) + 5.35e-06 (21) + 1.90e-01 (0) - 2.02e-01 (0) -
f24 6.09e-02 (10) 5.84e-02 (11) = 5.92e-02 (14) = 2.81e-02 (16) = 2.37e-02 (11) = 3.46e-01 (0) - 1.57e-01 (0) -

Table 2: Results obtained by GA for the COCO benchmark with 20 dimensional functions.

def exp-s-2 exp-s-3 exp-m-2 exp-m-3 com-seq com-alt

f1 3.98e-12 (50) 6.85e-12 (50) = 6.43e-12 (50) = 6.27e-12 (50) = 5.68e-12 (50) = 9.28e-04 (0) - 5.58e-05 (0) -
f2 3.79e-09 (38) 2.49e-09 (34) = 4.72e-09 (37) = 2.50e-09 (35) = 1.24e-09 (42) + 9.84e+01 (0) - 3.42e+01 (0) -
f3 5.94e-09 (34) 6.28e-09 (33) = 6.19e-09 (30) = 1.23e-08 (25) - 8.85e-09 (29) = 9.56e-01 (0) - 1.90e-01 (0) -
f4 6.12e-08 (3) 5.89e-08 (6) = 5.83e-08 (6) = 5.81e-08 (8) = 5.92e-08 (5) = 2.35e+00 (0) - 1.55e+00 (0) -
f5 9.95e-14 (50) 0.00e+00 (50) + 0.00e+00 (50) + 0.00e+00 (50) + 0.00e+00 (50) + 5.67e-01 (0) - 8.77e-03 (0) -

f6 2.50e-02 (0) 2.50e-02 (0) = 2.46e-02 (0) = 3.97e-01 (0) - 2.51e-01 (0) - 1.57e+00 (0) - 1.58e+00 (0) -
f7 9.97e+00 (0) 9.94e+00 (0) = 9.96e+00 (0) = 1.50e+01 (0) - 1.58e+01 (0) - 1.55e+01 (0) = 1.25e+01 (0) =
f8 6.31e+00 (0) 9.98e+00 (0) = 1.58e+01 (0) = 1.75e+00 (0) + 3.25e+00 (0) = 2.35e+01 (0) - 2.40e+01 (0) -
f9 1.58e+01 (0) 1.58e+01 (0) = 1.58e+01 (0) = 1.58e+01 (0) + 1.58e+01 (0) + 2.47e+01 (0) - 2.48e+01 (0) -

f10 2.51e+03 (0) 2.51e+03 (0) = 2.51e+03 (0) = 3.98e+03 (0) - 3.98e+03 (0) - 1.58e+04 (0) - 1.58e+04 (0) -
f11 3.98e+00 (0) 3.97e+00 (0) = 5.65e+00 (0) = 1.58e+01 (0) - 1.57e+01 (0) - 1.51e+01 (0) - 9.98e+00 (0) -
f12 9.63e-01 (0) 2.50e+00 (0) - 1.58e+00 (0) = 2.51e+00 (0) - 2.48e+00 (0) - 9.38e+02 (0) - 9.78e+01 (0) -
f13 2.51e+00 (0) 3.97e+00 (0) = 2.51e+00 (0) = 2.50e+00 (0) = 3.97e+00 (0) = 1.52e+01 (0) - 9.89e+00 (0) -
f14 1.00e-03 (0) 1.00e-03 (0) = 1.00e-03 (0) = 1.00e-03 (0) = 1.57e-03 (0) = 2.43e-02 (0) - 1.57e-02 (0) -

f15 6.30e+01 (0) 6.29e+01 (0) = 6.20e+01 (0) + 9.96e+01 (0) - 1.57e+02 (0) - 9.87e+01 (0) - 6.31e+01 (0) -
f16 7.54e+00 (0) 7.98e+00 (0) = 9.43e+00 (0) = 6.29e+00 (0) = 7.87e+00 (0) = 9.41e+00 (0) = 9.94e+00 (0) -
f17 1.56e+00 (0) 1.55e+00 (0) = 1.58e+00 (0) = 2.51e+00 (0) - 3.96e+00 (0) - 1.58e+00 (0) - 1.58e+00 (0) -
f18 3.98e+00 (0) 3.98e+00 (0) = 3.97e+00 (0) = 9.93e+00 (0) - 1.50e+01 (0) - 6.13e+00 (0) = 6.10e+00 (0) =
f19 1.00e+00 (0) 1.58e+00 (0) = 1.58e+00 (0) - 6.30e-01 (0) + 2.51e-01 (0) + 3.94e+00 (0) - 3.89e+00 (0) -

f20 5.57e-01 (0) 4.71e-01 (0) = 3.97e-01 (0) = 9.67e-01 (0) - 9.82e-01 (0) - 3.98e-01 (0) = 6.21e-01 (0) -
f21 2.49e+00 (15) 2.45e+00 (16) = 2.51e+00 (10) = 2.50e+00 (15) = 2.51e+00 (11) = 2.39e+00 (0) = 2.51e+00 (0) =
f22 9.73e+00 (0) 6.18e+00 (0) = 6.23e+00 (0) = 9.64e+00 (0) = 6.29e+00 (0) = 3.98e+00 (0) + 3.90e+00 (0) =
f23 1.51e+00 (0) 1.00e+00 (0) = 1.00e+00 (0) = 9.99e-01 (0) = 9.93e-01 (0) + 1.43e+00 (0) = 9.99e-01 (0) +
f24 6.29e+01 (0) 6.30e+01 (0) - 6.30e+01 (0) = 9.99e+01 (0) - 1.00e+02 (0) - 1.20e+02 (0) - 9.96e+01 (0) -
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(c) functions with low or moderate conditioning
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(d) functions with high conditioning and unimodal
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(e) multi-modal functions with adequate global structure

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

GA com-seq
GA com-alt
DE com-seq
DE exp-m-2
DE exp-s-3
DE com-alt
DE exp-m-3
GA def
DE def
GA exp-s-2
GA exp-m-2
GA exp-s-3
GA exp-m-3
DE exp-s-2bbob f20-f24, 2-D

51 targets: 100..1e-08
50 instances

v2.3.3.18

(f) multi-modal functions with weak global structure

Figure 1: Empirical runtime distributions for 2 dimensional problems.
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Table 3: Results for PUFs with GA and DE for two different
PUF sizes. The number of challenge response pairs is set to
2 000.

def exp-s-2 exp-m-2 com-seq com-alt

GA_2000_32 38.0±15.35 35.0±17.72 = 46.5±18.79 = 73.5±68.58 - 70.5±83.02 -
GA_2000_64 148.0±41.13 144.5±31.07 = 225.5±54.25 - 261.5±72.17 - 299.5±83.96 -

DE_2000_32 43.0±47.19 18.0±33.73 + 252.0±62.32 - 440.5±56.34 - 446.5±69.91 -
DE_2000_64 183.0±57.68 141.0±40.35 + 317.5±63.47 - 455.0±46.24 - 449.5±40.05 -

signal arrived earlier and thus forms the response (0 or 1). The
response of a PUF is determined by the delay difference between
the top and bottom input signal, which is, in turn, the sum of delay
differences of the individual stages. To efficiently model a PUF,
one tries to determine the delay vector𝑤 = (𝑤1, . . . ,𝑤𝑛+1) which
models the delay differences in each stage. Lim [12] proposed a
linear additive model that captures the APUF behavior where we
require the map 𝑓 (𝑐) = 𝜙 of the applied challenge 𝑐 of length 𝑛 to
a feature vector 𝜙 of length 𝑛 + 1. The product of the feature vector
and delay vector decides what signal came first, and based on it,
what is the response bit 𝑟 :

𝜙𝑖 =

𝑘∏
𝑙=𝑖

(−1)𝑐𝑙 , for 1 ≤ 𝑖 ≤ 𝑘. (1)

𝑟 =

{
1 if ®𝑤 ®𝜙𝑇 < 0
0 if ®𝑤 ®𝜙𝑇 > 0

(2)

The optimization algorithm aims to find a delay vector that
reproduces the target PUF behavior, with its actual delay values
being unknown. The delay vector is a sequence of floating-point
values with 𝑛 elements, which correspond to 𝑛 stages in a PUF. As
the optimized delay vector approaches the actual one, the clone PUF
model will reproduce the target PUF responses more accurately,
which is the goal of the attacker. The performance measure of the
PUF model is commonly defined as the number of wrong responses
in a given set of challenge-response pairs. This value is minimized,
and the lower the value, the more accurate the PUF model.

Our experiments modeled PUF targets with two chain sizes, 32
and 64 elements (corresponding to 32 and 64 variables). In Table 3,
we give the results optimizing both PUF targets with 2 000 challenge-
response pairs using GA and DE. Although there is no significant
difference for the GA, the expansion summation method slightly
improved upon the default encoding. The multiplication approach
obtained slightly worse results, following the observation that the
summation variant scales better with increased dimensionality,
which is considerably larger in this case. We depict the results for
PUF with 64 stages in Figure 2, where the y axis denotes the number
of incorrectly modeled challenge-response pairs. Observe how the
expansion procedure with summation improves slightly over the
default approach, while the compression approaches work signifi-
cantly worse on average. Still, the best solutions for the sequential
strategy compression perform similarly to the default strategy.

3.4 Optimizing Neural Network Weights.
Artificial neural networks (ANNs) are a widely used model applied
for various problem types. However, determining the multiplexer’s

def exp-s-2 exp-m-2 com-seq com-alt
0

200

400

600

Figure 2: Results for DE optimization of PUF with chain size
of 64.

optimal weights of a neural network for a given problem is a diffi-
cult optimization problem. As a result, various algorithms are used
to optimize the weights of ANNs, ranging from gradient-based to
evolutionary methods. We apply the proposed approaches for opti-
mizing the weights of ANNs for three selected regression problems.
The considered problems are:

𝑓1 (𝑥) = 3 · sin(𝑥) + 𝑥 . (3)
𝑓2 (𝑥,𝑦) = 𝑥 + 𝑦. (4)
𝑓3 (𝑥) = 𝑥 · sin(𝑥). (5)

We selected these problems as they include both linear and nonlin-
ear functions. For each problem, the number of training samples
is between 250 and 300. We consider a simple feed-forward fully-
connected ANN consisting of two hidden layers. The notation a-b-
c-d is used to denote the architecture of a network with a nodes in
the input layer, b and c nodes in the first and second hidden layers,
and d nodes in the output layer. The Sigmoid function is used as
the activation function in the hidden layers, whereas the linear sum
function is used in the output layer. The following architectures
are applied for the first and second regression problems: 1-5-3-1,
1-5-5-1, 1-7-5-1, 1-7-7-1. For the second function, the input layer
consisted of two nodes instead of one. Since the third regression
problem was less difficult to solve, it is used to test some smaller
architectures: 1-2-2-1, 1-3-3-1, 1-5-5-1, 1-7-5-1. Each experiment is
run 30 times to obtain statistically significant results. The domain is
set to [−5, 5], and the termination criterion is set to 100 000 function
evaluations. The fitness function of this problem is defined as the
mean squared error between the real values and the ANN output.
Note that the problems and architectures of the considered neural
networks are simple by today’s deep learning standards, but they
were selected to test the feasibility of the proposed approach for
such problems.

Table 4 displays the results obtained by GA for each regression
problem and the selected architectures, while figure 3 represents the
distribution of solutions. Each row contains the median MSE value
of the 30 executions and the standard deviation, denoted after the
± sign. The results support what was already demonstrated in pre-
vious experiments: the compression-based approaches again obtain
inferior performance compared to all other tested approaches. On
the other hand, the summation-based expansion approach achieved
equally good or significantly better results than the default ap-
proach in all experiments. Themultiplication-based approaches also
performed well, although slightly worse than the summation-based
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Table 4: Results for the neural network weight optimization.

𝑓 arch def exp-s-2 exp-s-3 exp-m-2 exp-m-3 com-seq com-alt

𝑓1 1-5-3-1 1053±58.27 295.8±78.33 + 271.1±71.62 + 295.1±58.92 + 301.3±273.0 + 1241±208.9 - 1184±271.5 -
𝑓1 1-5-5-1 452.2±67.7 279.4±86.07 + 263.1±58.31 + 269.4±77.11 + 286.5±91.56 + 478.2±81.21 = 449.2±83.05 =
𝑓1 1-7-5-1 345.9±64.88 238.6±48.31 + 233.6±47.45 + 217.7±72.52 + 231.4±63.95 + 366.5±57.02 = 340.2±50.27 =
𝑓1 1-7-7-1 324.4±60.28 235.4±41.78 + 201.9±42.75 + 233.5±66.67 + 241.1±72.04 + 348.6±65.3 - 378.6±75.53 -
𝑓2 2-5-3-1 18.45±3.883 19.62±3.813 = 19.54±4.06 = 23.76±3.964 - 20.22±5.248 - 22.59±2.327 - 24.47±3.195 -
𝑓2 2-7-5-1 14.37±2.615 14.67±3.53 = 14.31±3.712 = 14.89±4.679 = 13.73±6.559 = 18.77±3.324 - 18.15±3.842 -
𝑓2 2-7-7-1 14.31±3.172 13.13±4.356 = 14.41±3.779 = 14.3±4.345 = 11.78±5.178 = 18.0±2.73 - 18.1±3.533 -
𝑓2 2-5-5-1 17.81±4.17 17.61±4.347 = 18.92±3.614 = 18.4±4.71 = 19.81±6.001 = 22.47±3.941 - 21.75±3.747 -
𝑓3 1-2-2-1 5.604±0.574 5.614±1.246 = 5.53±0.616 + 5.728±5.562 = 5.82±0.994 - 5.952±6.089 - 6.018±8.752 -
𝑓3 1-3-3-1 5.525±0.572 4.691±0.826 + 5.315±0.645 + 5.37±1.884 = 5.439±1.44 = 5.508±6.551 = 5.57±6.626 =
𝑓3 1-5-5-1 4.263±0.961 4.166±1.04 = 3.803±0.922 + 4.287±0.906 = 4.122±0.822 = 4.168±1.695 = 4.215±7.981 =
𝑓3 1-7-5-1 3.761±0.682 3.427±0.877 + 3.609±0.747 = 3.797±1.006 = 3.619±1.19 = 4.611±1.275 - 4.022±10.11 =

ones. Surprisingly, for this problem, the increase of the number
of variables, i.e., weights, did not affect the expansion approaches’
performance, unlike in the case of the COCO benchmarks. There-
fore, the results also demonstrate that the expansion approaches’
performance depends on the considered optimization problem.
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(a) Optimizing function 𝑥 + 𝑦 with the 2-7-7-1 architecture.
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(b) Optimizing function𝑥𝑠𝑖𝑛 (𝑥) with the 1-7-7-1 architecture.
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(c) Optimizing function 3𝑠𝑖𝑛 (𝑥) + 𝑥 with the 1-7-7-1 architec-
ture.

Figure 3: Distribution of the results obtained for optimizing
neural network weights with GA.

The probable reasonwhy the compression-basedmethods achieve
inferior results is that two variables are fused into one. This means
that changes are being performed on both original variables at the
same time as the changes are performed on the compressed variable.
As such, it is quite difficult to ensure that both variables are being
changed in a meaningful way, which would lead us closer to the
minimum, or that only a single of those two variables is updated.
The compression-based methods also suffer from a reduced preci-
sion since the same space is used to store more than one variable
at a time. This can limit the algorithms since they cannot perform
an equally fine-grained search as without the genotype reduction.
On the other hand, the expansion approaches seem to perform
better due to a larger degree of freedom. However, in the expansion
approaches, due to each variable being expressed with multiple
values, the algorithm now has an infinite number of combinations
in which it can represent a single value with several ones. Although
the search space also increases, it seems that this additional freedom
proves to be beneficial and allows the algorithms to find new paths
towards the minimum.

4 CONCLUSIONS AND FUTUREWORK
This paper discusses how to expand or compress genotypes for
continuous optimization and EAs. We compare four evolutionary
algorithms’ performance, four strategies for reconstructing the
original genotype after compression/expansion, and three sets of
problems. Our analysis shows that compression works poorly in
all the tested cases, while expansion manages to outperform the
default encoding in numerous settings. We find the summation-
based expansion strategy to be especially promising.

As the approach we discuss here is novel, there are multiple re-
search directions one could follow.While we discuss the continuous
optimization problems where we see the improvements stemming
from the genotype expansions, it is not difficult to imagine prob-
lems where such an approach would not be beneficial. We plan to
investigate such problems and understand what the differences are.
Also, we considered a scenario where every variable is either ex-
panded or compressed. It would be interesting to see what happens
when only a subset of variables is adapted in this way. This could
provide a trade-off between the improvements in the performance
and the size of the genotype.
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