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Abstract

In this paper weintroducethe useof a population-based
selectionrschemen a particle swarmoptimizerusedfor de-
signing combinationallogic circuits. The schemeaimsto
distribute the search effort in a betterway within the par-
ticles of the populationasto acceleate corvemgencewhile
improving the robustnessof the algorithm. For our study
we compae six PSO-base@pproades,combiningdiffer-
ent encodings(integer and binary) with both single- and
multi-objectiveselectionschemes. The compaative study
performedndicatesthat the useof a population-baseép-
proach combinedwith an integer encodingimprovesboth
therobustnessandquality of resultsof PSOwhendesigning
combinationalogic circuits.

1 Intr oduction

The Particle Swarm Optimization (PSO) algorithm is
a biologically-inspiredtechniqueoriginally proposedby
Kennedyand Eberhart[7, 8]. PSOhasbeensuccessfully
usedas a (nonlinear)optimizationtechniqueand hasbe-
comeincreasinglypopulardueto its combinationof sim-
plicity (in termsof its implementation)Jow computational
cost and good performance[8]. Theseare preciselythe
main motivationsthat led us to apply PSOfor combina-
tional circuit design[4].

ThemainideabehindPSOis to simulatethe movement
of a flock of birds seekingfood. In this simulation, the
behaior of eachindividual gets affected by both an in-
dividual and a social factor Eachindividual (or particle)
containsits currentpositionin the searchspaceaswell as
its velocity and the bestposition found by the individual
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sofar[8]. As mary otherbiologically-inspiredheuristics,
PSOQis a population-basedpproactthatcanbe definedas
P' = (m(f(P)), whereP is thepopulation which consists
of asetof positionsin searctspace f is thefithessunction

thatreturnsa vectorof valuesthatindicatethe goodnes®f

eachindividual,andm is a manipulationfunctionthatgen-
eratesanew populationfrom thecurrentpopulation.Sucha

manipulationfunctionis basedon the behaioral modelof

insectcolonies[1].

PSOcan be seenas a distributed behavioral algorithm
that performs(in its more generalversion) multidimen-
sional search. In the simulation,the behaior of eachin-
dividual is affectedby eitherthe bestlocal (i.e., within a
certainneighborhoodpr thebestglobalindividual. Theap-
proachusesapopulationof potentialsolutions(called“par-
ticles”) anda measuref performancesimilar to thefitness
valueusedwith evolutionaryalgorithms. Also, the adjust-
mentsof individualsareanalogougo the useof a crossaer
operator However, this approachintroduceghe useof fly-
ing potentialsolutionsthroughhyperspacéusedto acceler
ate corvergence).Additionally, PSOallows individualsto
benefitfrom their pastexperienceg8].

In this paper we proposethe use of a multiobjective
optimization techniqueto design combinationalcircuits.
Our approach(which usesPSO as its optimization en-
gine) is basedon someof our previous researchin which
a population-basedjeneticalgorithm was usedto design
combinationallogic circuits [3]. The proposalconsistsof
handlingeachof the matchesetweenra solutiongenerated
by our PSOapproachandthe valuesspecifiedby the truth
table as equality constraints. To avoid the dimensionality
problemsassociatedvith corventionalmultiobjective opti-
mizationtechniquegsuchproblemsaredueto thefactthat
checkingfor Paretodominanceis an O(n?) process)we



usea population-basedpproactsimilarto the VectorEval-
uatedGeneticAlgorithm (VEGA) [11].

2 Problem Statement

The problemof interestto us consistf designingacir-
cuit that performsa desiredfunction (specifiedby a truth
table),givena certainspecifiedsetof availablelogic gates.
Thecompleity of alogic circuitis afunctionof thenumber
of gatesin thecircuit. Thecompleity of agategenerallyis
afunctionof thenumberof inputsto it. Because logic cir-
cuitis arealization(implementationpf a Booleanfunction
in hardware,reducingthe numberof literalsin the function
shouldreducethe numberof inputsto eachgateand the
numberof gatesin the circuit—thusreducingthe complex-
ity of the circuit. Our overall measureof circuit optimality
is the total numberof gatesused,regardlesof their kind.
This is approximatelyproportionalto the total part costof
the circuit. Obviously, we performthis analysisfor only
fully functionalcircuits.

3 Our ProposedApproach

We useda matrix to represeng circuit asin our previ-
ouswork [2], asshown in Figurel. More formally, we can
saythatary circuit canbe represente@sa bidimensional
arrayof gatesS; ;, wherej indicatesthelevel of a gate,so
that thosegatescloserto the inputs have lower valuesof
j. (Level valuesareincrementedrom left to right in Fig-
urel). For afixedj, theindex ¢ varieswith respecto the
gatesthatare“next” to eachotherin the circuit, but with-
out beingnecessaril}connected Eachmatrix elementis a
gate(thereare5 typesof gates:AND, NOT, OR, XOR and
WIRE?Y) thatrecevesits 2 inputsfrom ary gateattheprevi-
ouscolumnasshavnin Figurel. This sortof encodingvas
originally proposeddy Louis [9]. The so-called“cartesian
geneticprogramming’[10] alsoadoptsa similar encoding
to thematrix previously described.

Using the aforementionednatrix, a logic circuit canbe
encodedusing either binary or integer stringsthat corre-
spondto thetype of gateadoptedandits inputs.PSO,how-
ever, tendsto dealwith eitherbinary or real-numbersep-
resentation.For our comparatie study we will adopttwo
integer representations{l1) Integer A (proposecby Hu et
al. [6]), and(2) Integer B (proposedy us).

In the PSOalgorithm, theindividual factor P refers
to thedecisionghattheindividual hasmadesofar andthat

have worked best (in termsof its performancemeasure).

This value has an impacton its future decisions. Addi-
tionally, the socialfactor N, ,; refersto the decisionsthat

1WIRE basicallyindicatesa null operationor in otherwords, the ab-
senceof gate andit is usedustto keepregularity in therepresentationsed
by our approactthatotherwisewould have to usevariable-lengttstrings.
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Figure 1. Encoding used for each of the matrix
elements that represent a circuit.

the otherindividuals (within a certainneighborhoodhave
madesofar andthathave workedbestfor them. This value
will alsoaffectthefuturedecisionf theindividualsin the
givenneighborhood.

Figure 2 shavs the pseudocodef the PSO algorithm
that we proposefor the designof combinationalogic cir-
cuits. Its main differencewith respectto traditional PSO
hasto do with the updateof the positionof the particlein
eachof its dimensions.Both, the Integer A andthe Inte-
ger B approachesormalizethe velocity of eachdimension
of the particlein the rangeO to 1, so that we can further
determine(in a randomway) whetherwe needto change
the currentpositionor not (this is donewith the probabil-
ity given by the velocity). If the changeis required,then
we copy to the particle the value of Ny, in the current
position.Otherwisethelnteger A approacHeavesthe par
ticle intact. Whenthe changeis not required,the Integer
B approachchecksagainwhetheris necessaryo change
the currentposition,but now usinga probabilityof 1 — vy,
wherewv, is the currentvelocity. If the changeis required,
thenwe copy to the particlethe valueof P.g; in the posi-
tion thatwe areupdating.Otherwise we leave the particle
intact. Thesetwo integerrepresentationareexemplifiedin
Figure3. As in our previouswork [4], we introduceherea
mutationoperatorto our PSOalgorithmin orderto improve
its exploratorypower, sincethis seemaecessarywhenap-
plying this approactto the designof circuits. Furthermore,
in this casethe particlestry to follow the samecharacteris-
tics of Ny, and P, andcould getstuckin their current
position. Thus, the useof a mutationoperatoris vital in
orderto avoid this problem.

4 Useof a Multiobjecti ve Approach

The objective functionin our caseis definedasin previ-
ouswork [2]: it is thetotal numberof matchegbetweerthe
outputsproducedy anencodedaircuit andtheintentedval-



Randomlyinitialize the populationof particles,P.
Repeat{

For eachparticles in the populationP {
Computethefitnessof the particle P[z]

If thefitnessof P[3] is betterthanthefitnessof
thebestparticlefoundsofar Pyes:[7],
Then updatePy.s; using P[s].

}

For eachparticlei in P {

Selectthe particlewith thebestfitnessin the
topologicalneighborhoof PJ[i]
andupdatethe valueof Ny [7]

}

For eachparticles in thepopulationP {
Computethe new velocity for eachdimensionof
theparticle
Viilnew = Vlilota + ¢1(Pbest[i] — P[i])+
$2(Nbest[i] — Pli])

Updatethe positionof the particle P[4
}
Apply uniform mutationwith a (usergiven)rate.
} Until reachingthe stopcondition

Figure 2. Pseudocode of the PSO algorithm
adopted in this work. Note the addition of a
mutation operator .

uesdefinedby the userin thetruth table). For eachmatch,
we increasethe value of the objective function by one. If
the encodectircuit is feasible(i.e., it matcheghe truth ta-
ble completely),thenwe add one (the so-called“bonus”)
for eachWIRE presentn the solution. Note however, that
in this case we usea multiobjective approacho assignfit-
ness.Themainideabehindour proposedpproachs to use
a population-basednultiobjective optimizationtechnique
similar to VEGA [11] to handleeachof the outputsof a
circuit asan objectve. In otherwords, we would have an
optimization problemwith m equality constraints,where
m is the numberof values(i.e., outputs)of the truth table
thatwe aim to match. So, for example,a circuit with 3 in-
putsanda single output,would have m = 23 = 8 values
to match. At eachgenerationthe populationis split into
m + 1 sub-populationsyherem is definedasindicatedbe-
fore (we have to addoneto considerlsotheobjectvefunc-
tion). Eachsub-populatioroptimizesa separateonstraint
(in this casean outputof the circuit). Therefore the main
missionof eachsub-populations to matchits correspond-
ing outputwith the valueindicatedby the userin the truth
table. The mainissuehereis how to handlethe different
situationgthatcouldarise.Our proposalis thefollowing:

if 0;(X) # t;
elseif v Z0AND z € R

then
then

fitnessK) =0
fitness= —wv

Particle

|m——————= F(N(vy)) =0 and
:F(N(Vd))zl H F(I-N(vg)=1
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Figure 3. Example of the two integ er repre-
sentations used for our PSO algorithm.

else fitness= f(X)
whereo;(X) refersto the valueof output; for the en-
codedcircuit X; ¢; is the valuespecifiedfor outputy in the
truth table;v is the numberof outputsthatarenot matched
by the circuit X (< m); and R is the subpopulatiorwhose
objective is to matchall the output valuesfrom the truth
table.Finally, f(X) is thefitnessfunctiondefinedas:

[ h(X)
f3) = { h(X) + w(X)

if X isinfeasible (1)
otherwise

In this equation,h(X) refersto the numberof matches
betweerthecircuit X andthevaluesdefinedin thetruthta-
ble,andw(X) is thenumberof WIREsin thecircuit X. As
canbeseentheschemedoptedn this work is slightly dif-
ferentfrom the oneusedby our MGA reportedin [3]. The
main reasonfor adoptingthis approachis thatin our ex-
perimentsjt producednorecompetitive resultsimproving
in mostcasegheresultsobtainedwith our single-objectie
PSO,aswewill seein thenext section.

5 Comparison of Results

Thetruthtablesusedto validateour PSOapproachwere
taken from the specializediterature. In our experimental
study we comparedthe following approaches:a binary
multiobjective PSOapproach(BMPSQO), a PSOapproach
usinganinteger A encoding(EAMPSO),a PSOapproach
using an integer B encoding (EBPSO), a binary single-
objectve PSO (BPSO), a single-objectre PSO approach
usingintegerA encoding(EAPSO),a single-objectie PSO
approactusingintegerB encoding(EBPSO)andthe multi-
objective geneticalgorithmfor circuit design(MGA) [3].
For eachof the examplesshovn, we performed20 inde-
pendentuns,andthe availablesetof gatesconsideredvas
thefollowing: AND, OR,NOT, XOR andWIRE. We useda



S=B+(DaA) +(CeDDasA)

Figure 4. Diagram and boolean expression
corresponding to the best solution found for
example 1.

matrix of sizeb x 5 in all casesexceptfor thesecondexam-
ple for whicha 6 x 6 matrix wasadopted.The parameters
adoptedby both BPSO and BMPSO were the following:
¢1 = ¢o = 0.8, V4 = 3.0, mutationrate P,, = 0.1and
neighborhoodsize = 3. EAPSO,EAMPSO,EBPSOand
EBMPSOused: ¢, = ¢2 = 0.2, Ve = 04, P, = 0.1
andneighborhooasize= 3. TheMGA usedP,, = 0.00667
anda crosswerrate= 0.5 (assuggesteth [3]).

5.1 Examplel

Ourfirst examplehas4 inputsandl output,asshovnin
Table1. The additionalparametersdoptedare shown in
Table2. Notethatwe attemptedo performthe samenum-
ber of fithessfunction evaluationswith all the approaches
compared. In Table 3, we shav a comparisonof the re-
sultsof all theapproacheadopted.Thebestsolutionfound
for this examplehas6 gatesandis graphically shavn in
Figure4. NotethatbothBMPSOandEBMPSOwereable
to find a circuit that usesone gate lessthan their single-
objective counterpartgi.e., BPSOandEBPSO).Neverthe-
less theaveragditnessof bothBMPSOandEBMPSOwere
lower thanthevaluesof their single-objectie counterparts.
Also notethatalthoughEAMPSOwasnot ableto improve
thesolutionsobtainedby EAPSO.its percentagef feasible
circuitsincreasedrom 65%to 85%. Also, the averagefit-
nessof EAMPSOwas 30.25comparedo the 26.75value
producedby EAPSO.In this example,the MGA did not
performtoo well whencomparedwith ary of our PSOver-
sions.lts percetangef feasiblecircuitswaslow (35%)and
it was not ableto find the solutionwith only 6 gatespro-
ducedby someof the PSOapproachesAnotherinteresting
factwasthatEBPSOhadthebestaveragdfitness(31.2),but
was not ableto producecircuits with 6 gates. EAMPSO,
in contrasthadthe secondestaveragefitness(30.25),but
wasableto find circuitswith only 6 gates5% of thetime.
Thus,EAMPSO canbe consideredasthe bestoverall per
formerin thisexample.
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Table 1. Truth table for example 1.

Technique | Population size | Iterations FFE
MPSO 68 1,471 100,028
PSO 50 2,000 100,000
MGA 170 600 102,000

Table 2. Parameters adopted for example 1.

FFE = Fitness function evaluations.

approach | gates | freq. | feas. | avg.# | avg. Std.

b.s. b.s. | circs. | gates | fitn. dev.
BMPSO 8 5% 20% 22.8 18.2 | 6.622
EAMPSO 6 5% 85% | 10.75 | 30.25 | 6.680
EBMPSO 6 5% 75% | 12.75 | 28.25 | 7.953
BPSO 9 15% | 45% 191 219 | 7.887
EAPSO 6 5% 65% | 14.25 | 26.75 | 8.902
EBPSO 7 30% | 90% 9.8 31.2 | 5.616
MGA 7 15% | 35% | 19.95| 21.05 | 8.929

Table 3. Comparison

of the results obtained

by our multiobjective versions of PSO, our

single-objective
a human designer

b.s.=best solution.

E

B
A
D
C

PSO versions,
for the first example.

MGA and

S=(((E+D)Ba A)(C+ (ED))e B

Figure 5. Diagram and boolean expression
to the best solution found for

corresponding
example 2.
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Table 4. Truth table for example 2.

5.2 Example?2

Oursecondexamplehas5 inputsandl output,asshovn
in Table4. Theadditionalparameteradoptedareshovn in
Table5. In Table6, we shov a comparisorof theresultsof
all theapproacheadopted.Thebestsolutionfoundfor this
examplehas7 gatesandis graphicallyshavn in Figure5.
In this case honeof thebinaryversionsof PSOwasableto
producefeasiblecircuits, which exemplifiesthe usefulness
of adoptingintegerencodingsn PSO.Thereweremixedre-
sultsfor the otherapproachesBoth EAMPSOandEAPSO
foundthebestsolutionwith the samefrequeng (15%), but
EAMPSOfound feasiblecircuits 40% of the time (versus
35%of EAPSO).In termsof averagditnessbothEAMPSO
andEAPSOhadsimilar results(41.7vs. 40.45). Thus,we
canconcludethatEAMPSOwasthebestoverall performer
in this example.Interestingly EBPSOhadboththe highest
averagefitness(41.9)andthehighestpercentagef feasible
circuits(45%),butwasnotableto find acircuit with 7 gates.
TheMGA wasableto find circuitswith 7 gateshut bothits
percentagef feasiblecircuits (20%)andits averagefitness
(36) werelow in comparisorwith the multi-objectve PSO
approaches.

Technique | Population size | Iterations FFE
MPSO 99 20,000 | 1,980,000
PSO 50 39,600 | 1,980,000
MGA 330 6,000 1,980,000

Table 5. Parameters adopted for example 2.
FFE = Fitness function evaluations.

approach | gates | freq. | feas. | avg.# | avg. std.
b.s. b.s. | circs. | gates | fitn. dev.
BMPSO * 0% 0% * 29.8 | 0.410
EAMPSO 7 15% | 40% | 26.3 | 41.7 | 14.543
EBMPSO 7 5% 20% | 32.25| 35.75| 11.461
BPSO * 0% 0% * 29.9 | 0.308
EAPSO 7 15% | 35% | 27.55 | 40.45 | 14.529
EBPSO 8 20% | 45% | 26.1 | 41.9 | 13.619
MGA 8 5% 20% 38 36 13.322

Table 6. Comparison of the results obtained
by our multiobjective versions of PSO, our
single-objective PSO versions, MGA and a
human designer for the second example.
b.s.=best solution.

5.3 Example3

Our third examplehas4 inputsand2 outputsasshovn
in Table7. Theadditionalparametersidoptedareshavn in
Table8. In Table9, we shov a comparisorof theresultsof
all theapproacheadopted.Thebestsolutionfoundfor this
examplehas? gatesandis graphicallyshovnin Figure6. In
this case,BPSOproducedconsiderablybetterresultsthan
its multi-objective counterparfBMPSO) both in termsof
averagefitness(46.95vs. 38.60)andin termsof percentage
of feasiblecircuits produced(95% vs. 50%). EAMPSO,
however, wasableto considerablymprove the resultspro-
ducedby its single-objectie counterpar{EAPSO)alsoin
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Table 7. Truth table for example 3.



Technique | Population size | Iterations FFE
MPSO 99 2,000 198,000
PSO 50 4,000 200,000
MGA 330 610 201,300

Table 8. Parameters adopted for example 3.
FFE = Fitness function evaluations.

approach | gates | freq. | feas. | avg. # | avg. std.

b.s. b.s. | circs. | gates | fitn. dev.
BMPSO 7 10% | 50% 18.4 38.6 | 8.210
EAMPSO 7 65% | 100% | 7.75 | 49.25| 1.333
EBMPSO 7 90% | 100% | 7.15 | 49.85 | 0.489
BPSO 7 30% | 95% | 10.05 | 46.95 | 4.330
EAPSO 7 40% | 70% | 13.45 | 43.55| 8.530
EBPSO 7 60% | 100% | 7.75 | 49.25| 1.160
MGA 7 25% | 75% 134 43.6 | 8.090

Table 9. Comparison of the results obtained
by our multiobjective versions of PSO, our
single-objective  PSO versions, MGA and
a human designer for the third example.
b.s.=best solution.

termsof bothaveragdfitness(49.25vs. 43.55)andpercent-
ageof feasiblecircuits produced(100%vs. 70%). Note
that both EBMPSO and EBPSOwere able to find feasi-
ble circuits in all their runs and had similar averagefit-

nesseq49.85vs. 49.25), but the former corverged more
often to the bestsolutionfound (90% vs. 60%). In fact,
EBMPSOwasthe bestoverall performerin this example.
Again, the MGA had a poor performancewith respectto

the PSO-basednulti-objective approache$EAMPSOand
EBMPSO),althoughit hadabetteraveragditnessthanboth
BMPSOandEAPSOandwasalsoableto find thecircuit of

7 gategyeneratedby the PSO-basedpproaches.

So = (CA)(B + D) + BD)'
S = (CA)(B + D)(BD)

Figure 6. Diagram and boolean expression
corresponding to the best solution found for
example 3.

So=(AC® (Ba D)) (Do AC)+ (B® D))
S1=ACe®(Be&D);S,=CaqA

Figure 7. Diagram and boolean expression
corresponding to the best solution found for
example 4.

5.4 Example4

Our fourth examplehas4 inputsand3 outputsasshovn
in Table10. The additionalparametersdoptedare shovn
in Table11. In Table12, we shov a comparisorof there-
sultsof all theapproacheadopted.Thebestsolutionfound
for this examplehas7 gatesandis graphicallyshavn in
Figure7. In this case ,noneof the binary versionsof PSO
wasableto generatdeasiblecircuits. Note thatthe perfor
manceof EAPSOwas betterthan that of EAMPSO both
in termsof averagefitness(55.85vs. 53.30)andin terms
of frequeng with which the bestsolutionwasfound (10%
vs. 5%). However, EBMPSOhada slightly betterperfor
mancethanEBPSObothin termsof averagefitness(58.90
vs. 58.75)andin termsof thefrequeng with whichthebest
solutionwasfound (35%vs. 15%). NeverthelessEBPSO
had a slightly betterpercentageof feasiblecircuits found
thanEBMPSO(70% vs. 65%). Although mamginally, we
concludethat EBMPSOwasthe bestoverall performerin
this example. The MGA wasnot ableto generatecircuits
with 7 gateshut it foundfeasiblecircuitsmoreconsistently
thanmostof the PSO-basedpproaches.

5.5 Example5

Our fifth examplehas4 inputsand4 outputs,asshovn
in Table 13. The additionalparametersadoptedare shavn
in Table14. In Table15, we shov a comparisorof there-
sultsof all theapproacheadopted.Thebestsolutionfound
for this examplehas7 gatesandis graphicallyshavn in
Figure8. In this case,noneof the binary versionsof PSO
wasableto producefeasiblecircuits. The performanceof
EAMPSO was considerablybetterthan that of its single-
objective counterpar{EAPSO)bothin termsof frequeng
of the bestsolution found (30% vs. 10%) asin termsof



D C B A | Sp S1 So
0O 0 0 o 0 0 0
0O 0 0 1 0 0 1
o 0 1 o0 0 1 0
o 0 1 1 0 1 1
o 1 0 O 0 0 1
0O 1 0 1 0 1 0
o 1 1 o0 0 1 1
o 1 1 1 1 0 0
1 0 0 O 0 1 0
1 0 0 1 0 1 1
1 0 1 O 1 0 0
1 0 1 1 1 0 1
1 1 0 O 0 1 1
1 1 0 1 1 0 0
1 1 1 O 1 0 1
1 1 1 1 1 1 0

Table 10. Truth table for example 4.

Technique | Population size | lterations FFE
MPSO 147 5,000 735,000
PSO 50 14,700 735,000
MGA 490 1,500 735,000

Table 11. Parameter s adopted for example 4.
FFE = Fitness function evaluations.

approach | gates | freq. | feas. | avg.# | avg. std.

b.s. b.s. | circs. | gates | fitn. dev.
BMPSO * 0% 0% * 445 | 1.100
EAMPSO 7 5% 45% | 19.7 | 53.3 | 8.053
EBMPSO 7 35% | 65% | 14.1 | 58.9 | 8.985
BPSO * 0% 0% * 45.65 | 1.089
EAPSO 7 10% | 55% | 17.15| 55.85 | 8.610
EBPSO 7 15% | 70% | 14.25 | 58.75 | 8.123
MGA 8 10% | 70% | 15.9 | 57.1 | 7.490

Table 12. Comparison of the results ob-
tained by our multiobjective versions of PSO,
our single-objective PSO versions, MGA and
a human designer for the fourth example.
b.s.=best solution.
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So = (CA)(DB); S3 = CA
S, = DB & (CA)(DB); S; = DA@® BC

Figure 8. Diagram and boolean expression
corresponding to the best solution found for
example 5.

0
o
A
0
M)
0
w

RPRRRPRRPRLRRPOOOOOOOOUT
PRPRRPPOOOORRLRELRLRFRPROOOOOD
PRPOORRFPROORRFROORRFROOIM
PORPORPRORPRORPRORORORO>
EE=ReE=NeNeNeoNeNoNcNoNcNoNoNoNe]
OFRPROORFPROOO0OO0ODO0OO0OO0OOO0OO
ORRPRORORORFROOOOOO
PORPOOOOOROROOOOO

Table 13. Truth table for example 5.

the percentagef feasiblecircuits found (80% vs. 35%).
EBMPSO had also a better performancethan its single-
objective counterpar{EBPSO)bothin termsof frequeng
of the bestsolutionfound (25% vs. 15%) asin termsof
the percentagef feasiblecircuits found (75% vs. 35%).
In this case,the MGA performedbetterthan ary of the
PSO-base@dpproachesproducingthe highestaveragefit-
ness(80.4)with thelowestnumberof fithessfunctioneval-
uations. Thus,the MGA wasthe bestoverall performerin
this example.

6 Conclusionsand Future Work

In this paper we have introduceda population-based
PSOapproachto designcombinationalogic circuits. Six
PSO-basedlgorithmswere compared(using both single-
and multi-objectve schemesand different encodings).
Also, a population-basedeneticalgorithm(MGA) wasin-
cludedin the comparison. The resultsindicate that the



Technique | Population size | Iterations FFE
MPSO 195 5,000 975,000
PSO 50 19,500 | 975,000
MGA 650 500 325,000

Table 14. Parameter s adopted for example 5.
FFE = Fitness function evaluations.

approach | gates | freq. | feas. | avg. # | avg. std.

b.s. b.s. | circs. | gates | fitn. dev.
BMPSO * 0% 0% * 60.35 | 0.7452
EAMPSO 7 30% | 80% 11.8 77.2 | 7.7432
EBMPSO 7 25% | 75% 13.15 | 75.85 | 8.0934
BPSO * 0% 0% * 60.75 | 0.6387
EAPSO 7 10% | 35% 21.2 67.8 | 8.9713
EBPSO 7 15% | 35% 22.05 | 66.95 8.64
MGA 7 15% | 100% 8.6 80.4 1.14
Table 15. Comparison of the results ob-

tained by our multiobjective versions of PSO,
our single-objective PSO versions, MGA and
a human designer for the fifth example.
b.s.=best solution.

population-based SO approacheproposedperform bet-
ter than the MGA. Also, within the six PSO-basedech-
niguescomparedthoseadoptingboth multi-objective se-
lection schemesand an Integer B encoding[4] were the
bestoverall performers.Fromtheresults,it canbe clearly
seenthatthe useof binary PSOis not a goodchoicewhen
designingcombinationalogic circuits, sincein somecases
this sort of encodingwasnot ableto evenreachthe feasi-
ble region. Also, theresultsseemto suggesthatPSOis a
bettersearchenginethana geneticalgorithmwhenadopt-
ing the population-basedelectionschemedescribedn this
paper

As partof our future work, we areinterestedn explor-
ing alternatve encodingge.g.,graphsandtrees)that have
not beenusedso far in particle swarm optimizers. We are
alsointerestedn studyingsomealternatie multi-objective
selectionschemeqe.g., Paretoranking) in the context of
combinationaktircuit designusingPSO[5].
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