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ABSTRACT 
In general, the problem of characterizing the behavior of a genetic algorithm is 
rather complex because it varies depending on the application domain and on 
the parameters adopted for the genetic algorithm. In this paper, we briefly 
discuss some of the most representative approaches that have been previously 
proposed in the literature to estimate convergence times of a genetic algorithm. 
Then, we introduce our own approach whose analysis is based on Markov 
Chains. Our model is empirically validated using a genetic algorithm with 
minimum parameters. Our results indicate the correctness of the proposed 
model. 


INTRODUCTION 
Genetic algorithms (GAs) are a heuristic search technique inspired on 


natural evolution (i.e., the survival of the fittest). In its origins, the genetic 
algorithm (now called “classical”) was applied to single-objective optimization 
problems (Goldberg,1989). Rudolph proved in the mid-1990s convergence of 
this simple GA to the global optimum of a given function, under certain 
conditions (Rudolph, 1994). This work gave some of the desired theoretical 
foundations to the behavior of GAs. This paper extends Rudolph's model so that 
we can estimate the expected convergence time of a genetic algorithm with 
minimum parameters. We also detail the general features of the transition matrix 
of the elitist genetic algorithm discussed in (Rudolph, 1994). The results of our 
theoretical model are validated with a simple example. Our empirical results 
indicate the validity of our theoretical model. 


PREVIOUS WORK  
Ankenbrandt (1991) obtained a bound for the execution time to achive 


convergence of a genetic algorithm using a model based on allele convergence 
and a relatively simple proof by induction. On the other hand, taking advantage 
of the fact that natural selection uses the diversity of a population to give rise to 
adaptation, Louis & Rawlins (Louis, 1993) developed a model based on 
Hamming distances between individuals in a population. They argued that, if we 
ignore the effects of mutation, the lack of diversity makes useless the role of 
natural selection. Thus, they used a measure of diversity to estimate an upper 
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bound on the time beyond which progress is unlikely (because of the lack of 
diversity). (Goldberg, 1987) presented a study similar to the work of (Louis, 
1993). In this case, they estimated the convergence time of a genetic algorithm 
whose population consists of individuals of length 1 using a Markov chain 
model. Note that in the current paper we use a population consisting of 
individuals of length n. 


MARKOV CHAINS 
The basic concepts regarding Markov chains can be consulted in (Reyes, 


2003). Next, we will discuss a special type of Markov chain on which the 
current work is based. The material of this section was obtained from (Rudolph 
2000a, Iosifescu 1980). 
Absorbing Chains 
       Consider a Markov chain with finite state space S¹Æ. In this section the 
states of a Markov chain are classified based on whether it is possible to go from 
a given state to another state. 
Definition 1. We say that the state i leads to state j and write i®j if and only if 
pij


k>0 for an k>1. If i®j and j®i we say that state i communicates with state j 
and write i«j. 


Beginning with the previous definition, the states are classified into 
“equivalence classes”. Two states are in the same class if they are 
“communicated”, i.e. if the process can go from one state to the another and 
viceversa. The equivalence classes are classified as ergodic sets (so called 
recurrent) or transient sets.This way, the corresponding states in those classes 
are called ergodic states and transient states, respectively. For each finite 
Markov chain there must be always at least one ergodic set; however, it is 
unnecessary to have transient sets. Once a chain leaves a transient set, it can 
never come back to it; conversely, once a chain enters into an ergodic set, it can 
never leave it. In particular, if an ergodic set contains just one state, this state is 
called an absorbing state, because once into it, the Markov chain will stay there 
forever. From the previous, we have that a state i is absorbing if and only if p ii=1 
(Kemeny, 1960). Now, a chain with transient states has a behavior such that it 
moves towards ergodic sets. The probability that the process lies within an 
ergodic set tends to 1. When all the ergodic sets are unitary, these chains are 
called absorbing chains, because they will eventually get trapped in an 
absorbing state. It is important to consider the canonical form of the transition 
matrix of a Markov chain. Let's assume that we have s transient states and r-s 
ergodic states, and that we cluster all the transient sets and all the ergodic sets 
together, the resulting form is: 
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The region O consists completely of zeros. The matrix Qsâs represents the 
chain while it is in transient states, the matrix Rsâr-s represents the transition from 
the transient states to ergodic states and the matrix Sr-sâr-s represents the chain 
once that it is into an ergodic state.If we consider an absorbing chain, we have 
that by definition S=Ir-sâr-s, so its canonical form is: 
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Definition 2.For an absorbing Markov chain we define the fundamental matrix 
to be  N = ( I – Q )-1. 
Definition 3. We define nj to be a function whose value is the total number of 
times that the process is in a transient state sj  
Let T the set of transient states of the Markov chain. If we denote with Ei[nj] the 
expected value of nj assuming that the process starts in the state s i, we have the 
next result: 
Theorem 1.(Kemeny, 1960) {Ei[nj]}=N 
Definition 4. Let t be a function whose value is given by the number of steps 
(including the initial state) in wich the process is in a transient state. 
If the process starts in an ergodic state then t=0. If the process starts in a 
transient state, then t gives us the total number of necessary steps for reaching 
an ergodic state. In an absorbing chain, this is the time to absorption. 
Let x a column vector with all entries equal to 1. 
Theorem 2.(Kemeny, 1960){ Ei[t]}=Nx. 


EXPECTED CONVERGENCE TIME 
In (Rudolph, 1994), we can study the mathematical models of a Simple Genetic 
Algorithm (SGA) and an Elitist Genetic Algorithm (EGA). It is required to 
consult this reference to get the preliminaries required to understand the work 
presented here. In the previous section, we showed some results on the 
fundamental matrix of a Markov chain. As we saw, such a matrix can be used to 
compute the expected convergence time of the chain. In this section, we will 
apply such results to the corresponding transition matrix of the EGA. Since in 
Rudolph’s model the matrix P corresponds with the populations whose super 
individual is the global optimum, we can consider that when the chain is in one 
of those states, the search process has finished. Any further change in the 
population can be ignored because the super individual will be no longer 
modified. Therefore, we can rewrite the matrix like: 
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We can see clearly now that the Markov chain corresponding to the EGA is 
absorbent. According to Definition 2, the fundamental matrix that interests us in 
this case is: N=(I-T)-1. Since our objective is to know the fundamental matrix N, 
we will start by studying the structure of the block T. 
 
Matrix P 


In this section, we will show the elements of the P matrix. As we know, this 
matrix is the result of the product: P=CMS . This is the reason why the elements 
of each of the corresponding matrices will be specified next. The details of the 
previous expressions may be found in (Reyes, 2003). 
Elements of the matrix of crossover. The elements of uniform crossover were 
modeled. For that sake, the Å operator was defined as the negation of an or-
exclusive. Using this fact the following formula was developed (assuming a 
crossover percentage of 0.5): 
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Elements of the Mutation Matrix. The corresponding elements are:  
mij=pm


Hij(1-pm
N-Hij)where pm is the mutation probability and Hij is the Hamming 


distance between populations i and j.  
Elements of the Selection Matrix. 
 


The selection operator adopted is the well-known proportional selection: 
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where f is the objective function (fitness). 
Elements of the P Matrix. Since the matrix P is the product of the crossover, 
mutation and selection matrices, we have that:  


∑ ∑= == n
p pj


n
q qpijij smcp 1 1 )(  


such that, given the previous expressions for each of the operators, it is possible 
to compute all the elements pij. 
 
Matrix E 
From (Rudolph, 1994) we conclude that this matrix has exactly one 1 per row. 
Given a fixed population is clear that its super individual can only improve. 
Then, E11 is an identity matrix and the matrices Eaa (a>2) are identity matrices 
with some zeros in the diagonal. It should also be clear that the E matrix has 
columns of zeros: those corresponding to populations whose super individual is 
not the best individual contained within. Conversely, in those columns 
corresponding to populations whose super individual is the best in the 
population, it is possible to find more than one 1. Then, as we descend 
throughout the rows of blocks, the populations get distributed along the row, 
depending on the quality of their maximum individual. We will assume that 
within each block the populations are sorted (by sets within which order is 
irrelevant) based on the quality of their maximum individual. 
 


individual fitness rank 
00 0.5 4 
01 1.0 3 
10 1.5 2 
11 2.0 1 


Table 1: The four possible individuals. 
 
Experiments 
Further details can be consulted in (Reyes, 2003). Let us consider the simplest 
case that has become commonly associated with the basic (minimum) conditions 
of a GA. Let l=2 and n=2. In this case, each population consists of 2 individuals 
and each individual is of length 2. This gives us a total of 22´2=24=16 
populations to consider by the GA. With the aim of being able to rank the four 
individuals, we defined the following function: f(x1x2)= x1+0.5x2+0.5. As the 
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function f is strictly positive for any individual, this same function was used as 
fitness function. In Table 1, we show the four possible individuals, their 
corresponding fitnesses and their rank. According to the model described in a 
previous section, the fundamental matrix N was obtained. The package 
MATHEMATICA 4.0 was used to carry out the computations corresponding to 
the fundamental matrix N, where N = ( I - T)-1. On the other hand, a GA with the 
conditions imposed by the model was run. The fixed parameters were: 
population size = 2, chromosome length = 2 and crossover probability = 1.0. 
Thus, the results only depend on the mutation probability (pm). Note that the 
super individual (elitist individual) does not have to take part in the evolutionary 
process. Let g be the random variable whose value is the number of necessary 
iterations for the convergence of the GA. Next, we show the expected value of 
the variable g (E[g]) and the corresponding standard deviation (D[g]) obtained 
(using MATHEMATICA 4.0) by the theoretical model (TM) developed and the 
results obtained by the GA. In our experiments, we performed 100 runs with 
different random seeds. The results are shown in Table 2. In Figure 1, we show 
the graph of the values obtained by both methods. 
 


GA TM pm 
E[g] D[g] E[g] D[g] 


0.001 345.05 540.001 514.137 660.781 
0.005 90.98 131.461 103.782 132.47 
0.01 40.89 54.019 52.491 66.433 
0.03 13.0 16.836 18.307 22.415 
0.07 5.08 7.036 8.561 9.852 
0.1 4.69 6.5 6.380 7.03 
0.2 2.69 3.47 3.872 3.780 
0.5 1.32 1.847 2.527 1.964 


Table 2: Results. 


 
Figure 1:Graph of the values obtained by the GA and the theoretical model developed for 
the variable g, in terms of the probability of mutation. The continuous line corresponds 
with the values generated by the theoretical model and the dotted line corresponds to the 
values generated by the GA. 


CONCLUSIONS 
The current models to estimate the convergence time of a GA are quite 


simple and, therefore, very distant from the observed behavior of such type of 
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algorithm. We developed a mechanism to estimate the convergence time of a 
GA by means of a model based on Markov chains. Our results for the most 
simple case that can be considered (perhaps argueably) as realistic, led us to 
conclude that the proposed model is correct. Nevertheless, it is clear that in such 
case it was relatively easy to obtain the corresponding matrix P, but this is a 
process that will generally get more complicated as we increase the size of the 
population and the chromosomic length. In general, the size of the matrix has an 
exponential growth. Therefore, we can conclude that, from a practical point of 
view, Markov chains are not a recommended theoretical tool for this sort of 
analysis (i.e., estimation of expected convergence time). Nevertheless, other 
alternatives exist to which it would be possible to resort (e.g., statistical 
mechanics (Prugel, 1994) and geometric interpretation approaches (Vose, 
1991)). Another possible alternative is to focus the analysis in a different way. 
For example, in (Coffey, 1999), the author presents a derivation of an upper 
bound on the convergence of an elitist genetic algorithm which is based on the 
largest eigenvalue of the corresponding transition matrix. This author also 
presents an analysis in which he proves that GA convergence can be accelerated 
when its corresponding Markov chain is of the type called “rapidly mixing 
chains”. 
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