
A. Gelbukh and A.F. Kuri Morales (Eds.): MICAI 2007, LNAI 4827, pp. 30–40, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Genetic Representation for Dynamic System
Qualitative Models on Genetic Programming: A Gene

Expression Programming Approach

Ramiro Serrato Paniagua1, Juan J. Flores Romero1, and Carlos A. Coello Coello2

1 División de Estudios de Posgrado, Facultad de Ingeniería Eléctrica, Universidad
Michoacana de San Nicolás de Hidalgo, Morelia 58000, México

2 CINVESTAV-IPN, Computer Science Department, México City 07360, México
raspacorp@yahoo.com.mx, juanf@umich.mx, ccoello@cs.cinvestav.mx

Abstract. In this work we design a genetic representation and its genetic
operators to encode individuals for evolving Dynamic System Models in a
Qualitative Differential Equation form, for System Identification. The
representation proposed, can be implemented in almost every programming
language without the need of complex data structures, this representation gives
us the possibility to encode an individual whose phenotype is a Qualitative
Differential Equation in QSIM representation. The Evolutionary Computation
paradigm we propose for evolving structures like those found in the QSIM
representation, is a variation of Genetic Programming called Gene Expression
Programming. Our proposal represents an important variation in the multi-gene
chromosome structure of Gene Expression Programming at the level of the gene
codification structure. This gives us an efficient way of evolving QSIM
Qualitative Differential Equations and the basis of an Evolutionary
Computation approach to Qualitative System Identification.

Keywords: Genetic Representation, Genetic Programming, Gene Expression
Programming, Qualitative Reasoning, QSIM, System Identification, Evolutionary
Computation.

1 Introduction

A Qualitative Model is a qualitative description of a phenomenon, that description is
useful for answering particular questions about it; those questions are focused on the
phenomenon-behavior’s qualitative characteristics. The phenomena could be
Dynamic Systems in the real world. QSIM is a formalism that allows us to model
qualitatively a Dynamic System, it has a firm mathematical foundation and is easy to
understand. In this work QSIM is used for representing Qualitative Models in a novel
Genetic Representation. The final goal of this representation is to be part of an
Evolutionary Algorithm which will perform System Identification (System
Identification is the task of discovering a model from observations [6], also called
Model Learning). The proposed Genetic Representation is easy to implement because
it does not use any complex data structure (such as nonlinear pointer-based trees or

 A Genetic Representation for Dynamic System Qualitative Models 31

graphs), it uses a linear chromosome representation based on Gene Expression
Programming (GEP) created by Ferreira [4]. Nevertheless, our representation makes
important variations which give it the capability of storing Qualitative Differential
Equations in QSIM form.

There is few work on Qualitative System Identification using the QSIM
representation and Evolutionary Computation. Alen Varsek [2] built a Qualitative
Model Learner based on QSIM that uses Genetic Programming (GP). He uses a
binary tree representation where the leaves are QSIM constraints and branching points
form the hierarchical structure, trees have different sizes and number of leaves in a
given interval. The genetic operators used are the classic GP operators described in
[3]. The genetic representation is not discussed enough in Varsek’s work. He does not
describe the Function and Terminal sets used in his GP algorithm. In the examples
used in Varsek’s paper there are no constraints with corresponding values, it is
commented in the article that this assumption is for simplifying the model. However,
Varsek does not specify clearly if this choice was made because of a limitation of the
representation, a poor performance of the evolution process, an excessive cost in time
and space, or any other aspect. Corresponding values give the QSIM constraints an
important expressive power; by using them we can introduce pieces of previous
knowledge about the system being modeled, and thus more likely to improve the
learned-models accuracy.

Another approach on learning Qualitative Models is the work by Khoury, Guerin
and Coghill [7]. They built a semi-quantitative model learner using GP, using a tree
representation. They do not use QSIM for the model representation but a
combination of Fuzzy Vector Envisionment and Differential Planes. By using a
Framework called ECJ, they use Automated Defined Functions (ADFs), which allow
them to reuse pieces of the tree in any branch of it. The Terminal set contains all the
types of leaves in the tree, which can be Ephemeral Random Constants, variables in
the form of fuzzy vectors, and finally ADFs that allow the algorithm to embed
restrictions. The Function set contains arithmetic operators as well as ADFs.
Basically, the tree representation structure is as follows: the root of the tree is a main
ADF function, whose number of arguments define the number of branches at the first
depth-level in the tree and therefore, the number of constraints encoded. After the
first depth level, there are the subtrees that represent the constraints. The trees have
not a fixed size, but have a maximum length; they do not describe in detail the
genetic operators used; they only comment about the use of crossover and
reproduction, so it should be assumed they used the Koza’s definitions. In the
conclusion they mention that GP is a costly method from the point of view of
computational resources, very probably the evaluation of the fitness function is the
main factor for that computational cost. Also, another factor could be the nonlinear
pointer tree representation if used, the use of a Java based GP framework instead of
one based in C/C++ could be another factor.

Section 2 presents the concepts that serve as basis for the development of the
present work. Section 3 describes the proposed genetic representation. Section 4
defines the genetic operators that can be applied to the individuals.

32 R.S. Paniagua, J.J.F. Romero, and C.A.C. Coello

2 Background

Evolutionary Computation is based fundamentally on Darwin Natural Evolution.
Natural Evolution can be seen as a natural population-based optimization process [1],
where the stronger individuals are those who are more adapted to their environment
and are a product of that optimization process. Those strong individuals have a bigger
probability to survive in their environment and as a consequence, to propagate their
genetic information through the population in the next generations. In Evolutionary
Computation, individuals are possible solutions to problems that human beings want
to solve, commonly those problems are engineering or mathematical problems which
are not easy to solve using other techniques. Natural evolution does not change the
individuals characteristics at the level of their phenotype, it works in their genetics.
This indirect change gives this process a powerful exploring mechanism due to the
Pleiotropy and Poligeny [1] effects and many others present in the genes coding-
decoding process. In Evolutionary Computation there are some paradigms that make
use of evolution at the level of genetics, two of them are: Genetic Algorithms and
Gene Expression Programming.

One of the main aspects in the evolution process operation is the Genetic
Representation. Genetic Representation is the way nature encodes the phenotypic
characteristics in the genes, therefore the Genetic Representation must be expressive
enough to encode every possible phenotypic characteristic for that specie of
individuals. In the same way, Evolutionary-Computation Genetic Representation has
to be sufficiently expressive to encode every possible solution for an specific problem
in its search space. Another aspect that the Genetic Representation has to satisfy, is
the one related to the correct applicability of genetic operations, in Evolutionary
Computation it is also desired that genetic operators can be easily implemented.

2.1 Genetic Programming

GP is an Evolutionary Computation Paradigm whose aim is to deal with the problem
of Program Induction [3]. That is, the discovery, from the search space containing all
possible computer programs, of a program that produces some desired output when
presented with some particular input. A wide variety of problems can be expressed as
problems of program induction. This means that a computer program could be seen as
a generic representation form, for possible solutions to those problems. So, computer
programs may represent a formula, a control strategy, a video game, a mathematical
model, etc. Computer programs are hierarchical structures that can fit a tree form, that
tree is called "computer program parse tree", GP population individuals are computer
programs parse trees. GP representation is thus a non-linear non-fixed length
structure. In this paradigm there is not a clear separation between the phenotype and
the genotype; an individual functions simultaneously as genome and phenome.

2.2 Gene Expression Programming

GEP is a genotype/phenotype evolutionary algorithm [4]. Its representation is a fixed
length multigenic linear chromosome, where the genes have a special structure
composed of a head and a tail. It is important to notice that the fixed length affects the

 A Genetic Representation for Dynamic System Qualitative Models 33

genotype of the individuals, but the decoded individuals (Computer Programs parse
trees) can have different sizes and shapes. The GEP individuals encode parse trees of
computer programs like in GP but GEP evolutionary process works at the level of the
genotype. Ferreira [4] proposes the use of a set of genetic operators: Replication,
Mutation, IS Transposition, RIS Transposition, Gene Transposition, 1-Point
Recombination, 2-Point Recombination, Gene Recombination (Recombination is also
called Crossover). As Ferreira comments [4], the advantages of a Genetic
Representation like the one in GEP are the following. The chromosomes are simple
entities: linear, compact, relatively small, easy to manipulate genetically. The genetic
operators applied to them are less restricted than those used in GP for example, the
mutation operator in GP differs from point mutation in nature in order to guarantee
the creation of syntactically correct programs (as observed by Ferreira in [4]). The
implementation of mutation in GP as shown in [3] first randomly selects a node from
the parse tree, then the node and the sub-expression tree below the node are replaced
with a randomly generated tree.

The coding in the GEP chromosomes is named Karva language, the genes in the
chromosome contain entities called open reading frames (ORFs) whose length defines
the length of the sub-expression tree encoded in the gene. The ORFs length could be
equal or less than the length of the gene, this allows the possibility of encoding trees
with different sizes and shapes. But if the encoded tree is not always using all the
space in the gene, what is the function of those non-coding regions? These regions
allow the algorithm the modification through genetic operators of the chromosome
without restrictions, because the size and structure of the genes remains constant
despite the size of the encoded sub-expression tree. Also, these non-coding regions
can store important genetic information that can emerge again in the evolutionary
process.

2.3 QSIM

QSIM is a representation for Qualitative Differential Equations (QDEs); QSIM is also
an algorithm for qualitative model simulation. In this paper we will focus on the
QSIM representation. QDEs are abstractions of differential equations and differential
equations are as well abstractions or models of the real world Physical Systems.
QDEs are Qualitative Models, which are general descriptions of the qualitative
characteristics and behaviors of a physical phenomenon. These models express states
of incomplete knowledge and can be used to infer useful conclusions about the
behaviors of that phenomenon.

In the QSIM representation [5], a QDE is a 4-tuple <V,Q,C,T>, where V is a set of
qualitative variables (this variables represent reasonable functions of time); Q is a set
of quantity spaces one for each variable in V; C is a set of constraints applying to the
variables in V; T is a set of transitions which define the domain of applicability of the
QDE. The quantity space of a variable is a totally ordered list of important values that
serve as qualitative-regions boundaries, those values are called landmark values or
simply landmarks. The qualitative constraints are relationships among the qualitative
variables in the QDE. There is a basic repertoire of constraints in QSIM. Figure 1 lists
those constraints and their meanings.

34 R.S. Paniagua, J.J.F. Romero, and C.A.C. Coello

In Figure 1, the points between brackets are the corresponding values (brackets
indicate they are optional), which are tuples of landmark values that the variables can
take in some constraint; in other words, the point where the constraint is satisfied. In
the description of the basic set of constraints shown in Figure1, there are some
constraints that do not use corresponding values, these are the derivative and the
constant constraints.

(add x y z [(a1 b1 c1) (a2 b2 c2) ...]) iff (�t) x(t) + y(t)= z(t) and (�i) ai + bi = ci {corresponding values}
(mult x y z [(a1 b1 c1) (a2 b2 c2) ...]) iff (�t) x(t) ⋅ y(t) = z(t) and (�i) ai ⋅ bi = ci
(minus x y [(a1 b1) (a2 b2) ...]) iff (�t) y(t) = - x(t) and (�i) bi = - ai
(d/dt x y) iff (�t) y(t) = (d/dt) x(t)
(constant x)
(M+ x y [(a1 b1) (a2 b2) ...]) iff (�t) y(t) = f(x(t)) where f belongs to the set of reasonable monotonously
increasing functions and (�t)(�i) x(t) = ai iff y(t) = bi
(M- x y [(a1 b1) (a2 b2) ...]) iff (�t) y(t) = f(x(t)) where f belongs to the set of reasonable monotonously
decreasing functions and (�t)(�i) x(t) = ai iff y(t) = bi

Fig. 1. The QSIM constraints basic set

3 Genetic Representation

Genetic Programming (GP) [3] and Gene Expression Programming (GEP) [4] are
Evolutionary Algorithms that evolve computer programs. They differ in the
representation and in the form of their genetic operators; both of them use two
element sets that form the alphabet used in their representation. Those sets are F the
set of functions and T the set of terminals [3][4].

The GEP representation encodes an expression tree, like in GP. The difference
between them is that GP individuals are directly the computer-programs parse trees
while GEP uses a phenotype-genotype approach, the genotype is structured by a
multi-gene chromosome and the phenotype is the computer-program parse tree. Each
gene encodes a sub-expression tree (a piece of the computer-program parse tree)
using the Karva notation, which is just a width-first linearization of the sub-
expression tree (see [4]), the full expression tree (the computer-program parse tree)
encoded in the chromosome is the result of linking the sub-expressions in each gene
using a link function [4] (i. e. A function used to join the sub-expression trees in the
decoding process). Each gene in the GEP Genetic Representation has a two-part
structure which is formed by a head and a tail [4], this structure guarantees that every
gene decodes to a valid sub-expression tree; the head contains functions or terminals
while the tail contains only terminals, see Figure 2.

The name for the proposed representation is "Qualitative Model Genetic
Representation" (QMGR).

In GP and GEP there are 2 sets F and T whose union contains all possible elements
in an individual tree or chromosome; in QMGR we have F, T and a third one L. The F
set is formed of the QSIM constraints; T contains the qualitative variables given by
the user; L is the set of all landmark values of the variables quantity spaces in the
model. The union of these three sets contains all possible elements in a QMGR
chromosome.

 A Genetic Representation for Dynamic System Qualitative Models 35

Fig. 2. GEP Genetic Representation

For QSIM models it is not needed to use the Karva notation because those models
do not have a tree form necessarily. The structure of the chromosome in the proposed
Genetic Representation has a head-tail structure as GEP, we added a third part called
CV because it contains the corresponding values of the QSIM constraints. We fixed
the head’s length to one because it is always encoded one QSIM constraint in a gene
(i. e. the head of each gene stores the name of a constraint). The length of the tail is
determined by the maximum arity of the functions in F since the tail contains the
arguments applied to the constraint defined in the head; Equation 1 determines the
length of the CV.

cvLength = maxA * numCV (1)

where numCV is the number of corresponding values to be encoded; maxA is the
greatest arity of all functions in the F set. Table 1 shows a comparative between GEP
and QMGR chromosome’s structre.

In QMGR it is encoded one QSIM constraint per gene, therefore the number of
constraints in an individual is the same as the number of genes. The user has to make
a good choice of the number of genes he would use, as well as the other parameters in
the algorithm.

Figure 3 shows how a set of QSIM constraints is encoded in a chromosome using
QMGR. For the easy reading and for efficiency in storing the chromosome’s linear
structure, we use a mapping between the name of a QSIM constraint and a one-
character symbol to be stored in the chromosome (this could be also used with the
variables and the landmarks if needed) see Figure 3.

This representation provides a generic structure that allows encoding restrictions of
any arity and any number of corresponding values, which are encoded in the CV
region of each gene. To encode constraints that do not use corresponding values, we
need a form of representing the absence of them. In a QMGR individual all genes in a
chromosome have the same structure, for example if we have a maximum arity of 3 in
the F set and a number of corresponding values equal to 2, the length of the CV will
be 6 by using the equation (1). The CV length is a parameter that affects all the
individuals in an instance of the QMGR. We define an instance of QMGR as the set
which contains all the individuals being processed or studied, the F, T, and L sets, as
well as the structural characteristics of the chromosomes in that instance, those are:

36 R.S. Paniagua, J.J.F. Romero, and C.A.C. Coello

the head, tail, CV and gene lengths, the number of corresponding values, the number
of genes and the chromosome length.

To solve the problem of encoding constraints that do not use corresponding values
or that have a less number of them than the given as parameter, we can introduce an
element to the L set which represents the absence of a corresponding value. This
element could be represented as the symbol “#” and called “null element”. Thus, the
chromosome-decoding parser will know when to omit the creation of corresponding
values if it finds a null character. This approach allows QMGR to encode constraints
that do not use corresponding values or to modify the number of them. This null
element can be inserted in the individuals randomly during the initial population
creation in an evolutionary algorithm. We also use another approach for dealing with
the absence of corresponding values by means of the crossover operator, this
approach is described in section 4.1.

4 The Genetic Operators

The role of genetic operators in an evolutionary computation algorithm is to serve as
the evolutionary-process engine. Genetic operators allow the evolutionary process to
explore and exploit the search space. The genetic-operators main goal is the
introduction of genetic diversity in the population of individuals in an evolutionary
process. We propose three genetic operators for using with QMGR individuals, one-
and two- point crossover and mutation.

Table 1. GEP and QMGR chromosome’s structure comparative

Structure’s part GEP QMGR
Head Contains symbols from

F U T; the length can be
defined of any size.

Contains symbols from F; the
length is fixed to 1.

Tail Contains symbols from T;
the length is a function of the
head’s length and the
maximum arity of all functions
in F.

t=h(n-1)+1

Where t is the length of the

head, and n is the maximum
arity.

Contains symbols from T; the
length is always equal to the
maximum arity of the constraints
in F.

CV Not existent. Contains symbols from L; its
length is a function of the
number of corresponding values
and the maximum arity of the
constraints in F, see equation 1.

 A Genetic Representation for Dynamic System Qualitative Models 37

4.1 Crossover

The crossover genetic operator can be easily applied to QMGR individuals. The
structure of QMGR allows us to implement the crossover operators defined in GEP
and in Genetic Algorithms; this feature can be generalized to n-point crossover. The
QMGR structure guarantees that any offspring derived from the crossover operation
will encode a valid QSIM-QDE, this is inherited from the GEP representation [4]. The
one- and two- point crossover operators are illustrated in Figure 4.

Fig. 3. QMGR Genetic Representation

It is necessary to observe that crossover can generate offspring with non-valid
corresponding values. For example, let us suppose we have the following 1-gene
individuals in an instance of QMGR, with the following chromosome structural-
parameters: CV length equal to 6, maximum arity equal to 3 and number of
corresponding values equal to 2.

0 1 2 3 4 5 6 7 8 9
+ x y z a c e b d f
- y z z d e c e a c

The quantity spaces of the variables are:
x: a … b
y: c … d
z: e … f

The elements in the positions of the CV in each individual gene are valid landmarks
in the quantity space of their respective variables. Therefore, all the decoded
corresponding values in the CVs will be valid.

38 R.S. Paniagua, J.J.F. Romero, and C.A.C. Coello

If we select a crossover point between position 4 and 5 the offspring will be the
following.

0 1 2 3 4 5 6 7 8 9
+ x y z a e c e a c
 - y z z d c e b d f

Analyzing the genes of these offspring it can be seen that in individual one, the two
corresponding values are (a, e, c) and (e, a, c). In the first corresponding value, “e”
and “c” are landmarks which not belong to the quantity spaces of the respective
variables, these variables are “y” and “z”; in the second corresponding value of the
first individual, none of the landmarks belong to the quantity spaces of the
corresponding variables. Thus both corresponding values of the CV from the first
offspring are invalid. The corresponding values of the second individual are (d, c) and
(e, b). The first element of the corresponding values for this individual corresponds to
the “y” variable and the second element corresponds to the “z” variable. We observe
that the first element of the first corresponding value “d” belongs to the quantity space
of “y” which is the corresponding variable for this element, but “e” does not satisfy
this rule. Neither “c” which is the second element of the first corresponding value nor
“b” which is the second element of the second corresponding value, belongs to the
quantity space of the “z” variable. Thus both corresponding values in the second
offspring are not valid.

In the example, none of the offspring has a valid corresponding value. The problem
of generation of invalid corresponding values through crossover, which also means
the generation of non-valid individuals, can be seen as an advantage. It can be used as
another (see section 3) way of destroying and varying the number of corresponding
values in a constraint. To do that, the chromosome-decoding parser must detect when
a symbol in the CV does not belong to the quantity space of the corresponding
variable, and therefore not decoding it, jumping to the next one, and so on.

The examples in Benjamin Kuipers’ book [5] indicate, that the percentage of
constraints that use corresponding values is very small; that means, in general, that
when we model a physical system we rarely know the points the functions pass
through. The probability assigned to the crossover operators in Genetic Algorithms,
GP and GEP is usually high. If we use QMGR in an evolutionary algorithm and use a
high probability value for crossover, it will be very likely that this operator will
destroy a lot of corresponding values through generations, resulting this in a
continuously decreasing percentage of individuals with valid corresponding values.
This behavior allows the learned models to be more similar to those in the real world.

4.2 Mutation

It is possible to use the point mutation operator on QMGR but we suggest to restrict
the operator in the following case: when the chromosome position to be mutated is
located in the CV of the genes, this is, stores a corresponding value, it should change
the stored value to other that belongs to the set L and also, to the quantity space of the
variable referred by this corresponding value. The reason for this restriction is, for
conserving the number of valid corresponding-values in that gene. As seen in section

 A Genetic Representation for Dynamic System Qualitative Models 39

Fig. 4. Crossover operators

4.1 the corresponding values are destroyed when they contain values not existent in
the quantity space of the referred variable. Crossover in QMGR has a high
corresponding-values destruction power, so it is necessary to avoid that
destructiveness in the mutation operator.

There are two more restrictions in the application of the mutation operator, but
these ones are mandatory for obtaining valid mutated individuals. When the position
to be mutated is located in the tail of any gene, it has to change the stored value only
to one element of T. Finally when the position to be mutated is located in the head of
any gene, it has to change the stored value only to one element of F.

5 Conclusion

In this paper we presented a new Genetic Representation called QMGR. It allows the
easy application of genetic operators like crossover and one-point mutation. It uses a
linear fixed length multigenic chromosome, which can encode qualitative models of
different sizes. QMGR is designed to encode QDEs in the QSIM qualitative
representation. QMGR is efficient because it does not need the use of non-linear
pointer-based data structures. QMGR’s structure encodes the QDEs in a natural form,
storing each constraint in one gene in the QMGR chromosomes. This representation
can be used in an evolutionary algorithm aggregating a fitness evaluation function.
That evaluation function could use the QSIM simulation algorithm for generating the
behaviors of the learned models, those behaviors can then be compared to the
observations of the system to be modeled. Current research work deals with the
implementation of an Evolutionary Algorithm that completes the system identification
process at the qualitative level.

40 R.S. Paniagua, J.J.F. Romero, and C.A.C. Coello

Acknowledgments. The second author acknowledges support from CONACyT
project No. 51729. The third author acknowledges support from CONACyT project
No. 45683-Y.

References

1. Fogel, D.B.: An Introduction to Simulated Evolutionary Optimization. IEEE Transactions
on Neural Networks 5(1) (January 1994)

2. Varsek, A.: Qualitative Model Evolution. IJCAI, 1311–1316 (1991)
3. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural

Selection. MIT Press, Cambridge (1992)
4. Ferreira, C.: Gene Expression Programming: A New Adaptive Algorithm for Solving

Problems. Complex Systems 13(2) (2001)
5. Kuipers, B.: Qualitative Reasoning: Modeling and Simulation with Incomplete Knowledge.

MIT Press, Cambridge (1994)
6. LJung, L.: System Identification Theory for the User. Prentice Hall, USA (1999)
7. Khoury, M., Guerin, F., Coghill, G.M.: Finding semi-quantitative physical models using

genetic programming. In: The 6th annual UK Workshop on Computational Intelligence,
Leeds, 4-6 September, 2006, pp. 245–252 (2006)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

