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Abstract. In this paper, we present a parallel version of a multi-objective evo-
lutionary algorithm that incorporates some coevolutionary concepts. Such an al-
gorithm was previosly developed by the authors. Two approaches were adopted
to parallelize our algorithm (both of them based on a master-slave scheme): one
uses Pthreads (shared memory) and the other one uses MPI (distributed memory).
We conduct a small comparative study to analyze the impact that the paralleliza-
tion has on performance. Our results indicate that both parallel versions produce
important improvements in the execution times of the algorithm (with respect to
the serial version) while keeping the quality of the results obtained.

1 Introduction

The use of coevolutionary mechanisms has been scarce in the evolutionary multiob-
jective optimization literature [1]. Coevolution has strong links with game theory and
its suitability for the generation of “trade-offs” (which is the basis for multiobjective
optimization) is, therefore, rather obvious. This paper extends our proposal for a co-
evolutionary multi-objective optimization approach presented in [2]. The main idea of
our coevolutionary multi-objective algorithm is to obtain information along the evolu-
tionary process as to subdivide the search space into � subregions, and then to use a
subpopulation for each of these subregions. At each generation, these different subpop-
ulations (which evolve independently using Fonseca & Fleming’s ranking scheme [3])
“cooperate” and “compete” among themselves and from these different processes we
obtain a single Pareto front. The size of each subpopulation is adjusted based on their
contribution to the current Pareto front (i.e., subpopulations which contributed more
are allowed a larger population size and viceversa). The approach uses the adaptive
grid proposed in [4] to store the nondominated vectors obtained along the evolutionary
process, enforcing a more uniform distribution of such vectors along the Pareto front.

This paper presents the first attempt to parallelize a coevolutionary multi-objective
optimization algorithm. The main motivation for such parallelization is because the
proposed algorithm is intended for real-world applications (mainly in engineering) and
therefore, the availability of a more efficient version of the algorithm (in terms of CPU
time required) is desirable. In this paper, we compare the serial version of our algorithm
(as reported in [2]) with respect to two parallel versions (one that uses Pthreads and



another one that uses MPI). A comparison with respect to PAES [4] is also included to
give a general idea of the performance of the serial version of our algorithm with respect
to other approaches. However, for a more detailed comparative study the reader should
refer to [2]. The main aim of this study is to compare the performance gains obtained by
the parallelization of the algorithm. Such performance is measured both in terms of the
computational times required as well as in terms of the quality of the results obtained.

2 Statement of the Problem

We are interested in solving problems of the type:
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the vector of decision variables. We thus wish to determine from the set ? of all the vec-
tors that satisfy (2) and (3) to the vector
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corresponding to the solutions included in the Pareto
optimal set are called nondominated. The objective function values corresponding to
the elements of the Pareto optimal set are called the Pareto front of the problem.

3 Coevolution

Coevolution refers to a reciprocal evolutionary change between species that interact
with each other. The relationships between the populations of two different species can
be described considering all their possible types of interactions. Such interaction can
be positive or negative depending on the consequences that such interaction produces
on the population. Evolutionary computation researchers have developed several coevo-
lutionary approaches in which normally two or more species relate to each other using
any of the possible relationships, mainly competitive (e.g., [5]) or cooperative (e.g., [6])
relationships. Also, in most cases, such species evolve independently through a genetic
algorithm. The key issue in these coevolutionary algorithms is that the fitness of an
individual in a population depends on the individuals of a different population.

4 Description of the Serial Version of our Algorithm

The main idea of our approach is to try to focus the search efforts only towards the
promising regions of the search space. In order to determine what regions of the search
space are promising, our algorithm performs a relatively simple analysis of the cur-
rent Pareto front. The evolutionary process of our approach is divided in 4 stages. Our
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Fig. 1. Pseudocode of our algorithm.

current version equally divides the full evolutionary run into four parts (i.e., the total
number of generations is divided by four), and each stage is allocated one of these four
parts.
First Stage. During the first stage, the algorithm is allowed to explore all of the search
space, by using a population of individuals which are selected using Fonseca and Flem-
ing’s Pareto ranking scheme [3]. Additionally, the approach uses the adaptive grid pro-
posed in [4]. At the end of this first stage, the algorithm analyses the current Pareto
front (stored in the adaptive grid) in order to determine what variables of the problem
are more critical. This analysis consists of looking at the current values of the decision
variables corresponding to the current Pareto front (line 6, Figure 1). This analysis is
performed independently for each decision variable. The idea is to determine if the val-
ues corresponding to a certain variable are distributed along all the allowable interval or
if such values are concentrated on a narrower range. When the whole interval is being
used, the algorithm concludes that keeping the entire interval for that variable is im-
portant. However, if only a narrow portion is being used, then the algorithm will try to
identify portions of the interval that can be discarded from the search process. As a re-
sult of this analysis, the algorithm determines whether is convenient or not to subdivide
(and, in such case, it also determines how many subdivisions to perform) the interval of
a certain decision variable. Each of these different regions will be assigned a different
population (line 7, Figure 1).
Second Stage. When reaching the second stage, the algorithm consists of a certain
number of populations looking each at different regions of the search space. At each
generation, the evolution of all the populations takes place independently and, later on,
the nondominated elements from each population are sent to the adaptive grid where
they “cooperate” and “compete” in order to conform a single Pareto front (line 10, Fig-
ure 1). After this, we count the number of individuals that each of the populations con-
tributed to the current Pareto front. Our algorithm is elitist (line 11, Figure 1), because
after the first generation of the second stage, all the populations that do not provide any
individual to the current Pareto front are automatically eliminated and the sizes of the



other populations are properly adjusted. Each population is assigned or removed indi-
viduals such that its final size is proportional to its contribution to the current Pareto
front. These individuals to be added or removed are randomly generated/chosen. Thus,
populations compete with each other to get as many extra individuals as possible. Note
that it is, however, possible that the sizes of the populations “converge” to a constant
value once their contribution to the current Pareto front does not change any longer.

Third Stage. During the third stage, we perform a check on the current populations in
order to determine how many (and which) of them can continue (i.e., those populations
which continue contributing individuals to the current Pareto front) (line 5, Figure 1).
Over these (presumably good) populations, we will apply the same process from the
second stage (i.e., they will be further subdivided and more populations will be created
in order to exploit these “promising regions” of the search space). In order to determine
the number of subdivisions that are to be used during the third stage, we repeat the
same analysis as before. The individuals from the “good” populations are kept. All
the good individuals are distributed across the newly generated populations. After the
first generation of the third stage, the elitist process takes place and the size of each
population will be adjusted based on the same criteria as before. Note however, that we
define a minimum population size and this size is enforced for all populations at the
beginning of the third stage.

Fourth Stage. During this stage, we apply the same procedure of the third stage in
order to allow a fine-grained search.

Decision Variables Analysis. The mechanism adopted for the decision variables anal-
ysis is very simple. Given a set of values within an interval, we compute both the mini-
mum average distance of each element with respect to its closest neighbor and the total
portion of the interval that is covered by the individuals contained in the current Pareto
front. Then, only if the set of values covers less than 80% of the total of the interval, the
algorithm considers appropriate to divide it. Once the algorithm decides to divide the
interval, the number of divisions gets increased (without exceeding a total of 40 divi-
sions per interval), as explained next. Let’s define ��� �
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Parameters Required. Our proposed approach requires the following parameters:

1. Crossover rate (
-��

) and mutation rate (
- �

).

2. Maximum number of generations (  ' � 8 ).

3. Size of the initial population (
-!��-�����" � � 1 � � ) to be used during the first stage and min-

imum size of the secondary population (
-!��-#����" � � � � ) to be used during the further

stages.



5 Description of the Parallelization Strategy

The topology adopted in this work consisted of a master-slave scheme. As we indicated
before, the evolutionary process of our algorithm is divided in 4 stages. Next, we will
briefly describe the part of each of these stages that was parallelized.

First Stage. In the case of Pthreads, this first stage is performed by the master thread.
In the case of MPI, the corresponding work is performed by each of the slave processes.
Since the master slave is the only one with access to the adaptive grid, upon finishing
each generation, each slave process must send its full population to the master process.
The master process receives all the populations and applies the corresponding filters to
send the nondominated individuals (of each population) to the adaptive grid.

Second Stage. From this stage, the algorithm uses a certain number of populations so
that it can explore different regions of the search space. Thus, in the case of Pthreads,
given a fixed number of threads, a dynamic distribution of the total number of popula-
tion takes place: the threads evolve the next available population. At each generation,
each thread evolves its corresponding populations and, then, it sends the nondominated
individuals from each population to the adaptive grid (line 10, Figure 1). The grid access
was implemented with mutual exclusion. After accessing the adaptive grid, the master
thread is on charge of counting the number of individuals provided by each population
to constitute the current Pareto front, and also on charge of reassigning the resources
corresponding to each of the populations (lines 11 and 12, Figure 1). In the case of MPI,
given a fixed number of slave processes, we assigned a fixed and equitative number of
populations to each process. Once the master process has decided which populations
will be assigned to each slave process, it proceeds to transfer them. In order to decrease
the sending and/or reception of messages peer-to-peer between processes, we created
buffers. Thus, each time that one or more full populations need to be sent or received,
a buffer is created to pack (or receive) all the necessary information and later on, such
information is sent (or unpacked). This is done with all the slaves, such that all can re-
ceive their corresponding populations. Finally, each slave sends back all its populations
to the master process, such that the master can use them in any procedures required.

Third and Fourth Stages. The main mechanism of these stages, represented by lines
4–7 in Figure 1 is performed by the master thread (process). Then, we continue with
the evolutionary process and with the resources reassignment described in the second
stage.

Synchronization. In the case of Pthreads, at each generation we must wait until all
the threads have finished their corresponding evolutionary processes and grid accesses.
Each finished process waits until the continuation signal is received. Once all the pro-
cesses have finished, the last thread to arrive takes care of the necessary processes and
when it finishes, it sends the required signal to awaken all the other threads and continue
with the evolutionary process. In the case of MPI, we use barriers at each generation for
the synchronization. Such barriers are adopted after sending all the populations to all the
slaves and after the reception of all the corresponding populations. This was done such
that all the slaves could start the evolutionary process and corresponding evaluations of
their individuals at the same time.



6 Comparison of Results

The efficiency of a parallel algorithm tends to be measured in terms of its correctness
and its speedup. The speedup ( ��� ) of an algorithm is obtained by dividing the pro-
cessing time of the serial algorithm ( � � ) by the processing time of the parallel version
( � � ): ���  � ��� � � . In all the experiments performed, we used the following param-
eters for our approach: crossover rate (

-��
) of

� � �
, mutation rate (

- �
) of

" ��� � 
 � ����" �
and size of the initial population (

-!��-�����" � � 1 � � ) equal to the minimum size of the sec-
ondary population (

-#��-#����" � � � � )  20. The maximum number of generations (  ' � 8 )
was adjusted such that the algorithms always performed an average of 	 �$����� fitness
function evaluations per run. The maximum number of allowable populations was 200.
The experiments took place on a PC with 4 processors. In order to give an idea of how
good is the performance of the proposed algorithm, we will also include a comparison
of results with respect to the Pareto Archived Evolution Strategy (PAES) [4] (PAES was
run using the same number of fitness function evaluations as the serial version of our
coevolutionary algorithm), which is an algorithm representative of the state-of-the-art
in the area. To allow a quantitative comparison of results, the following metrics were
adopted:
Error Ratio (ER): This metric was proposed by Van Veldhuizen [7] to indicate the per-
centage of solutions (from the nondominated vectors found so far) that are not members
of the true Pareto optimal set: 
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Inverted Generational Distance (IGD): The concept of generational distance was in-
troduced by Van Veldhuizen & Lamont [8, 9] as a way of estimating how far are the
elements in the Pareto front produced by our algorithm from those in the true Pareto
front of the problem. This metric is defined as:  �
  ��� � 1� � � 
 
� � � � where � is the
number of nondominated vectors found by the algorithm being analyzed and


 �
is the

Euclidean distance (measured in objective space) between each of these and the nearest
member of the true Pareto front. In our case, we implemented an “inverted” genera-
tional distance metric (IGD) in which we use as a reference the true Pareto front, and
we compare each of its elements with respect to the front produced by an algorithm.

For each of the examples shown below, we performed 30 runs per algorithm. The
Pareto fronts that we will show correspond to the median of the 30 runs performed with
respect to the 
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metric.
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Table 1 shows the values of ��� and the metrics 

0

and �� �
 for each of the
versions compared.



PAES Serial Pthreads MPI���
=2.9541

���
=2.5185

best 0.01 0.22 0.16 0.09
median 0.06 0.40 0.36 0.39

ER worst 0.12 0.57 0.57 0.56
average 0.057 0.39 0.37 0.36
std. dev. 0.0301 0.1164 0.1215 0.1283

best 0.001030 0.000596 0.000606 0.000564
median 0.001305 0.000818 0.000807 0.000875

IGD worst 0.003224 0.003277 0.003277 0.002906
average 0.001382 0.001062 0.001061 0.001204
std. dev. 0.000409 0.000638 0.000638 0.000637

Table 1. Comparison of results for the first test function.
���

refers to the speedup achieved.

6.2 Test Function 2
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Table 2 shows the values of ��� and the metrics 

0

and �� �
 for each of the
versions compared.

PAES Serial Pthreads MPI
SP=2.2486 SP=2.5639

best 0.01 0.06 0.03 0.07
median 0.11 0.17 0.16 0.16

ER worst 1.0 0.56 0.56 0.77
average 0.26 0.14 0.14 0.14
std. dev. 0.3390 0.1191 0.1197 0.1842

best 0.005430 0.002321 0.002611 0.002882
median 0.009875 0.003642 0.003648 0.003444

IGD worst 0.023626 0.007876 0.007876 0.010387
average 0.010495 0.003747 0.003791 0.003914
std. dev. 0.004310 0.001035 0.000984 0.001431

Table 2. Comparison of results for the second test function. SP refers to the speedup achieved.

7 Discussion of Results

In the case of the first test function, when comparing results with respect to the 

0

met-
ric, PAES considerably improves the results achieved by our coevolutionary approach
in all of its versions. However, note that with respect to the �  �
 metric, our approach
presents a better average performance than PAES. On the other hand, it is very impor-
tant to note that, despite the fact that the use of Pthreads improves the results of the
serial version (with respect to the 
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metric), the MPI version does even better. With
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Fig. 2. Pareto fronts obtained by the serial versions of PAES and our coevolutionary algorithm,
the Pthreads version and the MPI version for the first test function.

respect to the �� �
 metric, the three versions of the coevolutionary algorithm have a
similar behavior in all the test functions. In general, the results when using Pthreads are
very similar than those obtained with the serial version. In contrast, the MPI version
produces (marginally) better results than the other two versions in the case of the first
function, and (marginally) poorer results in the case of the second function.

In the second test function, our coevolutionary approach had a better average perfor-
mance than PAES with respect to the 


0
metric. In fact, note that the worst solutions

achieved by PAES totally missed the true Pareto front of the problem (therefore the
value of 1.0 obtained). Regarding the �  �
 metric, the results of the three versions of
our coevolutionary algorithm are approximately three times better than those obtained
by PAES. In the case of the second test function, the mere use of Pthreads improves on
the results obtained using the serial version of the algorithm (when measured with re-
spect to the 


0
metric). On average, however, the results obtained by our MPI approach

are of the same quality as those obtained with the serial version of the algorithm.
In general, regarding the 


0
metric, the four algorithms reach the true Pareto front

of each problem, and the first test function is the only one in which PAES is found to be
superior to our approach (in any of its versions). However, regarding the �� �
 metric,
we can see that the results of our coevolutionary algorithm are better than those obtained
by PAES. Graphically, we can see that this is due to the fact that PAES has problems
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Fig. 3. Pareto fronts obtained by the serial versions of PAES and our coevolutionary algorithm,
the Pthreads version and the MPI version for the second test function.

to cover the entire Pareto front of the problem. Regarding the speedups achieved, in
the first test function, the Pthreads implementation was superior to the MPI version. In
the second example, the best speedup was achieved by our MPI strategy. The speedup
values that we obtained are considered acceptable if we take into account that the par-
allelization strategy adopted in this study is rather simple and does not adopt the best
possible workload for the 4 processors available.

8 Conclusions and Future Work

We presented a simple parallelization of a coevolutionary multi-objective optimization
algorithm. The main idea of our algorithm is to obtain information along the evolution-
ary process as to subdivide the search space into subregions, and then to use a subpop-
ulation for each of these subregions. At each generation, these different subpopulations
“cooperate” and “compete” among themselves and from these different processes we
obtain a single Pareto front. The size of each subpopulation is adjusted based on their
contribution to the current Pareto front. Thus, those populations contributing with more
nondominated individuals have a higher reproduction probability. Three versions of the
algorithm were compared in this paper: the serial version and two parallel versions:



one using Pthreads and another one using MPI. We also included a comparison of re-
sults with respect to PAES to have an idea of the performance of the serial version of
our algorithm. The results obtained indicate that, despite the simplicity of the parallel
strategy that we implemented, the gains in execution time are considerably good, with-
out affecting (in a significant way) the quality of the results with respect to the serial
version. As part of our future work we are considering the use of a more efficient paral-
lelization strategy that can improve the

�;- � � 
�� - values achieved in this paper. We are
also considering certain structural engineering applications for our proposed approach.
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