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Abstract- In this paper, we study the use of fitness in-
heritance and approximation techniques to reduce the
number of fitness evaluations into a PSO-based multi-
objective algorithm previously proposed by the authors.
Fifteen fitness inheritance techniques and four approx-
imation techniques are applied to a set of four well-
known test functions taken from the multi-objective op-
timization literature. A comparison of the best tech-
niques found against other PSO-based multi-objective
approaches is carried out using other test functions. The
obtained results show a good performance of the en-
hancement techniques proposed.

1 Introduction

Given the high computational cost of fitness evaluations in
many real-world applications, the use of Evolutionary Al-
gorithms (EAs) as population-based techniques tends to be-
come expensive. In order to improve the performance of
EAs, several enhancement techniques have been proposed.
Fitness Inheritance is an enhancement technique [10] in
which the fitness value of an offspring is obtained from the
fitness values of its parents. On the other hand, approxima-
tion techniques [5] let us estimate the fitness of an individ-
ual using the previously calculated fitness of its neighbors.
In fact, fitness inheritance is a particular case of fitness ap-
proximation. In general, by using enhancement techniques,
we do not need to evaluate every individual at each genera-
tion, and the computational cost is reduced. In this paper,
we perform a study of different inheritance and approxi-
mation techniques applied to a real-coded Particle Swarm
Optimizer (PSO) that has been previously proposed by the
authors to solve multi-objective problems [9]. Since our ma-
jor interest focus is on fitness inheritance techniques, we are
proposing fifteen inheritance techniques and four approxi-
mation techniques. In our study, we use four well-known
multi-objective test functions in order to find the best from
the proposed techniques. Then, the best techniques found
are compared against other PSO-based multi-objective opti-
mizers representative of the state-of-the-art, using different
test functions. This paper is organized as follows. A brief
introduction to Fitness Inheritance and Fitness Approxima-
tion is given in Sections 2 and 3, respectively. Section 4 in-
troduces the multi-objective PSO-based algorithm in which
the proposed techniques are incorporated. The enhance-
ment techniques proposed in this paper are presented in Sec-
tion 5. In Section 6 and 7 we present the obtained results and
their discussion, respectively. A comparison against other
PSO-based algorithms is presented in Section 8. Finally,

the conclusions and future work are described in Section 9.

2 Fitness Inheritance

The use of fitness inheritance to improve the performance
of GAs was originally proposed by Smith et al. [10]. The
authors proposed two possible ways of inheriting fitness:
the first consists of taking the average fitnesses of the two
parents and the other consists of taking a weighted (propor-
tional) average of the fitnesses of the two parents. The sec-
ond approach is related to how similar the offspring is with
respect to its parents (this is done using a similarity mea-
sure). They applied inheritance to a very simple problem
(the OneMax problem) [10] and found that the weighted
fitness average resulted in a better performance and indi-
cated that fitness inheritance was a viable alternative to re-
duce the computational cost of a genetic algorithm. In a
previous work [8], we proposed the first attempt to incorpo-
rate the concept of fitness inheritance to a real-coded Multi-
Objective PSO (MOPSO) previously proposed by us [9]. In
[8], we tested the performance of weighted average fitness
inheritance on a well-known test suite of multi-objective op-
timization problems ([12]). Based on the obtained results,
we conclude that fitness inheritance reduces the computa-
tional cost without decreasing the quality of the results in a
significant way. Also, the fitness inheritance technique used
was able to generate non-convex and discontinuous Pareto
fronts. These conclusions were somewhat surprising since,
previous to our work, Ducheyne et al. [4] tested the perfor-
mance of average and weighted average fitness inheritance
on the same test suite, using a binary GA, and they con-
cluded that although fitness inheritance efficiency enhance-
ment techniques could be used to reduce the number of fit-
ness evaluations, they found that if the Pareto surface was
not convex or if it was discontinuous, the fitness inheritance
strategies failed to reach the true Pareto front.

3 Fitness Approximation

Another promising possibility when an evaluation is very
time consuming or expensive is not to evaluate every indi-
vidual, but just estimate the quality of some of the individu-
als based on an approximate model of the fitness landscape.
Approximation techniques estimate individual fitness on the
basis of previously observed objective function values of
neighboring individuals. There are many possible approxi-
mation models. In the simplest case, the fitness of a new in-
dividual is derived from its parents’ fitnesses (fitness inheri-
tance). However, there are some other methods like polyno-



Begin
Initialize swarm. Initialize leaders.
Send leaders to ε-archive
crowding(leaders), g = 0
While g < gmax

For each particle
Select leader. Flight. Mutation.

⇒ If(pi) Inherit Else Evaluation.
Update pbest.

EndFor
Update leaders, Send leaders to ε-archive
crowding(leaders), g++

EndWhile
Report results in ε-archive

End

Figure 1: Pseudocode of our algorithm.

mials, the kriging model, neural networks [5] and interpola-
tion and regression [1]. Reported experiments [1] show that
using fitness estimation, it is possible to either reach a bet-
ter fitness level in a certain given time, or to reach a desired
fitness level much faster. In this paper, we adopt very sim-
ple approximation techniques, based only on the objective
values of the closest neighbors.

4 Multi-Objective Particle Swarm Optimiza-
tion

In this paper, we incorporate several fitness inheritance and
approximation techniques into a MOPSO that was previ-
ously proposed by us in [9] and updated in [8]. The MOPSO
proposed in [9, 8] is based on Pareto dominance, since it
considers every non-dominated solution as a new leader.
Additionally, the approach also uses a crowding factor [2]
as a second discrimination criterion which is also adopted
to filter out the list of available leaders. For each particle,
we select the leader in the following way: 97% of the time a
leader is selected, randomly, if and only if that leader domi-
nates the current particle, and, the remaining 3% of the time,
we select a leader by means of a binary tournament based
on the crowding value of the available set of leaders. If the
size of the set of leaders is greater than the maximum allow-
able size, only the best leaders are retained based on their
crowding value. We also proposed the use of different mu-
tation (or turbulence) operators which act on different sub-
divisions of the swarm. We proposed a scheme by which the
swarm is subdivided in three parts (of equal size): the first
sub-part has no mutation at all, the second sub-part uses
uniform mutation and the third sub-part uses non-uniform
mutation. The available set of leaders is the same for each
of these sub-parts. Finally, the proposed approach also in-
corporates the ε-dominance concept [6] to fix the size of the
set of final solutions produced by the algorithm. Figure 1
shows the pseudo-code of our proposed approach.

In Figure 1, the symbol (⇒) indicates the line in which
the concept of fitness inheritance (or approximation) is in-
corporated. The inheritance or approximation proportion,
pi, is the proportion of individuals in the population whose

fitness is inherited or approximated. It is very important to
note that a particle that has inherited its objective values can
not enter into the final Pareto front, since a final solution
must have true objective values.

5 Proposed Techniques

5.1 Fitness Inheritance

Since PSO has no recombination operator, we adopted as
“parents” of a particle the previous position of the particle,
its pbest and its leader.

5.1.1 Linear Combination Based on Distances (LCBD)

We propose to calculate the new position in the objective
space of a particle by means of a linear combination of the
positions of the particles that were considered to calculate
the new position in the search space. We consider the po-
sition of the leader as the most important. Thus, the leader
will be always considered.

Given a particle xold, its personal best xpbest, its as-
signed leader xld and the new particle xnew , we proceed to
calculate the distance from xnew to its “parents” (as defined
before): d1 = d(xnew , xold), d2 = d(xnew , xpbest), d3 =
d(xnew , xld), where d is an Euclidean distance. We pro-
pose variants of the same idea, based on the individuals that
can be considered:
FI1 Previous position and leader: r = d1

d1+d2

,

fi(xnew) = rfi(xld) + (1 − r)fi(xold), i = 1, ..., n.

FI2 pbest and leader. r = d2

d2+d3

,

fi(xnew) = rfi(xld)+(1−r)fi(xpbest), i = 1, ..., n.

FI3 Previous position, pbest and leader.
r1 = d1

d1+d2+d3

, r2 = d2

d1+d2+d3

, r3 = d3

d1+d2+d3

,
r1 = 1/r1, r2 = 1/r2, r3 = 1/r3

fi(xnew) = r1fi(xold) + r2fi(xpbest) + r3fi(xld),

i = 1, ..., n. Where fi is the value of the objective func-
tion i and n is the number of objective functions. See Figure
2 for an illustration of these techniques.

The technique FI1 is the one proposed in [8]. As in [8],
in all the inheritance techniques, if the leader selected does
not dominate the current particle, we will proceed to calcu-
late the inherited position and to assign the objective values
of the closest leader to that position. This procedure is used
to avoid the generation of invalid particles in the case of
non-convex Pareto fronts. See Figure 3.

5.1.2 Flight Formula on Objective Space (FFOS)

As we know, in PSO, the position of each particle in the
search space is updated using the formula:

~xi(t) = ~xi(t − 1) + ~vi(t)

~vi(t) = W~vi(t−1)+C1r1(~xpbesti
−~xi(t))+C2r2(~xgbesti

−~xi(t))

In this case, we propose the analogous formula to update
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Figure 2: Illustration of techniques FI1, FI2 and FI3.
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Figure 3: Case in which “invalid” particles can be obtained
and the method used to repair them.

the position of each particle in the objective space:

~fi(t) = ~fi(t − 1) + ~vf i(t)

~vf i(t) = W ~vf i(t−1)+C1r1(~fpbesti−
~fi(t))+C2r2(~fgbesti−

~fi(t))

where ~fi, ~fpbesti and ~fgbesti are the values of the objec-
tive function i for the current particle, its pbest and gbest,
respectively. We use the same values of W , C1, r1, C2

and r2 previously used for the flight in the decision variable
space. We will consider the following variants based on the
vectors considered:

FI4 Considering the whole formula:

~vf i(t) = W ~vf i(t−1)+C1r1(~fpbesti−
~fi(t))+C2r2(~fgbesti−

~fi(t))

FI5 Ignoring the previous direction:

~vf i(t) = C1r1(~fpbesti −
~fi(t)) + C2r2(~fgbesti −

~fi(t))

FI6 Ignoring the direction to the pbest:

~vf i(t) = W ~vf i(t − 1) + C2r2(~fgbesti −
~fi(t))

5.1.3 Combination Using Flight Factors

Non-linear Combination (NLC)
In this case, we propose to calculate the new objective

position of a particle using the elements of the flight for-
mula: ~fi(t) = W~fi(t − 1) + C1r1

~fpbesti + C2r2
~fgbesti

As in the previous cases, the variants considered are:
FI7 Considering the whole formula:

~fi(t) = W~fi(t − 1) + C1r1
~fpbesti + C2r2

~fgbesti

FI8 Ignoring the previous position:

~fi(t) = C1r1
~fpbesti + C2r2

~fgbesti

FI9 Ignoring the position of the pbest:

~fi(t) = W~fi(t − 1) + C2r2
~fgbesti

On the other hand, since W ∈ (0.1, 0.5) and C1r1,
C2r2 ∈ (0.0, 2.0), we propose to modify the previous for-
mula in the following way:

~fi(t) =
W

0.5
~fi(t − 1) +

C1r1

2.0
~fpbesti +

C2r2

2.0
~fgbesti

As a result, we obtain the following variants:
FI10 Considering the whole formula:

~fi(t) =
W

0.5
~fi(t − 1) +

C1r1

2.0
~fpbesti +

C2r2

2.0
~fgbesti

FI11 Ignoring the previous position:

~fi(t) =
C1r1

2.0
~fpbesti +

C2r2

2.0
~fgbesti

FI12 Ignoring the position of the pbest:

~fi(t) =
W

0.5
~fi(t − 1) +

C2r2

2.0
~fgbesti

Linear Combination (LC)
We propose to use the previous formula but in such a

way that the result is a linear combination of the elements
considered:

~fi(t) =
W

r
~fi(t − 1) +

C1r1

r
~fpbesti +

C2r2

r
~fgbesti

where r = W + C1r1 + C2r2. The corresponding variants
are the following (note the changes in r):
FI13 Considering the whole formula, r = W +C1r1+C2r2:

~fi(t) =
W

r
~fi(t − 1) +

C1r1

r
~fpbesti +

C2r2

r
~fgbesti

FI14 Ignoring the previous position, r = C1r1 + C2r2:

~fi(t) =
C1r1

r
~fpbesti +

C2r2

r
~fgbesti

FI15 Ignoring the position of the pbest, r = W + C2r2:

~fi(t) =
W

r
~fi(t − 1) +

C2r2

r
~fgbesti

5.2 Fitness Approximation (FA)

We propose four simple approximation techniques. In each
case, the particle will take the objective values of the particle
indicated:
FA1 The closest particle: leader or member of the swarm.

FA2 The closest leader.

FA3 The closest particle (member of the swarm).



FA4 The average of the 10 closest particles (leaders or
members of the swarm).

We use the Euclidean distance in the decision variable
space. In technique FA4, there are cases in which an invalid
particle may be created. In this way, if among the 10 closest
particles there are two or more leaders, or there is just one
leader but this leader does not dominate the current particle,
we will proceed as it was explained before. See Figure 3.

6 Comparison of Results

In order to compare the proposed techniques, we performed
a study using four well-known test functions proposed in
[12]: ZDT1, ZDT2, ZDT3 and ZDT4. The functions
ZDT1, ZDT2 and ZDT3 have 30 variables and the func-
tion ZDT4 has 10 variables. The four functions have two
objectives. Functions ZDT1 and ZDT4 have convex Pareto
fronts, ZDT2 has a non-convex Pareto front and ZDT3 has a
non-convex and discontinuous Pareto front. We performed
experiments with different values of inheritance (approxi-
mation) proportion pi. We experimented with: pi= 0.1, 0.2,
0.3, 0.4. Note that this proportion of individuals indicates
also the percentage by which the number of evaluations is
reduced (e.g., pi = 0.1 means that 10% less evaluations are
performed). We performed 20 runs for each function and
each technique. The parameters adopted for our MOPSO
were: 100 particles, 200 generations and 100 particles in the
external archive. We used several performance measures to
validate the obtained results in a quantitative way. However,
because of space reasons, we will only show the results cor-
responding to the Success Counting measure since this was
the one that reflected in a better way the quality differences
between the approaches compared. This measure gives the
number of particles from the obtained Pareto front that be-
long to the true Pareto front. Tables 1, 2, 3, 4, 5, 6 and 7
present a summary of the results obtained. In each case, we
present the average of the Success Counting measure over
the 20 runs, and the percentage of decrement or increment
on the quality of the results. Also, we present the average
of the percentages for each value of inheritance proportion,
for each technique.

7 Discussion of Results

Since comparing 19 different techniques is very difficult,
we decided to represent each technique with a vector. The
vector used is that containing the average of the change in
the quality of results for each inheritance proportion value.
For example, to represent technique FI1, we construct the
following vector (see Table 1):

Inheritance proportion pi 0.1 0.2 0.3 0.4
Average vector 2.6 -4.1 -13.7 -14.0

In this way, in Table 8 we present the vectors of all tech-
niques. Since every entry in each vector is a change in the
quality of the obtained results given a value of inheritance
proportion, the bigger the values of the vector, the better the
corresponding technique is. Thus, we are interested on the
vector or vectors that represent the solution to the problem
of maximizing all the entries (i.e. each entry is considered

Group 0.1 0.2 0.3 0.4 level
FI1 2.6 -4.1 -13.7 -14.0 2

LCBD FI2 -3.6 -2.4 -11.9 -12.9 2
FI3 0.1 -4.9 -13.8 -17.8
FI4 0.1 -1.7 -8.7 -13.6 2

FFOS FI5 4.7 -1.2 -8.1 -11.7 1
FI6 1.6 -2.8 -10.1 -16.7 2
FI7 -4.9 -10.3 -19.5 -30.2
FI8 -0.7 -7.5 -20.7 -29.8

NLC FI9 -0.2 -7.3 -16.7 -28.5
FI10 -3.0 -9.2 -19.3 -33.3
FI11 -3.6 -6.0 -14.1 -26.7
FI12 -3.0 -9.5 -17.5 -22.1
FI13 -2.1 -2.6 -12.5 -18.8

LC FI14 -3.7 -4.9 -10.3 -16.0
FI15 0.3 -5.0 -12.3 -16.6
FA1 4.2 -3.4 -8.4 -14.1 2

FA FA2 -0.3 -11.2 -16.6 -15.9
FA3 1.5 0.4 -6.9 -12.9 1
FA4 0.3 -4.1 -12.3 -16.2

Table 8: Vectors of change in quality for each technique, for
each value of inheritance or approximation proportion.

as an objective). The non-dominated vectors among all the
19 techniques are the vectors corresponding to techniques
FI5 and FA3. That is, the techniques FI5 and FA3 are the
best. For this reason these two techniques are marked with
a level of 1 in Table 8. FI5 is an inheritance technique and
FA3 is an approximation technique. For these two tech-
niques, in the worst case, the decrement in quality of results
is no more than 13%, even when a 40% of the total num-
ber of evaluations is saved. After eliminating techniques
FI5 and FA3, we proceed again to locate the non-dominated
vectors. In this case, the best techniques, marked with a
level 2 are: FI1, FI2, FI4, FI6 and FA1. This leads us to
conclude that, in general, the set of inheritance techniques
based on the flight formula on the objective space (FFOS)
are the best.

8 Comparison with other PSO approaches

In the previous section, we found two enhancement tech-
niques to be the best from the set proposed: one of fitness in-
heritance and one of fitness approximation. In this section,
these two techniques will be compared against other two
PSO-based multi-objective approaches representative of the
state-of-the-art: the Sigma-MOPSO [7] and the Cluster-
MOPSO [11]. For this comparison we will use two differ-
ent test functions: DTLZ2 and DTLZ6 [3]. Both functions
have 3 objectives. DTLZ2 has 12 variables and DTLZ6 has
22 variables. As in previous experiments, we used differ-
ent values of pi. We performed 20 runs for each function
and each approach. The approaches without fitness inher-
itance or approximation performed 20000 objective func-
tion evaluations. The parameters adopted for our MOPSO
were the same as before. Cluster-MOPSO used 40 parti-
cles, 4 swarms, 5 iterations per swarm and a total num-
ber of iterations of 100. In the case of Sigma-MOPSO,
200 particles were used through 100 iterations (these val-
ues were suggested by the author of the method). The
PSO approaches will be identified with the following la-



FI1 Inheritance proportion pi

function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)
ZDT1 71 77 (+8.5%) 64 (-9.9%) 62 (-12.7%) 61 (-14.1%)
ZDT2 89 83 (-6.7%) 86 (-3.4%) 79 (-11.2%) 77 (-13.5%)
ZDT3 68 73 (+7.4%) 65 (-4.4%) 64 (-5.9%) 59 (-13.2%)
ZDT4 80 81 (+1.3%) 81 (+1.3%) 60 (-25.0%) 68 (-15.0%)

Average +2.6% -4.1 % -13.7 % -14.0 %
FI2 Inheritance proportion pi

function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)
ZDT1 71 74 (+4.2%) 68 (-4.2%) 68 (-4.2%) 59 (-16.9%)
ZDT2 89 81 (-9.0%) 82 (-7.9%) 78 (-12.4%) 77 (-13.5%)
ZDT3 68 64 (-5.9%) 67 (-1.5%) 58 (-14.7%) 63 (-7.4%)
ZDT4 80 77 (-3.8%) 83 (+3.8%) 67 (-16.3%) 69 (-13.8%)

Average -3.6% -2.4 % -11.9 % -12.9 %
FI3 Inheritance proportion pi

function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)
ZDT1 71 73 (+2.8%) 69 (-2.8%) 69 (-2.8%) 50 (-29.6%)
ZDT2 89 87 (-2.2%) 82 (-7.9%) 71 (-20.2%) 76 (-14.6%)
ZDT3 68 67 (-1.5%) 63 (-7.4%) 64 (-5.9%) 60 (-11.8%)
ZDT4 80 81 (+1.3%) 79 (-1.3%) 59 (-26.3%) 68 (-15.0%)

Average +0.1% -4.9 % -13.8 % -17.8%

Table 1: Obtained results for different values of inheritance proportion, for techniques FI1, FI2 and FI3.

FI4 Inheritance proportion pi

function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)
ZDT1 71 62 (-12.7%) 62 (-12.7%) 59 (-16.9%) 49 (-31.0%)
ZDT2 89 85 (-4.5%) 84 (-5.6%) 78 (-12.4%) 79 (-11.2%)
ZDT3 68 73 (+7.4%) 69 (+1.5%) 60 (-11.8%) 58 (-14.7%)
ZDT4 80 88 (+10.0%) 88 (+10.0%) 85 (+6.3%) 82 (+2.5%)

Average +0.1% -1.7 % -8.7 % -13.6%
FI5 Inheritance proportion pi

function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)
ZDT1 71 74 (+4.2%) 69 (-2.8%) 61 (-14.1%) 56 (-21.1%)
ZDT2 89 89 ( 0.0%) 79 (-11.2%) 84 (-5.6%) 77 (-13.5%)
ZDT3 68 72 (+5.9%) 70 (+2.9%) 55 (-19.1%) 58 (-14.7%)
ZDT4 80 87 (+8.8%) 85 (+6.3%) 85 (+6.3%) 82 (+2.5%)

Average +4.7% -1.2 % -8.1 % -11.7%
FI6 Inheritance proportion pi

function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)
ZDT1 71 70 (-1.4%) 61 (-14.1%) 62 (-12.7%) 47 (-33.8%)
ZDT2 89 83 (-6.7%) 82 (-7.9%) 76 (-14.6%) 70 (-21.3%)
ZDT3 68 72 (+5.9%) 72 (+5.9%) 59 (-13.2%) 61 (-10.3%)
ZDT4 80 83 (+3.8%) 84 (+5.0%) 80 (0.0%) 79 (-1.3%)

Average +1.6% -2.8 % -10.1 % -16.7%

Table 2: Obtained results for different values of inheritance proportion, for techniques FI4, FI5 and FI6.

FI7 Inheritance proportion pi

function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)
ZDT1 71 64 (-9.9%) 58 (-18.3%) 57 (-19.7%) 47 (-33.8%)
ZDT2 89 83 (-6.7%) 74 (-16.9%) 68 (-23.6%) 66 (-25.8%)
ZDT3 68 66 (-2.9%) 69 (+1.5%) 64 (-5.9%) 57 (-16.2%)
ZDT4 80 80 (0.0%) 74 (-7.5%) 57 (-28.8%) 44 (-45.0%)

Average -4.9% -10.3 % -19.5 % -30.2%
FI8 Inheritance proportion pi

function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)
ZDT1 71 69 (-2.8%) 62 (-12.7%) 53 (-25.4%) 47 (-33.8%)
ZDT2 89 85 (-4.5%) 84 (-5.6%) 66 (-25.8%) 65 (-27.0%)
ZDT3 68 71 (+4.4%) 67 (-1.5%) 61 (-10.3%) 52 (-23.5%)
ZDT4 80 80 (0.0%) 72 (-10.0%) 63 (-21.3%) 52 (-35.0%)

Average -0.7% -7.5 % -20.7 % -29.8%
FI9 Inheritance proportion pi

function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)
ZDT1 71 67 (-5.6%) 58 (-18.3%) 54 (-23.9%) 44 (-38.0%)
ZDT2 89 90 (+1.1%) 85 (-4.5%) 69 (-22.5%) 68 (-23.6%)
ZDT3 68 68 (0.0%) 67 (-1.5%) 61 (-10.3%) 51 (-25.0%)
ZDT4 80 83 (+3.8%) 76 (-5.0%) 72 (-10.0%) 58 (-27.5%)

Average -0.2% -7.3 % -16.7 % -28.5%

Table 3: Obtained results for different values of inheritance proportion, for techniques FI7, FI8 and FI9.



FI10 Inheritance proportion pi

function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)
ZDT1 71 71 (0.0%) 58 (-18.3%) 59 (-16.9%) 48 (-32.4%)
ZDT2 89 78 (-12.4%) 78 (-12.4%) 69 (-22.5%) 58 (-34.8%)
ZDT3 68 70 (+2.9%) 63 (-7.4%) 61 (-10.3%) 47 (-30.9%)
ZDT4 80 78 (-2.5%) 81 (+1.3%) 58 (-27.5%) 52 (-35.0%)

Average -3.0% -9.2 % -19.3 % -33.3%
FI11 Inheritance proportion pi

function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)
ZDT1 71 62 (-12.7%) 63 (-11.3%) 55 (-22.5%) 37 (-48.0%)
ZDT2 89 84 (-5.6%) 87 (-2.2%) 81 (-9.0%) 76 (-14.6%)
ZDT3 68 69 (+1.5%) 60 (-11.8%) 57 (-16.2%) 44 (-35.3%)
ZDT4 80 82 (+2.5%) 81 (+1.3%) 73 (-8.8%) 73 (-8.8%)

Average -3.6% -6.0 % -14.1 % -26.7%
FI12 Inheritance proportion pi

function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)
ZDT1 71 66 (-7.0%) 56 (-21.1%) 55 (-22.5%) 48 (-32.4%)
ZDT2 89 87 (-2.2%) 85 (-4.5%) 74 (-16.9%) 80 (-10.1%)
ZDT3 68 66 (-2.9%) 64 (-5.9%) 55 (-19.1%) 53 (-22.1%)
ZDT4 80 80 (0.0%) 75 (-6.3%) 71 (-11.3%) 61 (-23.8%)

Average -3.0% -9.5 % -17.5 % -22.1%

Table 4: Obtained results for different values of inheritance proportion, for techniques FI10, FI11 and FI12.

FI13 Inheritance proportion pi

function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)
ZDT1 71 68 (-4.2%) 69 (-2.8%) 63 (-11.3%) 58 (-18.3%)
ZDT2 89 84 (-5.6%) 81 (-9.0%) 79 (-11.2%) 80 (-10.1%)
ZDT3 68 70 (+2.9%) 68 ( 0.0%) 63 (-7.4%) 54 (-20.6%)
ZDT4 80 79 (-1.3%) 81 (+1.3%) 64 (-20.0%) 59 (-26.3%)

Average -2.1% -2.6 % -12.5 % -18.8%
FI14 Inheritance proportion pi

function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)
ZDT1 71 75 (+5.6%) 66 (-7.0%) 58 (-18.3%) 59 (-16.9%)
ZDT2 89 88 (-1.1%) 79 (-11.2%) 83 (-6.7%) 72 (-19.1%)
ZDT3 68 74 (+8.8%) 69 (+1.5%) 63 (-7.4%) 60 (-11.8%)
ZDT4 80 81 (+1.3%) 79 (-1.3%) 73 (-8.8%) 67 (-16.3%)

Average +3.7% -4.9 % -10.3 % -16.0%
FI15 Inheritance proportion pi

function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)
ZDT1 71 69 (-2.8%) 63 (-11.3%) 69 (-2.8%) 56 (-21.1%)
ZDT2 89 86 (-3.4%) 81 (-9.0%) 72 (-19.1%) 73 (-18.0%)
ZDT3 68 72 (+5.9%) 70 (+2.9%) 64 (-5.9%) 58 (-14.7%)
ZDT4 80 81 (+1.3%) 78 (-2.5%) 63 (-21.3%) 70 (-12.5%)

Average +0.3% -5.0 % -12.3 % -16.6%

Table 5: Obtained results for different values of inheritance proportion, for techniques FI13, FI14 and FI15.

FA1 Approximation proportion pa

function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)
ZDT1 71 74 (+4.2%) 64 (-9.9%) 63 (-11.3%) 55 (-22.5%)
ZDT2 89 88 (-1.1%) 85 (-4.5%) 81 (-9.0%) 76 (-14.6%)
ZDT3 68 73 (+7.4%) 61 (-10.3%) 60 (-11.8%) 55 (-19.1%)
ZDT4 80 85 (+6.3%) 89 (+11.3%) 79 (-1.3%) 80 (0.0%)

Average +4.2% -3.4 % -8.4 % -14.1%
FA2 Approximation proportion pa

function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)
ZDT1 71 75 (+5.6%) 57 (-19.7%) 54 (-23.9%) 46 (-35.2%)
ZDT2 89 83 (-6.7%) 72 (-19.1%) 63 (-29.2%) 76 (-14.6%)
ZDT3 68 63 (-7.4%) 58 (-14.7%) 58 (-14.7%) 56 (-17.6%)
ZDT4 80 86 (+7.5%) 87 (+8.8%) 81 (+1.3%) 83 (+3.8%)

Average -0.3% -11.2 % -16.6 % -15.9%
FA3 Approximation proportion pa

function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)
ZDT1 71 71 (0.0%) 67 (-5.6%) 63 (-11.3%) 50 (-29.6%)
ZDT2 89 88 (-1.1%) 87 (-2.2%) 85 (-4.5%) 76 (-14.6%)
ZDT3 68 65 (-4.4%) 65 (-4.4%) 55 (-19.1%) 57 (-16.2%)
ZDT4 80 89 (+11.3%) 91 (+13.8%) 86 (+7.5%) 87 (+8.8%)

Average +1.5% +0.4 % -6.9 % -12.9%

Table 6: Obtained results for different values of approximation proportion, for techniques FA1, FA2 and FA3.



FA4 Approximation proportion pa

function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)
ZDT1 71 69 (-2.8%) 59 (-16.9%) 60 (-15.5%) 52 (-26.8%)
ZDT2 89 87 (-2.2%) 80 (-10.1%) 76 (-14.6%) 71 (-20.2%)
ZDT3 68 67 (-1.5%) 71 (+4.4%) 56 (-17.6%) 56 (-17.6%)
ZDT4 80 86 (+7.5%) 85 (+6.3%) 79 (-1.3%) 80 (0.0%)

Average +0.3% -4.1 % -12.3 % -16.2%

Table 7: Obtained results for different values of approximation proportion, for technique FA4.

Test Function DTLZ2
sMOPSO cMOPSO oMOPSO 0.1 0.2 0.3 0.4

SCC mean 25 16 18 18 12 13 12
std. dev. 4.2 6.7 6.9 7.7 5.2 6.4 6.8

IGD mean 0.0014 0.0021 0.0014 0.0014 0.0015 0.0015 0.0015
std. dev. 0.00005 0.0004 0.00004 0.00005 0.0001 0.00008 0.00009

Test Function DTLZ6
sMOPSO cMOPSO oMOPSO 0.1 0.2 0.3 0.4

SCC mean 1 0 62 61 60 61 43
std. dev. 0 0 13 17.3 21.7 17.2 20.7

IGD mean 0.0673 0.0373 0.0091 0.0074 0.0089 0.0087 0.0101
std. dev. 0.0000 0.0172 0.0058 0.0060 0.0060 0.0058 0.0058

Table 9: Obtained results for the test functions DTLZ2 and DTLZ6, for sMOPSO, cMOPSO, oMOPSO, and oMOPSO
with the fitness inheritance technique FI5 incorporated (pi=0.1,0.2,0.3,0.4).

bels: sMOPSO refers to [7], cMOPSO refers to [11], and
oMOPSO is our MOPSO. All the algorithms were set such
that they provided Pareto fronts with 100 points. In this
case, we also show the obtained results with respect to the
Inverted Generational Distance (IGD) measure. This mea-
sure indicates how far is the true Pareto front from the ob-
tained Pareto front (using an Euclidean distance in the ob-
jective space). Thus, this measure gives an idea of how close
and widely spread is the obtained Pareto front with respect
to the true Pareto front.

Tables 9 and 10 present a summary of the results ob-
tained. In each case, we present the average and standard
deviation of the Success Counting (SCC) and IGD measures
over the 20 runs. As we can see in Tables 9 and 10, in func-
tion DTLZ2 our approach (oMOPSO) is outperformed by
one of the other PSO-based approaches, with respect to the
SCC measure. However, the values obtained by oMOPSO
in the IGD measure in this function indicate that our ap-
proach obtained as good approximations of the true Pareto
front as the other algorithms (since values of IGD measure
are mainly based on how are the obtained points distributed
along the true Pareto front, it is possible that different values
of the SCC measure correspond to similar values on the IGD
measure). On the other hand, in function DTLZ6, our ap-
proach is clearly the best, with respect to the two measures.
From Table 9, we conclude that the fitness inheritance tech-
nique FI5 has a better performance in function DTLZ6 than
in function DTLZ2 with respect to the SCC measure. How-
ever, the IGD measure indicates a very good performance
in all cases, even with respect to the other PSO-based ap-
proaches. Table 10 shows a very good performance of the
fitness approximation technique FA3 in both functions and
with respect to the two measures.

In general, technique FA3 was better than FI5 in function
DTLZ2, in which it offers a 12% of decrement in quality
with a saving of 30% in evaluations in the best case, and a

28% of decrement in quality with a saving of 40% in eval-
uations, in the worst case. On the other hand, technique
FI5 was better than FA3 in function DTLZ6. In function
DTLZ6, technique FI5 offers a 2% of decrement in quality
with a saving of 30% in evaluations in the best case, and a
30% of decrement in quality with a saving of 40% in evalu-
ations, in the worst case. These results agree with the results
obtained before. As we can see in Table 11, the results ob-
tained in the previous study show that technique FA3 is con-
sistently better than technique FI5 in function ZDT4. Func-
tion ZDT4 has 10 variables, while functions ZDT1, ZDT2
and ZDT3 have 30 variables. Also, function DTLZ2 has 12
variables while function DTLZ6 has 22 variables. In this
way, we can conclude that the fitness approximation tech-
nique FA3 has better results when the test function has a low
dimensional decision space and that the fitness inheritance
technique FI5 has better results when the test function has a
high dimensional decision space. This conclusion seems to
agree with the obtained results in our previous work [8].

9 Conclusions

We proposed several fitness inheritance and approximation
techniques and incorporated them into a Multi-Objective
Particle Swarm Optimizer proposed previously by the au-
thors. We studied the proposed techniques using several
well-known test functions from the multi-objective opti-
mization literature. We found one fitness inheritance tech-
nique and one approximation technique to be the best tech-
niques proposed. The best fitness inheritance technique is
based on the flight formula for the objective space proposed
in this paper. The best approximation technique is based on
the simple idea of assigning to a particle the same objective
values of the closest particle member of the swarm. Both
techniques were tested on other functions and compared
with other PSO-based multi-objective algorithms. The ob-
tained results show that both enhancement techniques have



Test Function DTLZ2
sMOPSO cMOPSO oMOPSO 0.1 0.2 0.3 0.4

SCC mean 25 16 18 16 15 16 13
std. dev. 4.2 6.7 6.9 6 7.7 8.2 7.3

IGD mean 0.0014 0.0021 0.0014 0.0014 0.0015 0.0015 0.0015
std. dev. 0.00005 0.0004 0.00004 0.00005 0.00007 0.0001 0.0001

Test Function DTLZ6
sMOPSO cMOPSO oMOPSO 0.1 0.2 0.3 0.4

SCC mean 1 0 62 62 51 54 53
std. dev. 0 0 13 15 27 20 20

IGD mean 0.0673 0.0373 0.0091 0.0109 0.0099 0.0100 0.0116
std. dev. 0.0000 0.0172 0.0058 0.0056 0.0059 0.0061 0.0056

Table 10: Obtained results for the test functions DTLZ2 and DTLZ6, for sMOPSO, cMOPSO, oMOPSO, and oMOPSO
with the fitness approximation technique FA3 incorporated (pa=0.1,0.2,0.3,0.4).

FI5 Inheritance proportion pi

function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)
ZDT1 71 74 (+4.2%) 69 (-2.8%) 61 (-14.1%) 56 (-21.1%)
ZDT2 89 89 ( 0.0%) 79 (-11.2%) 84 (-5.6%) 77 (-13.5%)
ZDT3 68 72 (+5.9%) 70 (+2.9%) 55 (-19.1%) 58 (-14.7%)
ZDT4 80 87 (+8.8%) 85 (+6.3%) 85 (+6.3%) 82 (+2.5%)

Average +4.7% -1.2 % -8.1 % -11.7%
FA3 Approximation proportion pa

function 0.0 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)
ZDT1 71 71 (0.0%) 67 (-5.6%) 63 (-11.3%) 50 (-29.6%)
ZDT2 89 88 (-1.1%) 87 (-2.2%) 85 (-4.5%) 76 (-14.6%)
ZDT3 68 65 (-4.4%) 65 (-4.4%) 55 (-19.1%) 57 (-16.2%)
ZDT4 80 89 (+11.3%) 91 (+13.8%) 86 (+7.5%) 87 (+8.8%)

Average +1.5% +0.4 % -6.9 % -12.9%

Table 11: Obtained results for different values of approximation proportion, for techniques FI5 and FA3.

a good performance and are very promising. In fact, fit-
ness inheritance techniques seem to be more appropriate
for high-dimensional decision space problems and fitness
approximation techniques seem more appropriate for low-
dimensional decision space problems. As part of our future
work, we plan to improve the enhancement techniques that
were found to be the best in this study, in order to minimize
the decrement in quality of results with a major saving in
the number of evaluations performed.
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