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Abstract. In this paper, we propose a new Multi-Objective Particle Swarm Op-
timizer, which is based on Pareto dominance and the use of a crowding factor to
filter out the list of available leaders. We also propose the use of different muta-
tion (or turbulence) operators which act on different subdivisions of the swarm.
Finally, the proposed approach also incorporates the � -dominance concept to fix
the size of the set of final solutions produced by the algorithm. Our approach
is compared against five state-of-the-art algorithms, including three PSO-based
approaches recently proposed. The results indicate that the proposed approach is
highly competitive, being able to approximate the front even in cases where all
the other PSO-based approaches fail.

1 Introduction

Kennedy and Eberhart [1] initially proposed the swarm strategy for optimization. The
particle swarm optimization (PSO) algorithm is a population-based search algorithm
based on the simulation of the social behavior of birds within a flock. In PSO, indi-
viduals, referred to as particles, are “flown” through hyperdimensional search space.
Changes to the position of the particles within the search space are based on the social-
psychological tendency of individuals to emulate the success of other individuals. A
swarm consists of a set of particles, where each particle represents a potential solu-
tion. The position of each particle is changed according to its own experience and
that of its neighbors. Let �������
	 denote the position of particle ��� , at time step � . The
position of �� is then changed by adding a velocity �������
	 to its current position, i.e.:
���
���
	������
��������	����������
	 . The velocity vector drives the optimization process and re-
flects the socially exchanged information. In the global best version (used here) of PSO,
the social knowledge used to drive the movement of particles includes the position of
the best particle from the entire swarm ( ���! #"$� ) and its history of experiences in terms
of its own best solution thus far (��! #"$� ). In this case, the velocity vector changes in the
following way: � � �%�
	&�(')� � ���*�+��	�-,/.102.3�%��4$576987:�;*�<� � �%�
	
	=�-,�>10�>?�@��A!57698B:*�C� � �%�
	
	 ,
where ' is the inertia weight, ,D. and ,�> are the learning factors (usually defined as
constants), and 0 .FE 0 >HG+I JKE �ML are random values. The successful application of PSO in
many single objective optimization problems reflects the effectiveness of PSO. How-
ever, in order to handle multiple objectives, PSO must be obviously modified. In most
approaches (which will be generically called MOPSOs, for Multiple-Objective Particle



Swarm Optimizers), the major modifications to the basic PSO algorithm are the selec-
tion process of ��! #"$� and � �! #"$� [2, 3]. In this paper, we present a new proposal which is
based on Pareto dominance and the use of a crowding factor for the selection of leaders.
We also incorporate mutation operators (taken from the evolutionary algorithms litera-
ture) and the concept of � -dominance. This paper is organized as follows. The previous
related work is reviewed in Section 2. In Section 3, we describe our proposed approach.
The obtained results and discussion are presented in Sections 4 and 5, respectively.
Finally, the conclusions and future work are described in Section 6.

2 Related Work

There have been several proposals to extend PSO to handle multiple objectives. We will
review next the most representative of them:
Ray and Liew [4]: This algorithm uses Pareto dominance and combines concepts of
evolutionary techniques with the particle swarm. The approach uses crowding to main-
tain diversity and a multilevel sieve to handle constraints.
Hu and Eberhart [5]: In this algorithm, only one objective is optimized at a time us-
ing a scheme similar to lexicographic ordering. In further work, Hu et al. [6] adopted
a secondary population (called “extended memory”) and introduced some further im-
provements to their dynamic neighborhood PSO approach.
Fieldsend and Singh [7]: This approach uses an unconstrained elite archive (in which
a special data structure called “dominated tree” is adopted) to store the nondominated
individuals found along the search process. The archive interacts with the primary pop-
ulation in order to define local guides. This approach also uses a “turbulence” (or mu-
tation) operator.
Coello et al. [2]: This approach uses a global repository in which every particle deposits
its flight experiences. Additionally, the updates to the repository are performed consid-
ering a geographically-based system defined in terms of the objective function values
of each individual; this repository is used by the particles to identify a leader that will
guide the search. It also uses a mutation operator that acts both on the particles of the
swarm, and on the range of each design variable of the problem to be solved. In more
recent work, Toscano and Coello [8] adopted clustering techniques in order to divide
the population of particles into several swarms in order to have a better distribution of
solutions in decision variable space. In each sub-swarm, a PSO algorithm is executed
and, at some point, the different sub-swarms exchange information: the leaders of each
swarm are migrated to a different swarm to variate the selection pressure.
Mostaghim and Teich [3]: They proposed a sigma method in which the best local
guides for each particle are adopted to improve the convergence and diversity of a PSO
approach used for multiobjective optimization. They also use a “turbulence” operator.
In further work, the authors [9] studied the influence of � -dominance [10] on MOPSO
methods. � -dominance is compared with existing clustering techniques for fixing the
archive size and the solutions are compared in terms of computational time, conver-
gence and diversity. In more recent work, the authors [11] proposed a new method
called coveringMOPSO (cvMOPSO). This method works in two phases. In phase 1, a
MOPSO algorithm is run with a restricted archive size and the goal is to obtain a good



approximation of the Pareto-front. In phase 2, the non-dominated solutions obtained
from phase 1 are considered as the input archive of the cvMOPSO. The particles in the
population of the cvMOPSO are divided into subswarms around each non-dominated
solution after the first generation. The task of the subswarms is to cover the gaps be-
tween the non-dominated solutions obtained from phase 1.
Li [12]: This approach incorporates the main mechanisms of the NSGA-II [13] into
PSO. It combines the population of particles and all the ��1 2"$� positions of each particle,
and selects the best from them to conform the next population. It also selects the leaders
randomly from the leaders set based on both a niche count and a crowding distance. In
more recent work, Li [14] proposed the maximinPSO, which uses a fitness function that
requires no additional clustering or niching procedure to maintain diversity.

3 Description of Our Approach

It should be obvious that the main issue when extending PSO to deal with multiple ob-
jectives is how to generalize the concept of leader in the presence of several (equally
good) solutions. The most straightforward approach is simply to consider every non-
dominated solution as a new leader. This approach has, however, the drawback of in-
creasing the size of the set of leaders very quickly. In our approach, we use a crowding
factor [13] in order to establish a second discrimination criterion (additional to Pareto
dominance). This criterion is also adopted to decide what leaders to keep over genera-
tions when the maximum list size has been exceeded. For each particle, we select the
leader by means of a binary tournament based on the crowding value of the leaders. The
maximum size of the set of leaders is fixed equal to the size of the swarm (or popula-
tion). After each generation, the set of leaders is updated, and so are the corresponding
crowding values. If the size of the set of leaders is greater than the maximum allow-
able size, only the best leaders are retained based on their crowding value. The rest of
the leaders are eliminated. Although there are previous approaches that use the crowd-
ing factor to select the leaders (see for example [4, 12]), our approach is the first to
adopt this information to fix the size of the set of leaders. This feature of our algorithm
considerably simplifies the mechanism to control the set of leaders without requiring
any additional parameter or selection criterion. We also propose the use of two mu-
tation operators that are well-known in the EA literature: uniform mutation (i.e., the
variability range allowed for each decision variable is kept constant over generations)
and non-uniform mutation (i.e., the variability range allowed for each decision variable
decreases over time). These operators modify the values of the decision variables of a
particle with a certain probability. This makes a significant difference with respect to the
previous proposals in which all the decision variables are modified when the turbulence
(or mutation) operator is applied. Additionally, we considered the possibility of not us-
ing mutation at all. Given the uncertainty regarding the type of mutation to apply, we
proposed a scheme by which the swarm is subdivided in three parts (of equal size). Each
sub-part of the swarm will adopt a different mutation scheme: the first sub-part will have
no mutation at all, the second sub-part will have uniform mutation and the third sub-part
will have non-uniform mutation. With the use of these different operators we are aiming
to have the ability of exploring (uniform mutation) and exploiting (non-uniform muta-



tion) the search space as the process progresses. The available set of leaders is the same
for each of these sub-parts. Additionally, each particle can use as a leader a particle pro-
duced by a different sub-part of the swarm. In this way, the three different sub-parts of
the swarm will share their particular success and the final results will be a combination
of using different behaviors inside the same swarm. In order to avoid the definition of
extra parameters for the mutation operators, we adopt a rule of thumb normally used
in the EA literature [15]: the mutation rate is defined as � �������  2"��
	  , where

�����  #"��
	? 
refers to the total length of the string that encodes all the decision variables of the prob-
lem (the number of variables in our case). Finally, we adopt the concept of � -dominance
[10] in order to fix the size of the external archive that contains the (non-dominated) so-
lutions that will be reported by the algorithm. A decision vector � . is said to � -dominate
a decision vector � > for some �� J iff: �F�
��� . 	 � �
� � � 	����#�
��� > 	 E�� � � � E������ E�� and
�#�
��� . 	 � �
� � � 	����#����� > 	 E for at least one � � � E������ E�� . It is worth noting that, when
using � -dominance, the size of the final external archive depends on the � -value, which
is normally a user-defined parameter [10]. For the sake of simplicity, in this paper, we
consider the same value of � for all the objective functions of a given problem. For each
problem, the value of � was tuned based on the desired amount of points in the final
Pareto-front. Figure 1 shows the way in which our algorithm works. First, we initialize
the swarm. The non-dominated particles found in the swarm will be introduced into
the set of leaders. Later on, the crowding factor of each leader is calculated. At each
generation, for each particle, we perform the flight and apply the corresponding muta-
tion operator based on the subdivision of the swarm previously described. In order to
perform the flight of each particle, the changes to the velocity vector are done in the
following way: ���
�%�
	&�(')���
���*�+��	�-, . 0 . �%� 4$576987: ;*�<�����%�
	
	=�-, > 0 > �@� A!57698B: �C���
�%�
	
	 ,
where ' � 0��! �"� � � J#� � E�J#� $ 	 , , .2E , > � 0��! �"� � �9� � $ E&%'� J 	 , and 0 .#E 0 > � 0��! �"� �
� J(� J E � � J 	 . Note that most of the previous PSO proposals fix the values of ' , , . and
, > instead of using random values as in our case. The only exception that we know
(in the specific case of MOPSOs) is some of our own previous work [8]. We adopted
this scheme since we found it as a more convenient way of dealing with the difficul-
ties of fine tuning the parameters ' , , . and ,�> for each specific test function. Then,
we proceed to evaluate the particle and update its personal best value (���! #"$� ). A new
particle replaces its ���! #"$� value if such value is dominated by the new particle or if
both are non-dominated with respect to each other. After all the particles have been
updated, the set of leaders is updated, too. Obviously, only the particles that outper-
form their ��! #"$� value will try to enter the leaders set. Once the leaders set has been
updated, the � -archive is updated. Finally, we proceed to update the crowding values
of the set of leaders and we eliminate as many leaders as necessary in order avoid ex-
ceeding the allowable size of the leaders set. This process is repeated a fixed number
( � � �!� ) of iterations. The parameters needed by our approach are: (1) "�)*� 0 � "��
	? (size
of the swarm), (2) � � �"� (number of iterations), (3) � � (mutation rate—automatically
computed), and (4) � (value for bounding the size of the � -archive).



Begin
Initialize swarm. Initialize leaders. Send leaders to � -archive
crowding(leaders), �����
While �����	��
	�

For each particle
Select leader. Flight. Mutation. Evaluation. Update �������� .

EndFor
Update leaders, Send leaders to � -archive
crowding(leaders), � ++

EndWhile
Report results in � -archive

End

Fig. 1. Pseudocode of our algorithm.

4 Comparison of Results

To validate our approach, we performed both quantitative (adopting four performance
measures) and qualitative comparisons (plotting the Pareto fronts produced) with re-
spect to two MOEAs that are representative of the state-of-the-art in the area: the
SPEA2 [16] and the NSGA-II [13]. We also compared our approach against three PSO-
based approaches recently proposed: MOPSO [2], Sigma-MOPSO [3] and Cluster-
MOPSO [8]. For our comparative study, we implemented two unary and two binary
measures of performance. The following are the unary measures:
Success Counting (SCC): This measure counts the number of vectors (in the current
set of nondominated vectors available) that are members of the Pareto optimal set:� , , �������� . " � E where  is the number of vectors in the current set of nondomi-
nated vectors available; " � = 1 if vector � is a member of the Pareto optimal set, and
" � � J otherwise. It should then be clear that

� , , �  indicates an ideal behavior.
For a fair comparison, when we use this measure, all the algorithms should limit their
final number of non-dominated solutions to the same value.
Inverted Generational Distance (IGD): In this measure, we use as a reference the true
Pareto front, and we compare each of its elements with respect to the front produced by

an algorithm. This measure is defined as: ���! �
" #%$;�&�'�(�);

� where  is the number of
elements in the true Pareto front and

� � is the Euclidean distance (measured in objec-
tive space) between each of these and the nearest member of the set of nondominated
vectors found by the algorithm. It should be clear that a value of �*�! � J indicates
that all the elements generated are in the true Pareto front of the problem.
The binary measures adopted are the following:
Two Set Coverage (SC): This measure was proposed in [17]. Consider +�, E +-, , as
two sets of phenotype decision vectors. SC is defined as the mapping of the order pair
�.+-, E +-, , 	 to the interval I JKE �1L : � , �.+/, E +-, , 	103254 ��, , � +-, ,76�8'��, � +/,:9 ��,<; ��, ,>=�2 � 2 +-, ,72 . If
all points in +/, dominate or are equal to all points in +/, , , then by definition

� , � � .� , � J implies the opposite. In general,
� , �>+/, E +/, , 	 and

� , �>+-, , E +-, 	 both have



to be considered due to set intersections not being empty. If
� , �.+ , E +-, , 	 � J and� , �.+-, , E +-, 	�� � , we say that +/, , is better than +/, .

Two Set Difference Hypervolume (HV) This measure was proposed in [18]. Consider
+-, E +-, , as two sets of phenotype decision vectors. HV is defined by:

��� �.+ , E +/, , 	D�� �.+-, ��+-, , 	�� � �.+-, , 	 , where the set +/,?� +-, , is defined as the nondominated vectors
obtained from the union of +/, and +/, , , and

�
is the unary hypervolume measure.

� �.+ 	
is defined as the hypervolume of the portion of the objective space that is dominated
by X. In this way,

��� �>+/, E +-, , 	 gives the hypervolume of the portion of the objective
space that is dominated by +/, but not for +/, , . In this paper, we use the origin as a
reference point to compute the hypervolume. So, since all the test functions have to be
minimized, with this measure we obtain a difference between the areas that dominate
the analyzed Pareto fronts. In this way, if

��� �.+ , E +/, , 	�� J and
��� �.+-, , E +-, 	 � J , we

say that +-, , is better than +/, .
For each of the test functions shown below, we performed 20 runs per algorithm. The
parameters of each approach were set such that they all performed 20000 objective
function evaluations. The codes of NSGA-II and SPEA2 were obtained from PISA.1

The code of MOPSO was obtained from the EMOO repository.2 The codes of Sigma-
MOPSO and Cluster-MOPSO were provided by their authors. The code of our approach
is available via email request to the first author. We adopted several test functions [19],
however, given the available space we only present results corresponding to the fol-
lowing four: ZDT1, ZDT2, ZDT4 [20] and DTLZ6 [21]. All the algorithms compared
adopted real-numbers encoding. The parameters for SPEA2 were � ��� �	��� � J?J
and 200 generations, and for the NSGA-II we used � � ��"�� 	  =100 and 200 generations.
As recommended in [21], for the NSGA-II and SPEA2, the crossover probability ��

was set to 1.0 and the mutation probability �� was set to � �������  2"��
	  . For our pro-
posed approach and the MOPSO algorithm the parameters were: swarm size of 100
particles and 200 iterations. Cluster-MOPSO used 40 particles, 4 swarms, 5 iterations
per swarm and a total number of iterations of 100. In the case of Sigma-MOPSO, 200
particles were used through 100 iterations (author suggestion). As recommended in [3],
the Sigma-MOPSO used a turbulence probability of J(� J � for all functions, except for
ZDT4 in which the turbulence probability used was J#� J!$ . As recommended by its au-
thors, the MOPSO used a mutation probability of J#� $ . Our proposed approach used a
probability mutation of � �������  #"��
	? . The Pareto fronts that we will show correspond to
the nondominated vectors obtained from the union of the 20 Pareto fronts produced by
each approach. It should be noted that the Pareto fronts shown were also used to apply
the binary measures of performance. All the algorithms, except for cMOPSO, were set
such that they provided Pareto fronts with 100 points. cMOPSO does not have a scheme
to fix the size of its final archive. Thus, in order to allow a fair comparison the values of
the SCC measures were scaled (in the case of cMOPSO) to the interval [0,100]. From
Table 1 to Table 6 we show the values of the performance measures obtained for each
of the algorithms compared.

1 http://www.tik.ee.ethz.ch/pisa/
2 http://delta.cs.cinvestav.mx/˜ccoello/EMOO



Test Function ZDT1
OMOPSO NSGA-II SPEA2 MOPSO sMOPSO cMOPSO

best 82 38 47 0 93 37
median 43 20 26 0 58 7�����
worst 5 9 15 0 23 1

average 40 21 27 0 59 8
std. dev. 21.5 7.5 8.1 0 24.2 7.9

best 0.0009 0.0008 0.0006 0.0240 0.0031 0.0016
median 0.0010 0.0008 0.0007 0.0276 0.0260 0.0029�����
worst 0.0013 0.0011 0.0008 0.0385 0.0448 0.0041

average 0.0010 0.0009 0.0007 0.0286 0.0269 0.0030
std. dev. 0.00008 0.00009 0.00006 0.0040 0.0095 0.0007

Test Function ZDT1 - Two Set Coverage Measure
���

���
	���
OMOPSO) NSGA-II) SPEA2) MOPSO) sMOPSO) cMOPSO)

OMOPSO 0.00 0.64 0.55 0.96 0.03 0.95
NSGA-II 0.05 0.00 0.22 1.00 0.01 0.99
SPEA2 0.11 0.49 0.00 1.00 0.01 1.00

MOPSO 0.00 0.00 0.00 0.00 0.00 0.00
sMOPSO 0.50 0.69 0.66 0.99 0.00 0.90
cMOPSO 0.00 0.01 0.00 1.00 0.00 0.00

Test Function ZDT1 - Two Set Hypervolume Measure ���
��� 	��� OMOPSO) NSGA-II) SPEA2) MOPSO) sMOPSO) cMOPSO)

OMOPSO 0.000000 -0.001834 -0.001339 -0.323693 0.006828 -0.019389
NSGA-II 0.001304 0.000000 -0.000037 -0.322274 0.007647 -0.016607
SPEA2 0.001302 -0.000534 0.000000 -0.322771 0.007733 -0.017104

MOPSO 0.001719 0.000000 0.000000 0.000000 0.000000 0.000000
sMOPSO -0.000922 -0.003241 -0.002658 -0.333162 0.000000 -0.020032
cMOPSO 0.000356 0.000000 0.000000 -0.305667 0.007463 0.000000

Table 1. Comparison of results between our approach (denoted by OMOPSO), NSGA-II [13],
SPEA2 [16], MOPSO [2], sMOPSO [3] and cMOPSO [8], for ZDT1.

Test Function ZDT2
OMOPSO NSGA-II SPEA2 MOPSO sMOPSO cMOPSO

best 99 30 34 0 1 94
median 49 0 0 0 1 0�����
worst 0 0 0 0 1 0

average 43 6 7 0 1 29
std. dev. 34.1 9.8 10.4 0 0 38.9

best 0.0006 0.0008 0.0007 0.0271 0.0723 0.0030
median 0.0009 0.0724 0.0723 0.1098 0.0723 0.0723�����
worst 0.0303 0.0737 0.0736 0.3525 0.0723 0.0852

average 0.0034 0.0512 0.0404 0.1561 0.0723 0.0680
std. dev. 0.0078 0.0337 0.0367 0.0952 0.0000 0.0152

Table 2. Comparison of results between our approach (denoted by OMOPSO), NSGA-II [13],
SPEA2 [16], MOPSO [2], sMOPSO [3] and cMOPSO [8], for ZDT2, with respect to the unary
measures.
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Fig. 2. Pareto fronts obtained by all the approaches for ZDT1. Our algorithm is denoted by
OMOPSO and, in this case, it used � =0.0075.

Test Function ZDT2 - Two Set Coverage Measure
���

���
	���
OMOPSO) NSGA-II) SPEA2) MOPSO) sMOPSO) cMOPSO)

OMOPSO 0.00 0.93 0.94 1.00 0.00 0.21
NSGA-II 0.01 0.00 0.34 1.00 0.00 0.21
SPEA2 0.01 0.21 0.00 1.00 0.00 0.21
MOPSO 0.00 0.00 0.00 0.00 0.00 0.00
sMOPSO 0.01 0.01 0.01 0.44 0.00 0.00
cMOPSO 0.01 0.02 0.02 0.99 0.00 0.00

Test Function ZDT2 - Two Set Hypervolume Measure ���
��� 	��� OMOPSO) NSGA-II) SPEA2) MOPSO) sMOPSO) cMOPSO)

OMOPSO 0.000000 -0.004947 -0.005765 -0.342087 -0.666684 * -0.036710
NSGA-II 0.000547 0.000000 -0.000493 -0.336593 -0.672178 * -0.031559
SPEA2 0.000708 0.000486 0.000000 -0.335614 -0.673157 * -0.030560
MOPSO 0.000000 0.000000 0.000000 0.000000 -0.897843 * 0.000000
sMOPSO 0.000000 0.000000 0.000000 -0.110928 0.000000 0.000000
cMOPSO 0.000126 -0.000217 -0.000197 -0.305251 -0.703520 * 0.000000

Table 3. Comparison of results between our approach (denoted by OMOPSO), NSGA-II [13],
SPEA2 [16], MOPSO [2], sMOPSO [3] and cMOPSO [8], for ZDT2, with respect to the binary
measures.
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Fig. 3. Pareto fronts obtained by all the approaches for ZDT2. Our algorithm is denoted by
OMOPSO and, in this case, it used � =0.0075.
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Fig. 4. Pareto fronts obtained by all the approaches for ZDT4. Our algorithm is denoted by
OMOPSO and, in this case, it used � =0.0075.



Test Function ZDT4
OMOPSO NSGA-II SPEA2 MOPSO sMOPSO cMOPSO

best 98 0 0 0 0 0
median 88 0 0 0 0 0�����
worst 0 0 0 0 0 0

average 77 0 0 0 0 0
std. dev. 26.2 0 0 0 0 0

best 0.0009 0.0126 0.0256 4.6415 0.1541 0.4203
median 0.0009 0.1317 0.0811 12.407 0.7393 1.6404�����
worst 0.0432 0.3219 0.3464 15.250 1.2865 4.1864

average 0.0030 0.1508 0.1224 9.9195 0.7591 1.8621
std. dev. 0.0095 0.0973 0.0943 4.0106 0.3147 0.9357

Test Function ZDT4 - Two Set Coverage Measure
���

���
	���
OMOPSO) NSGA-II) SPEA2) MOPSO) sMOPSO) cMOPSO)

OMOPSO 0.00 0.92 0.94 0.00 0.00 0.00
NSGA-II 0.00 0.00 1.00 1.00 1.00 1.00
SPEA2 0.00 0.00 0.00 1.00 1.00 1.00
MOPSO 0.00 0.00 0.00 0.00 0.00 0.00
sMOPSO 0.00 0.00 0.00 1.00 0.00 1.00
cMOPSO 0.00 0.00 0.00 1.00 0.00 0.00

Test Function ZDT4 - Two Set Hypervolume Measure ���
��� 	��� OMOPSO) NSGA-II) SPEA2) MOPSO) sMOPSO) cMOPSO)

OMOPSO 0.000000 -0.164026 -0.343057 -0.333325 * -0.333325 * -0.333325 *
NSGA-II 0.000574 0.000000 -0.179995 -0.497925 * -0.497925 * -0.497925 *
SPEA2 0.001538 0.000000 0.000000 -0.677920 * -0.677920 * -0.677920 *
MOPSO 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
sMOPSO 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
cMOPSO 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Table 4. Comparison of results between our approach (denoted by OMOPSO), NSGA-II [13],
SPEA2 [16], MOPSO [2], sMOPSO [3] and cMOPSO [8], for ZDT4.

Test Function DTLZ6
OMOPSO NSGA-II SPEA2 MOPSO sMOPSO cMOPSO

best 93 1 2 0 1 0
median 23 0 0 0 1 0�����
worst 0 0 0 0 1 0

average 32 0.1 0.6 0 1 0
std. dev. 30.9 0.3 0.9 0 0 0

best 0.0024 0.0064 0.0037 0.0375 0.0673 0.0110
median 0.0029 0.0088 0.0045 0.0583 0.0673 0.0345�����
worst 0.0213 0.0314 0.0214 0.1185 0.0673 0.0742

average 0.0065 0.0132 0.0067 0.0658 0.0673 0.0373
std. dev. 0.0060 0.0083 0.0051 0.0205 0.0000 0.0172

Table 5. Comparison of results between our approach (denoted by OMOPSO), NSGA-II [13],
SPEA2 [16], MOPSO [2], sMOPSO [3] and cMOPSO [8], for DTLZ6, with respect to the unary
measures.



Test Function DTLZ6 - Two Set Coverage Measure
���

���
	���
OMOPSO) NSGA-II) SPEA2) MOPSO) sMOPSO) cMOPSO)

OMOPSO 0.00 0.68 0.64 0.92 0.00 0.57
NSGA-II 0.01 0.00 0.31 1.00 0.00 0.80
SPEA2 0.01 0.30 0.00 0.98 0.00 0.57

MOPSO 0.00 0.00 0.00 0.00 0.00 0.00
sMOPSO 0.00 0.07 0.12 0.45 0.00 0.24
cMOPSO 0.00 0.04 0.12 1.00 0.00 0.00

Test Function DTLZ6 - Two Set Hypervolume Measure ���
��� 	��� OMOPSO) NSGA-II) SPEA2) MOPSO) sMOPSO) cMOPSO)

OMOPSO 0.000000 -0.109957 -0.095828 -0.333723 -3.606059* -0.629977
NSGA-II 0.109963 0.000000 0.001996 -0.113803 -3.825408* -0.410346
SPEA2 0.141673 0.019577 0.000000 -0.096222 -3.843163* -0.392616

MOPSO 0.000000 0.000000 0.000000 0.000000 -3.880365* 0.000000
sMOPSO 0.000000 0.000572* 0.000398* 0.059418* 0.000000 0.001163*
cMOPSO 0.000180 -0.000109 0.000040 0.296434 -4.235054* 0.000000

Table 6. Comparison of results between our approach (denoted by OMOPSO), NSGA-II [13],
SPEA2 [16], MOPSO [2], sMOPSO [3] and cMOPSO [8], for DTLZ6, with respect to the binary
measures.
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Fig. 5. Pareto fronts obtained by all the approaches for DTLZ6. Our algorithm is denoted by
OMOPSO and, in this case, it used � =0.05.



5 Discussion of Results

Through the use of binary measures of performance, and under certain conditions, we
can conclude that an algorithm is better than another [22]. In this work, since we use
two different binary measures, we will conclude that an algorithm is better than another
when at least one of the measures indicates so, according to the definitions given in
Section 4. Since the conditions to conclude that an algorithm is better that another one
using the binary measures are very difficult to satisfy in most cases, we will use the val-
ues obtained by the SC binary measure in order to conclude partial results: We will say
that an algorithm A is relatively better than algorithm B when

� , (A,B)  � , (B,A),
and almost better than B when

� , (B,A)=0 and
� , (A,B)  0.9. The values of the HV

binary measure will be used to make only conclusions of the type: algorithm A is better
than algorithm B, just like it was defined in Section 4.
ZDT1. From Table 1, we can conclude that the best results with respect to the SCC
measure were obtained by the sMOPSO algorithm. In this case, our proposed approach
is the second best. However, the sMOPSO algorithm was unable to generate the com-
plete Pareto front, as we can appreciate in Figure 2. This fact is reflected in the values
of the IGD measure in Table 1. With respect to the IGD measure, our approach ob-
tained results as good as those obtained by all the other MOEAs compared, improving
the results obtained by the other three PSO-based approaches. Regarding the binary
measures (Table 1) and considering both of them, we can conclude that the NSGA-
II and SPEA2 are better than cMOPSO and MOPSO. Also, we can conclude that
sMOPSO and cMOPSO are better than MOPSO. On the other hand, we can conclude
that OMOPSO and sMOPSO are relatively better than the rest of the algorithms, in
particular, OMOPSO is almost better than MOPSO and cMOPSO. Finally, sMOPSO
is relatively better than OMOPSO. We will now analyze in more detail the results ob-
tained by our algorithm in these measures. We can’t conclude that OMOPSO is better
than the NSGA-II (for example) since

� , (OMOPSO,NSGA-II) �� � and
� , (NSGA-

II,OMOPSO) �� J , but, since
� , (OMOPSO,NSGA-II)  � , (NSGA-II,OMOPSO),

OMOPSO is relatively better than NSGA-II. On the other hand, we have
� , (MOPSO ,

OMOPSO) � J and
� , (OMOPSO,MOPSO) � 0.95, so OMOPSO is almost better than

MOPSO. Although it should be clear that OMOPSO is better than MOPSO, the results
obtained do not allow to reach this conclusion since OMOPSO lost the extreme superior
point of the front, as we can see in Figure 2. This is due to the use of the � -dominance
scheme to fix the number of solutions in the external archive. This also explains the pos-
itive values obtained for the binary hypervolume measure in the column of OMOPSO
in Table 1, since the hypervolume corresponding to the front obtained from the union
of the MOPSO and OMOPSO fronts is marginally bigger than the hypervolume corre-
sponding to the front of OMOPSO, giving a positive value to the difference in the binary
measure. This exemplifies the sort of anomalous behavior that can go undetected even
when using binary performance measures.
ZDT2. From Table 2, we can conclude that our algorithm (OMOPSO) obtained the
best results in both unary measures, with the largest number of points (on average)
belonging to the true Pareto front and the minimum IGD (on average). Regarding the
binary measures (considering both of them) (Table 3), we can conclude that OMOPSO,
NSGA-II, SPEA2 and cMOPSO are better than MOPSO and sMOPSO. Also, we can



say that OMOPSO is almost better than NSGA-II, SPEA2 and cMOPSO. We can see in
the SC binary measure values that almost 80% of the points of the cMOPSO algorithm
are concentrated on the top part of the true Pareto front. Thus, although the major part
of the observed front of the cMOPSO algorithm (see Figure 3) is not on the true Pareto
front, the corresponding results on the SC measure are not as expected. Additionally,
the sMOPSO algorithm obtained just one point: (0.0,1.0). None of the other algorithms
were able to generate this point, as we can see in the SC measure values from Table 3.
For example, in this case, our algorithm (OMOPSO) preserved two extreme points:
� J(� J E � � J3J?J"$ 	 and � $�� � J�� .�� E � � J 	 (although they are not visible in Figure 3). These
two points let the front obtained by OMOPSO to completely dominate the front ob-
tained by MOPSO, but not the front obtained by sMOPSO. Fortunately, these problems
with the SC measure are overcome by the HV measure with a small modification: the
values that we have marked with an asterisk (*) in Table 3 were originally positive.
However, we changed them to correspond more closely with reality, since the hyper-
volume corresponding to the front of sMOPSO is zero.
ZDT4. Based on the results shown in Table 4, we can conclude that our OMOPSO ob-
tained the best results with respect to the two unary measures adopted, with the largest
number of points (on average) belonging to the true Pareto front and the minimum
IGD (on average). Regarding the binary measures and considering both of them (see
Table 4), we can conclude that OMOPSO, NSGA-II and SPEA2 are better than the
other three PSO-based approaches. Also, we can say that the NSGA-II is better than
SPEA2, and that OMOPSO is almost better than NSGA-II and SPEA2. In this case,
our approach is only almost better than the NSGA-II and SPEA2 for the same reason
that we discussed in the case of function ZDT1. As we can see in Figure 4, OMOPSO
lost the top extreme point of the Pareto front due to the use of the � -dominance scheme.
For this reason, OMOPSO can’t dominate completely the fronts produced by NSGA-II
and SPEA2. In fact, it can’t even dominate the isolated points obtained by the other
PSO-based approaches. Additionally, for this same reason we find positive values in
the column of OMOPSO for the binary hypervolume measure. However, the binary hy-
pervolume measure lead us to conclude the superiority of OMOPSO compared with
the other PSO-based approaches. It is very important to note that our algorithm was
the only PSO-based approach that was able to generate the entire Pareto front of this
function. This illustrates the effectiveness of the mechanisms adopted in our approach
to maintain diversity and to select and filter out leaders.
DTLZ6. From Table 5, we can conclude that our algorithm (OMOPSO) obtained the
best results with respect to the two unary measures adopted, with the largest number of
points (on average) belonging to the true Pareto front and the minimum IGD (on av-
erage). Regarding the binary measures and considering both of them (see Table 6), we
can conclude that OMOPSO, NSGA-II, SPEA2 and cMOPSO are better than MOPSO,
and that OMOPSO is better than sMOPSO. Also, OMOPSO is relatively better than
NSGA-II, SPEA2 and cMOPSO. We can see the Pareto fronts obtained for this func-
tion in Figure 5.
Overall Discussion. With respect to the unary performance measures, our approach
obtained the best results in all functions, except for ZDT1. Thus, this indicates that
OMOPSO was able to obtain a good approximation and a good number of points of the



true Pareto of all the test functions used in this paper. Regarding the binary measures,
although in function ZDT1 our approach was relatively outperformed by sMOPSO, in
general OMOPSO was clearly superior compared with the other PSO-based approaches
adopted in our comparative study. Also, the results obtained by OMOPSO showed that
it is highly competitive with respect to both NSGA-II and SPEA2.

6 Conclusions and Future Work

We have proposed a new multi-objective particle swarm optimizer which uses Pareto
dominance and a crowding-based selection mechanism to identify the leaders to be re-
moved when there are too many of them. The selection of such in-excess leaders has
been a topic often disregarded in the literature of multi-objective particle swarm opti-
mizers, but it is a key issue to design robust and effective PSO-based multi-objective
optimizers. This is clearly illustrated in this paper, since our approach was able to out-
perform the other PSO-based algorithms. Additionally, our approach was the only al-
gorithm able to generate the Pareto front of a problem for which no other PSO-based
approach was able to work properly. After performing a comparative study with respect
to three other PSO-based approaches and two highly competitive multi-objective evo-
lutionary algorithms (the NSGA-II and SPEA2), we found our proposed approach to be
highly competitive. Our results indicate superiority of our technique with respect to the
other PSO-based approaches and a very similar behavior with respect to the NSGA-II
and SPEA2. As part of our future work, we intend to fix the problem with the loss of the
extrema of the Pareto fronts caused by the use of � � dominance. We are also interested
in exploring mechanisms that can accelerate convergence and that allow our approach
to stop the search automatically (i.e., without having to define a maximum number of
iterations).
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