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ABSTRACT
In recent years, performance indicators were introduced as
a selection mechanism in multi-objective evolutionary algo-
rithms (MOEAs). A very attractive option is the R2 in-
dicator due to its low computational cost and weak-Pareto
compatibility. This indicator requires a set of utility func-
tions, which map each objective to a single value. However,
not all the utility functions available in the literature scale
properly for more than four objectives and the diversity of
the approximation sets is sensitive to the choice of the refe-
rence points during normalization. In this paper, we present
an improved version of a MOEA based on the R2 indicator,
which takes into account these two key aspects, using the
achievement scalarizing function and statistical information
about the population’s proximity to the true Pareto opti-
mal front. Moreover, we present a comparative study with
respect to some other emerging approaches, such as NSGA-
III (based on Pareto dominance), ∆p-DDE (based on the ∆p


indicator) and some other MOEAs based on the R2 indica-
tor, using the DTLZ and WFG test problems. Experimental
results indicate that our approach outperforms the original
algorithm as well as the other MOEAs in the majority of
the test instances, making it a suitable alternative for sol-
ving many-objective optimization problems.


Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: Artificial Intelligence—
Problem Solving, Control Methods, and Search.


Keywords
Multi-objective optimization; performance measures; genetic
algorithms.


1. INTRODUCTION
A wide variety of real-world problems require the simulta-


neous optimization of several (often conflicting) objectives,
whose solution involves finding a set of trade-off solutions.
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These are called Multi-objective Optimization Problems (MOPs)
and for solving them, Multi-objective evolutionary algorithms
(MOEAs) have been proven effective [2], especially when no
gradient information is assumed. An important trend in
MOEAs is the incorporation of performance indicators as a
selection mechanism. This has been mainly motivated by
the fact that Pareto-based selection schemes do not perform
properly when dealing with MOPs having four or more ob-
jectives (the so called many-objective optimization problems
[11]).


The indicator that has been most commonly adopted in
the selection mechanism of a MOEA has been the hyper-
volume [22], being the only unary indicator known to be
Pareto compliant. However, its drawback is that its com-
putational cost grows exponentially as the number of objec-
tives increases. An alternative is the R2 indicator [8], which
is correlated with the hypervolume [19], but requires a much
lower computational cost. Moreover, the use of the R2 in-
dicator is recommended [13] for many-objective problems,
since it simultaneously evaluates convergence and diversity
of an approximation set. One of the first MOEAs that have
been proposed based on this indicator is the Many Objec-
tive Metaheuristic Based on the R2 indicator (MOMBI) [9].
Nevertheless, in some test instances it experimented loss
of diversity for high dimensionality. In this paper, we ad-
dress this problem and propose an improved version, called
MOMBI-II. Furthermore, we provide a comparative study
with respect to other recent MOEAs, such as ∆p - Diffe-
rential Evolution (∆p-DDE) [16], which is based on the ∆p


indicator; the Nondominated Sorting Genetic Algorithm III
(NSGA-III)[4], which relies on Pareto dominance and a ni-
ching strategy; and three MOEAs based on the R2 indicator:
R2-IBEA [15], R2-MOGA [7] and the original MOMBI.


The remainder of this paper is organized as follows. Sec-
tion 2 introduces basic concepts that will be used in the
paper. Section 3 presents an overview of emerging MOEAs
that can handle many-objective problems. Section 4 descri-
bes in detail our proposal. Then, we present the experimen-
tal results in Section 5. Our conclusions and some paths for
future research are provided in Section 6.


2. PRELIMINARIES
The formal definition of a MOP is given by:


Minimize ~f(~x) := (f1(~x), f2(~x), . . . , fm(~x)) (1)


subject to x ∈ S, (2)







where ~x is the decision variable vector, S ⊂ IRn is the fea-


sible region set and ~f(~x) is the vector of m (≥ 2) objective
functions (fi : IRn → IR).


The aim is to seek from among the set of all numbers which
satisfy the constraints functions defined in equation (2) the
particular set ~x ∗ which yields the optimum values of all the
objective functions. In the following, we provide concepts
related to Pareto optimality. Unless otherwise stated, let be
~x, ~y ∈ S.


Definition 1. A decision vector ~x is Pareto optimal if there
does not exist another decision vector ~y such that fi(~y) ≤
fi(~x) for all i ∈ {1, . . . ,m} and fj(~y) < fj(~x) for at least
one index j.


Definition 2. The Pareto Optimal Set P ∗ is defined by:


P ∗ := {~x | ~x is Pareto optimal}.


Definition 3. The Pareto Optimal Front PF ∗ is given by:


PF ∗ := {~f(~x) ∈ IRm | ~x ∈ P ∗}.


Definition 4. A solution ~x is said to weakly dominate a
solution ~y (denoted by ~x � ~y), if and only if ∀i ∈ {1, . . . ,m},
fi(~x) ≤ fi(~y).


Definition 5. A solution ~x is said to dominate a solution


~y (denoted by ~x ≺ ~y), if and only if ~x � ~y ∧ ~f(~x) 6= ~f(~y).


Definition 6. A vector of decision variables ~x ∈ X is non-
dominated with respect to the set X ⊆ S if there does not


exist another vector ~y ∈ X such that ~f(~y) ≺ ~f(~x).


Definition 7. The set of nondominated solutions relative
to the set X is expressed by {~x ∈ X | ~x is nondominated}.


The Pareto optimal front of a multi-objective optimization
problem is bounded by two special vectors:


Definition 8. The ideal objective vector ~z ∗ ∈ IRm mini-
mizes all objective functions. Each ith-component is defined
as z∗i = min~x fi(~x).


Definition 9. The nadir objective vector ~z nad ∈ IRm is
constructed using the worst values of PF ∗. Each ith-com-
ponent is defined as znad


i = max~x∈P ∗ fi(~x).


A utility function u : IRm → IR is a model of the decision
maker’s preference that maps each objective vector into a
scalar value. Given an approximation set A, and a set of
utility functions U , the unary R2 indicator [1] is defined as:


R2(A,U) =
1


|U |
∑
u∈U


u∗(A), (3)


where u∗(A) = min~a∈A{u(~a)} is the best utility value ob-
tained in the set A.1


1For simplicity, we have applied the dual property: min ~z =
−max(−~z), and we also assume that the utility functions
are non-negative.


3. PREVIOUS RELATED WORK
In this section, we review some recently created MOEAs


that were designed for many-objective optimization problems.
∆p-DDE [16] uses the ∆p indicator [18] as the selection


mechanism of differential evolution. Since this semi-metric
requires knowledge about the Pareto optimal front, ∆p-DDE
employs an echelon form of the nondominated individuals.
The complexity of this MOEA is dominated by the building
of the reference set, which is exponential with respect to the
number of objectives and the quality of the outcome sets is
influenced by a resolution parameter.


The Nondominated Sorting Genetic Algorithm III (NSGA-
III) [4] is similar to the original NSGA-II algorithm [5],
which ranks individuals using a nondomination criterion.
But, the maintenance of diversity is aided by a set of weight
vectors. The main advantage of this MOEA is the unifor-
mity of its distributions. However, its implementation is not
trivial, being sensitive to the construction of a hyper-plane.


The R2 Indicator Based Evolutionary Algorithm (R2-
IBEA) [15] is an extension of IBEA [23], which eliminates
Pareto dominance and performs a selection guided by an
exponential amplification of a binary version of the R2 in-
dicator. The set of normalized weight vectors is generated
using a hypervolume-based approach. The reference point
is dynamically updated according to the extent of current
solutions in objective function space.


The R2 Multi-Objective Genetic Algorithm (R2-MOGA)
and R2 Multi-Objective Differential Evolution (R2-MODE)
[7] incorporate the R2 indicator to a modified version of the
nondominated sorting method of NSGA-II [5], in order to
separate individuals into layers. This approach is coupled
to two different search algorithms, resulting in two MOEAs.
The set of weight vectors is generated at each generation
using a random approach. A reference point is updated per
generation using the utopian point.2


The Many-Objective Metaheuristic Based on the R2 In-
dicator (MOMBI) [9] is another example of a MOEA based
on the R2 indicator, which is easy to implement and does
not require Pareto dominance (in the following sections we
will discuss more about it).


These three R2 approaches adopt the weighted Tcheby-
cheff functions as their utility functions.


4. OUR PROPOSED APPROACH
In this section we describe, in order of importance, the


main limitations of the original MOMBI. First, we analyze
the scalability of some utility functions. Then, we provide
a mechanism to update the reference points during norma-
lization. Finally, we introduce MOMBI-II, including a brief
analysis of its computational complexity.


4.1 Scalability of Utility Functions
There are several possible utility functions, the majority


of which have been borrowed from mathematical program-
ming. The most popular is the Weighted Tchebycheff (WT)
metric [12], which is of the form:


utch(~v : ~r, ~w) = max
i∈{1,··· ,m}


{wi|vi − ri|} , (4)


where r ∈ IRm is a reference point, ~w is a weight vector such
that wi ≥ 0 for all i ∈ {1, · · · ,m} and


∑m
i=1 wi = 1. The


2z∗∗i = z∗i − εi for all i ∈ {1, · · · ,m}, where εi > 0 is a
relatively small but computational significant scalar.
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Figure 1: Contour lines of the WT (left) and ASF
(right) metrics for the weight vector ~w = (0.7, 0.3).


minimization of this metric produces weakly Pareto optimal
solutions. The geometric interpretation of equation (4) is
presented in Figure 1. It is interesting to observe that the
contour lines are incongruent with the weight vector.


Another important metric is the Penalty-based Boundary
Intersection (PBI) [21]:


upbi(~v : ~r, ~w) = d1 + θd2, (5)


d1 =


∣∣∣∣(~v − ~r)T ~w∣∣∣∣
||~w|| , (6)


d2 =


∣∣∣∣∣∣∣∣~v − (~r + d1
~w


||~w||


)∣∣∣∣∣∣∣∣ , (7)


where θ > 0 is a penalty parameter. The minimization of the
PBI metric produces Pareto optimal solutions much better
uniformly distributed than those obtained by equation (4).


A metric that has been scarcely studied in MOEAs is the
achievement scalarizing function (ASF) [20], defined as3:


uasf (~v : ~r, ~w) = max
i∈{1,··· ,m}


{
|vi − ri|
wi


}
, (8)


Its minimization produces weakly Pareto optimal solu-
tions. Note that the weight vector agrees with the contour
lines of Figure 1.


When these metrics are incorporated into a MOEA, a set
of weight vectors is required in order to exploit its population-
based nature. Usually, the Simplex-Lattice Design (SLD)
method [17] is the most preferred. In this case, the dis-
tribution of the vectors is equally spaced over a simplex,
producing more points at the boundary than at the center.
This could explain the distinctive distribution generated by
MOEAs based on the WT metric, such as MOEA/D [21]
or MOMBI, where solutions are biased from the center of
the Pareto front to a few boundary points, since this metric
optimizes the opposite weight vectors.


In the following, we examine the scalability of these three
metrics applied to the well-known MOEA/D on the DTLZ3
test problem [6]. We performed 30 independent runs of each
instance from 2 to 8 objectives, adopting the same parameter
settings used in [9]. To assess performance, we employed the
hypervolume indicator.


In Figure 2, we present our experimental results. Here, for
two and three objectives all the metrics gave very similar re-
sults. However, as the number of objectives increases, the


3We consider the absolute value from its original definition.
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Figure 2: Average hypervolume for MOEA/D using
three different scalarizing functions from 2 to 8 ob-
jectives on the DTLZ3 test problem.


performance of PBI and the WT metrics degrades. In con-
trast, the ASF metric obtained the maximum hypervolume
for many-objective problems.


It is important to mention that the only difference between
the WT and ASF utility functions is the weight parameter.
Thus, the former can derive congruent results, if we change
the vectors in such a way that each component is the reci-
procal of those generated by the SLD method4. However, we
decided to incorporate the ASF metric into MOMBI-II and
left for future research the design of other weight vectors.


4.2 Update of Reference Points
In the original version of MOMBI each objective function


was normalized using the following expression:


f ′i(~x) =
fi(~x)− zmin


i


zmax
i − zmin


i


∀i ∈ {1, · · · ,m}, (9)


where ~zmin and ~zmax are the ideal and nadir objective vec-
tors, respectively, taken from the current population.


Some problems with this approach were that the true ideal
vector of the feasible region was never retained, and in conse-
quence, boundary solutions of the Pareto optimal front were
missing. In multi-frontal problems, the nadir objective vec-
tor was always an outlier, causing a poor distribution in the
approximation sets. In high dimensionality, it could happen
that the ideal and the nadir vectors were close, flattening
some objectives and thus causing MOMBI to lose diversity.
Also, the constant update of these vectors made the popu-
lation unstable in the final generations.


In order to overcome these drawbacks, we update the re-
ference points in a smarter way, taking into account sta-
tistical information of previous generations. The idea is to
monitor the nadir point of the parents population at each
generation, determining how close are the individuals from
the true Pareto front. A high variance means that solutions
are far away, which strongly biases the location of the point.
A low variance means that solutions are close, thus, small
movements must be done. This mechanism can serve as a
cut-off of objective space, since outliers are removed.


In Algorithm 1, we present the pseudo-code of this tech-
nique. Here, we use a data structure called record that stores


4The restriction of normalization is dropped without affec-
ting weak Pareto dominance [12]. In order to avoid inde-
terminate form, a computational big scalar can be taken
instead.







Algorithm 1 Update Reference Points


Require: ~zmin, ~zmax, population P , num. objectives m
Ensure: ~zmin and ~zmax


1: Update vectors ~z ∗ and ~z nad


2: zmin
i ← min{zmin


i , z ∗i } ∀i ∈ {1, · · · ,m}
3: Store ~z nad in record
4: Obtain vector of variances ~v ∈ IRm for ~z nad from record
5: if maxj∈{1,··· ,m} vj > α then


6: zmax
i ← maxj∈{1,··· ,m} z


nad
j ∀i ∈ {1, · · · ,m}


7: else
8: for all i ∈ {1, · · · ,m} do
9: if |zmax


i − zmin
i | < ε then


10: zmax
i ← maxj∈{1,··· ,m} z


max
j


11: Mark zmax
i


12: else if z nad
i > zmax


i then
13: zmax


i ← 2z nad
i − zmax


i


14: Mark zmax
i


15: else if vi = 0 and zmax
i has not been marked re-


cently then
16: Obtain the maximum value a for z nad


i from
record


17: zmax
i ← (zmax


i + a)/2
18: Mark zmax


i


19: return ~zmin and ~zmax


the nadir vector of a few generations. We also need the pa-
rameter α, which is the threshold of variances for the vector
~z nad, and the parameter ε, which is a tolerance threshold.
In line 1, the ideal and nadir objective vectors are updated
using Definitions 8 and 9. In line 2, if ~zmin is improved,
then it is updated. In lines 3 and 4, the nadir vector is kept
in record and its vector of variances, for each objective, is
estimated. If the maximum variance of all objectives is high,
then ~zmax is updated using the maximum objective of the
nadir vector (lines 5 and 6). Otherwise, from lines 8 to 18,
each component of ~zmax is examined. If the absolute diffe-
rence between its ith value and zmin


i is less than ε, then it is
marked and updated, using the maximum objective of ~zmax.
Otherwise, if the ith value of the nadir vector is greater than
the component, then it is expanded and marked. Otherwise,
if the variance is zero and zmax


i has not been marked yet,
then it is marked and averaged between its previous value
and the maximum value stored for it in record. In all cases,
the mark lasts the same number of generations that record
is kept. The total complexity of this algorithm can be done
in O(|P |m), where |P | denotes the population size.


4.3 MOMBI-II
In this subsection, we introduce MOMBI-II (Many-Objec-


tive Metaheuristic Based on the R2 Indicator II), which is
inspired on a Genetic Algorithm.


The R2 ranking procedure (see Algorithm 2) remains al-
most with no changes. Solutions that optimize the set of
weight vectors are chosen and placed on top such that they
get the first rank (the best). Such points will then be re-
moved and a second rank will be identified in the same
manner. The process will continue until all the solutions
had been ranked. When two individuals contribute with
the same utility value, then we choose as tiebreaker the one
with the lower Euclidean distance. This eliminates weak-
Pareto solutions. The ASF metric is adopted as our utility
function. The notation assumes that each individual p con-


Algorithm 2 R2 Ranking Algorithm


Require: Population P , set of weight vectors W
Ensure: Ranking of the population
1: p.rank ← p.α←∞ ∀p ∈ P
2: for all ~w ∈W do
3: for all p ∈ P do


4: p.α← uasf (p. ~f : ~0, ~w)
5: Sort P w.r.t. the fields α and L2 in increasing order
6: rank ← 1
7: for all p ∈ P do
8: p.rank ← min{p.rank, rank}
9: rank ← rank + 1


Algorithm 3 Main Loop of MOMBI-II


Require: MOP, stopping criterion, set of weight vectors W
Ensure: Pareto set approximation
1: Initialize population Pi, i← 1
2: Evaluate population Pi


3: Calculate the L2-norm of objectives for Pi


4: Set ~zmin ← ~z ∗ and ~zmax ← ~z nad


5: while termination condition is not fulfilled do
6: Perform parent selection
7: Generate offspring P ′i using variation operators
8: Evaluate population P ′i
9: Calculate the L2-norm of objectives for P ′i


10: Normalize objective functions for Pi


⋃
P ′i


11: Execute R2 ranking algorithm (Pi


⋃
P ′i ,W )


12: Reduce population Pi+1 ← {Pi


⋃
P ′i}


13: Update reference points (~zmin, ~zmax, Pi+1,m)
14: i←i + 1
15: return Pi


tains the vector of objective functions p. ~f , the hierarchy
of the individual p.rank and p.α, the current utility value
for a weight vector ~w. The complexity of the algorithm is
O(|W ||P |(log |P |+m)).


The main loop of MOMBI-II is presented in Algorithm 3.
The normalization step in line 10 is performed using equa-
tion (9). The criteria for population reduction takes into
account the rank of each individual and the Euclidean dis-
tance. Next, we determine the complexity of this approach.
Parent selection is performed in O(|P |), as well as the off-
spring generation. The evaluation of the population, the
calculation of the norm, the update of reference points and
the normalization is done in O(|P |m) each. As seen before,
the ranking procedure takes O(|W ||P |(log |P |+m)) and the
reduction can be performed in O(|P | log |P |). Therefore,
the overall complexity of MOMBI-II at each generation is
O(|W ||P |(log |P |+m)) and the storage is O(|P |m).


5. EXPERIMENTAL RESULTS
In this section, we first describe the parameters used to


compare the performance on 3, 5 and 10 objectives of ∆p-
DDE, NSGA-III, R2-MOGA, R2-IBEA5, MOMBI-II and
MOMBI. With the aim of evaluating the impact of only one
improvement in the proposed MOEA, we considered another
version, named MOMBI-ASF, which incorporates the ASF
metric and the normalization is done as in the original algo-


5Ten objectives were excluded from the study, since this
MOEA is scalable up to 5 objectives [15].







Table 1: Parameters adopted in the study.


m
Weights |P | ∆p-DDE WFG


H Href r n k
3 12 66 92 10 24 4
5 5 30 126 4 47 8
10 3 10 220 3 105 18


rithm. Then, we establish the adopted performance metric
in the experiments, the test problems and finalize with the
discussion of the results.


5.1 Parameters Settings
The parameters were identical for all the algorithms (see


Table 1). The set of weight vectors was generated using the
SLD method. Its cardinality is given by the combinatorial
number:


|W | =


(
H +m− 1


m− 1


)
, (10)


where m represents the number of objectives and H is a
proportionality parameter. The population size |P | was the
same as the number of weight vectors, except for 3 objec-
tives (in this case, it was increased by 1 to fulfill the re-
quirement of adopting even numbers in the binary tourna-
ment selection). For ∆p-DDE, the p-norm was set to 1, the
parameters F and C were both established to 0.5 and the
resolution of the reference set r varied according to the ob-
jectives as shown in Table 1. In the genetic algorithms, the
variation operators were simulated binary crossover (SBX)
and polynomial-based mutation [3]. As suggested in [4], the
crossover rate and its distribution index were set to 1.0 and
30, respectively. The mutation rate was set to 1/n (here, n
represents the number of variables) and its distributed in-
dex was set to 20. All these MOEAs were implemented using
real-numbers encoding and their source code was provided
by their authors, except for NSGA-III.


For MOMBI-II, the parameters ε and α were set to 1e− 3
and 0.5, respectively. These values were determined from
an analysis of several samplings. We observed that they are
independent of the dimensionality and the problem to be
solved. As an example, we show in Figure 3(a) the median
values of the ∆2 indicator (see next subsection for its defini-
tion) for 30 independent runs of DTLZ1 with 5 objectives.
Similarly, the record size (used for tracing the variance of
the nadir vector) was set to 5 generations. It can be ap-
preciated from Figure 3(b), that low values of the indicator
are achievable using this value and it is computationally less
expensive than if we perform the normalization at every gen-
eration.


5.2 Performance Measure
We selected the ∆p [18] as a performance assessment mea-


sure. This indicator simultaneously evaluate proximity to
the Pareto optimal front and spread of solutions along it.
Given an approximation set A and a discretized Pareto op-
timal front PF of a MOP, the ∆p indicator is defined as:


∆p(A,PF) = max


(∑|A|i=1 d
p
i


|A|


) 1
p


,


(∑|PF|
i=1 epi
|PF|


) 1
p


 ,


(11)
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Figure 3: Parameter sampling in MOMBI-II for the
DTLZ1 with 5 objectives.


where di is the Euclidean distance from ai ∈ A to its nearest
member in PF and ei is the Euclidean distance from pfi ∈
PF to its nearest member in A. Small values of ∆p are
preferred.


Since this indicator requires that PF is known, we sam-
pled it for each type of geometry in the adopted test pro-
blems by generating a set of weight vectors using the SLD
method and then finding the intersection point of PF with
the lines defined between the origin and the weight vectors.
The number of points in PF is defined by equation (10),
using the parameter Href of Table 1.


5.3 Test Problems
For comparison purposes, we select four normalized pro-


blems of the Deb-Thiele-Laumanns-Zitzler (DTLZ) set [6].
These are DTLZ1, with a linear and multi-frontal Pareto
front and the others with a concave geometry: DTLZ2,
DTLZ3 (multi-frontal) and DTLZ4 (biased). We also in-
clude in the study two problems of the Walking-Fish-Group
(WFG) set [10], which are concave with different scale in
each objective. Such instances are WFG6 (non-separable)
and WFG7 (biased). Their properties make these two pro-
blems much harder to solve for MOEAs. The number of
decision variables and position-related (k) parameters are
specified in Table 1.


5.4 Discussion of Results
We performed 30 independent runs of each of the 7 MOEAs


compared on all the test instances adopted. With the aim of
comparing the performance of all algorithms among them-
selves in a pairwise fashion, the Wilcoxon rank sum test
(one-tailed) with the Bonferroni correction [14] was applied
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Figure 4: Pareto fronts produced by MOEAs on
DTLZ3 for 3 objectives.


to the ∆2 indicator values. Experimental results appear in
Tables 2 and 3. Examples of the Pareto fronts, correspon-
ding to the median values, are depicted in Figures 4 and 5.


The best algorithm was MOMBI-II, outperforming the
other MOEAs in 96.1% of the tests. It was followed by
NSGA-III with 65.7%, both ∆p-DDE and MOMBI-ASF with
52%, R2-IBEA with 26.4%, R2-MOGA with 18.6% and MOMBI
with 5.9%.


MOMBI-II tied on two instances for 3 objectives with
MOMBI-ASF and NSGA-III, producing almost identical re-
sults. On WFG6 and WFG7 for 10 objectives, MOMBI-II
lost against ∆p-DDE. As can be seen in Figure 4, the dis-
tributions of the Pareto fronts produced by MOMBI-II are
more uniform than those generated by ∆p-DDE and the
other MOEAs based on the R2 indicator.


NSGA-III faced difficulties on multi-frontal problems for
10 objectives, being unable to reach the true Pareto front
in some cases. In general, this algorithm produced similar
results to those generated by MOMBI-II.


∆p-DDE experimented the same difficulties as NSGA-III
on multi-frontal problems. Surprisingly, it won on WFG6
and WFG7 for ten objectives. Here, we suspect that di-
fferential evolution is able to produce better solutions than
SBX and polynomial-based mutation. An advantage of ∆p-
DDE is that it explores more regions for many-objective
problems than those algorithms based on weight vectors.


The performance of MOMBI-ASF was poor, being un-
able to beat NSGA-III. This indicates that the mechanism
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Figure 5: Parallel coordinates of the approximations
obtained by MOEAs on WFG7 for 10 objectives.


for updating the reference points plays an important role in
MOMBI-II, specially for many-objective problems.


The solutions generated by R2-IBEA have a strong bias to
the center of the Pareto front than to its edges, being similar
to those generated by the hypervolume-based algorithms.


In R2-MOGA and MOMBI the WT metric presented dif-
ficulties in convergence in high dimensionality problems.


6. CONCLUSIONS AND FUTURE WORK
In this work, we have introduced an improved version of a


MOEA based on the R2 indicator (called MOMBI-II), which
substitutes the weighted Tchebycheff metric by the achieve-
ment scalarizing function, since the former presents difficul-
ties for many-objective problems. Moreover, we developed a
mechanism to update the reference points, required during
the normalization process of the objective functions, using
statistical information of the population proximity to the
true Pareto optimal front. This is an important aspect since
the diversity is sensitive to the choice of such points.


Experimental results indicate that the new version out-
performed MOMBI, ∆p-DDE, NSGA-III, R2-MOGA and
R2-IBEA in more than the 96% of the test instances. There-
fore, we believe that MOMBI-II is a suitable alternative for
solving many-objective optimization problems.


It is worth noticing that the solutions produced by MOMBI-
II are uniformly distributed in objective space, being simi-
lar to those generated by NSGA-III. However, MOMBI-II







requires much less computational effort and the source code
is in the public domain.


Much more work is still required. We are interested, for
example, in studying the scalability of some other utility
functions available in the literature and in incorporating a
mechanism to handle constraints, in order to solve real-world
problems.
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Table 2: Median and standard deviation of the ∆2 indicator for 3 and 5 dimensions. In each case, the
outperformance relation among algorithms is shown, using a significance level of α = 0.5 (for example, ∆p-
DDE performs significantly better than R2-MOGA and MOMBI on DTLZ1 for 3 objectives). The two
best values are shown in gray scale, where the darker tone corresponds to the best value. The number of
generations appears within parentheses in the first column.


Problem
∆p-DDE NSGA-III R2-MOGA R2-IBEA MOMBI MOMBI-ASF MOMBI-II


1 2 3 4 5 6 7
3 Objectives


DTLZ1 0.0252±8.60e-4 0.0220±2.25e-1 0.0352±7.00e-4 0.0239±2.01e-4 0.0361±1.32e-4 0.0225±6.10e-4 0.0212±9.48e-5


(400) 3,5 1,3,4,5 5 1,3,5 − 1,3,4,5 1,2,3,4,5,6


DTLZ2 0.0680±2.31e-3 0.0585±1.67e-4 0.0804±9.67e-4 0.0821±2.42e-3 0.0824±1.83e-2 0.0589±6.00e-4 0.0583±5.37e-4


(250) 3,4,5 1,3,4,5,6 4,5 − − 1,3,4,5 1,3,4,5,6


DTLZ3 0.0672±2.86e-1 0.0588±6.27e-4 0.0800±7.72e-1 0.0853±3.36e-3 0.0806±1.29e-2 0.0594±9.25e-3 0.0579±1.86e-4


(1000) 3,4,5 1,3,4,5,6 4 − 4 1,3,4,5 1,2,3,4,5,6


DTLZ4 0.0685±1.87e-3 0.0584±3.42e-1 0.0829±1.50e-1 0.0833±2.40e-1 0.0827±1.50e-1 0.0947±1.58e-1 0.0578±1.12e-1


(600) 3,4,5 1,3,4,5,6 − − − − 1,2,3,4,5,6


WFG6 0.3474±2.35e-2 0.2545±3.23e-3 0.3836±9.37e-3 0.3900±2.69e-2 0.4117±6.37e-3 0.2497±3.41e-3 0.2487±2.85e-2


(400) 3,4,5 1,3,4,5 5 5 − 1,2,3,4,5 1,2,3,4,5


WFG7 0.2799±1.15e-2 0.2420±9.81e-4 0.3878±1.11e-2 0.3831±2.14e-2 0.4073±6.03e-3 0.2418±2.21e-3 0.2402±1.18e-3


(400) 3,4,5 1,3,4,5 5 5 − 1,3,4,5 1,2,3,4,5,6


5 Objectives
DTLZ1 0.0677±2.86e-3 0.0668±1.34e-3 0.1190±6.22e-4 0.0686±4.98e-4 0.1199±2.12e-2 0.0730±5.03e-3 0.0629±2.62e-4


(600) 3,5,6 1,3,4,5,6 5 3,5,6 − 3,5 1,2,3,4,5,6


DTLZ2 0.2113±2.69e-3 0.2092±1.32e-4 0.3376±5.32e-4 0.2271±2.16e-3 0.3397±2.51e-4 0.2107±3.69e-3 0.2051±7.87e-4


(350) 3,4,5 1,3,4,5,6 5 3,5 − 3,4,5 1,2,3,4,5,6


DTLZ3 0.2117±7.44e+1 0.2098±6.89e-3 0.3379±1.02e-3 0.2252±3.65e-3 0.3402±8.10e-2 0.2136±4.30e-3 0.2049±9.29e-4


(1000) 3,4,5,6 1,3,4,5,6 5 3,5 − 3,4,5 1,2,3,4,5,6


DTLZ4 0.2146±2.97e-3 0.2091±1.91e-1 0.3368±7.38e-2 0.2281±7.33e-2 0.3396±8.80e-2 0.2644±1.00e-1 0.2038±1.18e-1


(1000) 3,4,5,6 5 5 3,5,6 − 3,5 1,2,3,4,5,6


WFG6 1.3321±3.05e-2 1.2564±2.46e-3 3.3935±1.19e-1 1.4415±3.73e-2 2.3444±1.90e-2 1.2619±1.42e-2 1.2416±3.18e-3


(750) 3,4,5 1,3,4,5,6 − 3,5 3 1,3,4,5 1,2,3,4,5,6


WFG7 1.3953±1.92e-2 1.2657±1.66e-2 2.3404±1.60e-2 1.4255±2.67e-2 2.4201±7.19e-2 1.3384±2.46e-2 1.2477±4.76e-3


(750) 3,4,5 1,3,4,5,6 5 3,5 − 1,3,4,5 1,2,3,4,5,6


Table 3: Median and standard deviation of the ∆2 indicator for 10 objectives (continuation).


Problem
∆p-DDE NSGA-III R2-MOGA MOMBI MOMBI-ASF MOMBI-II


1 2 3 5 6 7
DTLZ1 9.9311±7.45e+0 0.2113±2.78e+0 0.1569±1.32e-1 0.1647±9.54e-3 0.2087±2.74e-2 0.1235±1.08e-2


(1000) − 1 1,5,6 1,6 1 1,2,3,5,6


DTLZ2 0.4208±3.92e-3 0.4290±2.59e-1 0.6355±1.84e-2 0.6633±3.37e-2 0.4703±1.70e-2 0.4156±3.25e-4


(750) 2,3,5,6 3,5,6 5 − 3,5 1,2,3,5,6


DTLZ3 512.7180±1.02e+2 0.9053±2.20e+0 0.6714±1.97e+0 0.6885±3.66e-2 0.4777±6.93e-2 0.4151±4.65e-2


(1500) − 1 1 1,2 1,2,3,5 1,2,3,5,6


DTLZ4 0.4417±3.76e-3 0.4280±1.29e-1 0.6419±2.47e-2 0.6804±1.53e-2 0.4329±2.26e-2 0.4148±4.98e-2


(2000) 3,5 1,3,5 5 − 1,3,5 1,2,3,5,6


WFG6 4.6238±8.11e-2 4.8552±5.55e-3 7.3007±4.91e-1 7.6871±3.62e-1 5.2036±4.38e-2 4.7527±6.55e-3


(2000) 2,3,5,6,7 3,5,6 5 − 3,5 2,3,5,6


WFG7 4.5544±8.74e-2 4.9397±9.26e-1 7.7848±3.87e-1 7.8535±3.91e-1 5.8264±4.89e-1 4.7688±3.13e-2


(2000) 2,3,5,6,7 3,5,6 5 − 3,5 2,3,5,6






