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ABSTRACT
In recent years, evolutionary algorithms have been found to be
effective and efficient techniques to train support vector machines
(SVMs) for binary classification problems while multiclass problems
have been neglected. This paper proposes CMOE-SVM: Coopera-
tive Multi-Objective Evolutionary SVMs for multiclass problems.
CMOE-SVM enables SVMs to handle multiclass problems via co-
evolutionary optimization, by breaking down the original M-class
problem intoM simpler ones, which are optimized simultaneously
in a cooperative manner. Furthermore, CMOE-SVM can explicitly
maximize the margin and reduce the training error (the two com-
ponents of the SVM optimization), by means of multi-objective
optimization. Through a comprehensive experimental evaluation
using a suite of benchmark datasets, we validate the performance
of CMOE-SVM. The experimental results, supported by statistical
tests, give evidence of the effectiveness of the proposed approach
for solving multiclass classification problems.
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1 INTRODUCTION
Support Vector Machines (SVMs) [24] are supervised learning al-
gorithms with strong theoretical foundations. The ultimate goal of
an SVM is to find the hyperplane that maximizes the separation
margin between two classes, described by the so-called support
vectors. In spite of the effectiveness of SVMs in binary classification,
real-world problems often require discriminating among more than
two classes.

Common extensions to enable SVMs to work with multiclass
problems are categorized into decomposition strategies and sin-
gle machine methods. Decomposition strategies break down the
multiclass problem into multiple binary ones, which are solved inde-
pendently without considering the interactions with others. Single
machine methods, on the other hand, reformulate the function to
be optimized, allowing to capture in a single model the multiclass
decision function. Nonetheless, single machine methods result in
larger and more complex optimization problems.

Recent studies have successfully integrated evolutionary algo-
rithms (EAs) into SVMs [4, 20, 21, 25]. One integration consists in
replacing the quadratic programming solver with an EA to train
SVMs [7, 15], allowing us to work with non-positive semidefinite
kernels1. Despite these advances, they have focused on the binary
classification problem, neglecting the multiclass ones.

We propose here CMOE-SVM: Cooperative Multi-Objective Evo-
lutionary SVMs formulticlass problems. CMOE-SVMaims at putting
forward at the intersection of EAs and SVMs, by taking advantage of
the benefits of cooperative coevolutionary algorithms to decompose
the multiclass problem into several subproblems and optimizing
them in a cooperative fashion. Thus, each subproblem interacts
with others and the multiclass problem is captured in a single model.
The additional benefits of EAs for solving multi-objective problems
can lead to enhancements by explicitly and simultaneously optimiz-
ing the margin and controlling the over-fitting during the training
stage. The main contributions of this paper are the following:
• An extension to SVMs, which has enabled them to learn
multiclass classifiers via coevolutionary optimization.
• A derivation of the multi-objective optimization problem
that learns the class-specific support vectors, by considering
the information from other classes. The multi-objective for-
mulation has the inherent advantage of managing different

1Non-positive semidefinite kernels can lead to a non-convex optimization for SVMs.
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costs for the penalty term without requiring to explicitly
specify it.

We assess the performance of CMOE-SVM with a set of 20 multi-
class classification datasets. We first compare it with decomposition
strategies. Second, we compare with respect to single machinemeth-
ods. Third, we contrast the performance of the proposed method
against standard learning algorithms. Finally, we compare in terms
of the computational time with respect to the multiclass SVMs ex-
tensions. Our experimental results show its effectiveness in solving
the classification task. These findings are supported by a set of
non-parametric statistical tests.

The remainder of this paper is organized as follows. Section 2 de-
scribes some preliminary concepts related to the main extension to
multiclass SVMs, coevolutionary optimization, and multi-objective
optimization. Section 3 describes in detail our proposed CMOE-
SVM. Next, Section 4 outlines the experimental settings for our
study, while Section 5 presents our experimental results and their
corresponding statistical validation. Finally, Section 6 provides our
general conclusions.

2 PRELIMINARIES
This section discusses the main preliminaries on which our contri-
bution is based. Section 2.1 describes the main extensions proposed
to solve multiclass problems using SVMs. Next, in Section 2.2, we de-
scribe themain characteristics of coevolutionary algorithms. Finally,
Section 2.3 presents the basic concepts regarding multi-objective
optimization.

2.1 Multiclass Extensions for SVMs
In this section, we revise the main extensions of SVMs for multi-
class problems. These can be categorized into two major groups:
Decomposition strategies and Single Machine Methods, which are
briefly discussed next.

2.1.1 Decomposition strategies. These approaches follow the
idea of dividing multiclass problems into several binary classifi-
cation problems. The most common decomposition methods for
multiclass SVMs are the following:

• One-vs-All (OVA) [3]: OVA decomposes theM-class prob-
lem intoM subproblems and learns an SVM for each subprob-
lem. An instance is classified in the class with the highest
activation value. One disadvantage of OVA is that it intro-
duces an artificial imbalance during training. Therefore, the
larger the number of classes, the greater the rate of imbal-
ance.
• One-vs-One (OVO) [12]: OVO trains a binary SVM for each
possible pair of classes. An instance is assigned to the class
with a majority vote. Nonetheless, OVO can lead to a large
number of binary SVMs, slowing down the prediction stage.
• Directed Acyclic Graph (DAG) [17]: The training phase is
similar to OVO, but differing in the prediction stage. DAG
follows a tree structure, starting from a root node andmoving
until it reaches a leaf node, which indicates the class label.
Note that, however, the performance of DAG depends on the
SVM in the root node.

A comparison between these three strategies is performed in [11],
finding that their accuracy is quite similar, with no statistical dif-
ference.

2.1.2 Single MachineMethods. Thesemethodsmodify the objec-
tive function to solve directly the multiclass problem. Remarkable
single machine methods are the following:
• Multiclass SVM Weston & Watkins (MSVM-WW) [27]:
This formulation adds slack variables to each class and the
constraints consider that the activation value of each sample
in each class is at least twice that of the others.
• Multiclass SVM Lee, Lin & Wahba (MSVM-LLW) [14]: It
is similar to MSVM-WW, but it reduces the dimensionality
of the problem by means of a sum-to-zero constraint.
• Multiclass SVM Crammer & Singer (MSVM-CS) [5]: This
formulation removes the bias term.Moreover, the constraints
only consider that the activation value of each sample in each
class is greater than the largest activation from other classes.
• Multiclass SVM Square (MSVM2) [10]: It adds a quadratic
function to the slack variables and also adopts the squared
hinge loss function.

These approaches have reported similar performance to those
obtained by either OVA or OVO. Nonetheless, these methods have
the disadvantage of dealing with larger optimization problems.

2.2 Coevolutionary Optimization
Coevolutionary algorithms are able to manage two or more pop-
ulations (species) simultaneously [28]. They allow splitting the
problem into different parts and assign a different population to
each subproblem, such that each focuses its efforts on solving one
specific part of the problem. Two different kinds of coevolutionary
algorithms can be described:
• Competitive coevolutionary algorithms [22]. The indi-
viduals of each population compete against each other. The
fitness value of an individual decreases as the result of an
increment in the fitness value of its adversaries. Competitive
coevolution is normally adopted for game-like problems.
• Cooperative coevolutionary algorithms [18]. Each pop-
ulation evolves individuals representing a part of the solution.
A complete solution is composed by joining individuals from
all the populations. Therefore, the fitness value of an indi-
vidual is the result of its collaboration with other individuals
from other populations.

In this work, our focus is on cooperative coevolution, due to
the fact that it allows us to decompose the multiclass classification
problem in a natural fashion, by assigning to each subproblem the
task of learning the set of support vectors for each class.

2.3 Multi-Objective Optimization
A general Multi-Objective Optimization Problem (MOP) can be
stated as follows:

min f (α ) = [f1 (α ) , . . . , fl (α )]T

subject to α ∈ A
(1)

where α ∈ Rn is a decision variables vector, fh (α ), h = 1, . . . , l , are
the l-objective functions, and A is the set of feasible solutions.
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The objectives in a MOP are conflicting, and therefore a single
best solution for all of them does not exist. In these cases, we use
Pareto optimality. We say that a solution α1 dominates a solution
α2 (denoted by α1 ⪯ α2) if and only if α1 is better than α2 at least
in one objective and is not worse in the rest, i.e.,

∀h : fh
(
α1
)
≤ fh

(
α2
)
∧ ∃h : fh

(
α1
)
< fh

(
α2
)

(2)

A solution α∗ is a Pareto optimal solution if another solution
α ′ ∈ A does not exist such that α ′ ⪯ α∗. One should note that this
definition does not produce a single solution, but a set of trade-off
solutions; this set is called Pareto optimal set, and the image of this
set in objective function space is referred to as the Pareto Front.

3 CMOE-SVM: COOPERATIVE
MULTI-OBJECTIVE EVOLUTIONARY
SUPPORT VECTOR MACHINES

The proposed CMOE-SVM aims at training a multiclass SVM in
a single step, by finding the set of support vectors of each class.
It follows a cooperative approach, having a subpopulation opti-
mizing the support vectors for a specific class while considering
the other subpopulations (classes) to solve the multiclass problem.
Algorithm 1 describes CMOE-SVM.

Algorithm 1 CMOE-SVM
Require: X, the set of samples,
Y , the set of classes labels,
P , the population size,
CR, F , the differential evolution parameters,
E , maximum number of evaluations
ω , the set of spread weight vectors associated to each individual

Ensure: The set of support vectors
1: Generate randomly an initial population, Py for each class y ∈ Y
2: for each y ∈ Y do
3: Select randomly an individual from each class y′ ∈ Y \ y
4: Construct full solutions by combining the selected individuals of

each class
5: Evaluate the full solutions using the fitness functions, f
6: Save the nondominated solutions in an external archive, EP (y )
7: end for
8: while a stopping criterion is not met do
9: for each y ∈ Y do
10: Select an individual randomly from the nondominated set,

EP (y′) ∀y′ ∈ Y \ y
11: for each individual in the current class do
12: Apply evolutionary operators to create an offspring, α ′
13: Evaluate the offspring with the fitness functions, f
14: Replace the current individual, α , if max (ωi ��f (α ′)��) <

max (ωi ��f (α )��)
15: Update the nondominated solutions in EP (y )
16: end for
17: end for
18: end while
19: Construct the final solution based on the individuals in the external

archive

(1) The algorithm starts creating a population at random. In
each population, the number of variables is directly related

with the number of samples in the training set for the given
class. This is done in step 1.

(2) Steps 3 to 5 assess the fitness of each individual in a sub-
problem by randomly selecting individuals from other sub-
problems to form a complete solution. This is part of the
cooperative coevolution.

(3) The best nondominated solutions are kept in an external
archive in step 6.

(4) From steps 8 to 18, the evolutionary process takes place:
(a) Step 10 randomly selects an individual of the nondomi-

nated set from other classes and the evolutionary opera-
tors are applied to create an offspring, in step 12.

(b) Step 13 computes the fitness value of the offspring solution
by forming a complete solution with the nondominated
individuals from other populations.

(c) A child solution replaces the current individual if it im-
proves the current solution. To determine this, objectives
are normalized and the aggregated fitness function is com-
puted with the weighted Tchebycheff distance shown in
step 14.

(d) In step 15, the nondominated solutions in the external
archive are updated by adding the child solution if no
solution in the archive dominates it. Solutions that are
dominated by the child are also removed.

(5) The multiclass SVM is constructed by selecting from each
subproblem a solution from the external archive (see sec-
tion 3.3).

The remainder of this section details the proposed method.

3.1 Fitness Functions: Optimization Problem
In the proposed approach, the multiclass problem is split into multi-
ple subproblems, which are solved simultaneously in a cooperative
fashion. Each subproblem has the task to learn the support vectors
of a specific class. Thus, the multi-objective optimization problem
for the r th class is formulated as follows:

min f
(
wr , ξ

r ) = 

1
2
∥wr ∥

2∑nr
i=1 ξ

r
i


subject to ⟨wr , xi ⟩ ≥ 1 − ξ ri , ξ ri ≥ 0

(3)

where nr is the number of samples for the r th class.
The first objective function aims at maximizing the separation

margin while the second one seeks for controlling the over-fitting
during the training. For the dual formulation, constraints are incor-
porated in the objective functions by using the Lagrangemultipliers:
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L1
(
w, ξ r ,αr , βr

)
=

1
2
∥wr ∥

2 −
nr∑
i=1

αri [⟨wr , xi ⟩ − 1]

−

nr∑
i=1

αri ξ
r
i −

nr∑
i=1

βri ξ
r
i

L2
(
w, ξ r ,αr , βr

)
=

nr∑
i=1

ξ ri −

nr∑
i=1

αri [⟨wr , xi ⟩ − 1]

−

nr∑
i=1

αri ξ
r
i −

nr∑
i=1

βri ξ
r
i

subject to αri , β
r
i ≥ 0.

(4)

Setting the partial derivatives to zero, replacing them in Equa-
tion (4) and simplifying, we get the following equivalent optimiza-
tion problem:

min f ′
(
αr
)
=



1
2
∑nr
i, j=1 α

r
i α

r
j

〈
xi , xj

〉
−
∑nr
i=1 α

r
i


subject to αri ≥ 0

(5)

Equation (5) learns the support vectors for a single class label.
In order to benefit from the cooperative evolution of each class
label, a third objective is considered, which takes into account the
interaction with other subproblems (classes). The multi-objective
optimization problem in cooperative evolution is stated as:

min f ′
(
αr
)
=



1
2
∑nr
i, j=1 α

r
i α

r
j

〈
xi , xj

〉
−
∑nr
i=1 α

r
i

2 +
1
nr

∑nr
i=1
(∑nq

j=1 α
q
i

〈
xi , xj

〉
−∑nr

j=1 α
r
i

〈
xi , xj

〉)


subject to αri ≥ 0

(6)

whereq ∈ {1, . . . ,M }\r is the index class with the largest activation.
Next, we describe the representation of the solutions and the

evolutionary operators used in CMOE-SVM.

3.2 Representation
Each population consists of P individuals. The populations of each
subproblem share the same individual representation. All individ-
uals are encoded as real-valued vectors. The number of variables
of each population is equal to the number of instances available in
the training set for each class. Thus, the number of variables is not
increased in the optimization task, as usually happens with other
methods. Moreover, all populations are evolved simultaneously and
each of them deals with simpler problems.

Theα vector is randomly initialized, by assigning to each variable
a probability of 0.5 to take a value in the range (0,C]; otherwise, it
takes a value of 0.

The individuals in each population are evolved by using the
differential evolution operator [19], which generates a new child
solution as follows:

α
r (s )
i =




α
r (t )
i + F ×

(
α
r (u )
i − α

r (v )
i

)
rnd ≤ CR,

α
r (s )
i Otherwise

(7)

whereCR and F are two control parameters and s , t , u andv are the
indexes for the current individual, which acts as the parent solution,
and three randomly selected individuals from the r th population.

Finally, the child solution is added to the population for the next
generation in the evolutionary process if and only if it improves
the sth parent in the weighted Tchebycheff function, as it is shown
in line 14 from Algorithm 1.

3.3 Building the Multiclass SVM
Once the coevolutionary process is over, the multiclass classifier is
built by selecting from each population the member that gets the
minimal distance to an ideal vector, zr . The ideal vector is defined
as:

zr =
[
zh : zh = min f ′h

(
αr
)]
∀h ∈ {1, 2, 3} (8)

The solutions with αri > 0 are the support vectors and represent
the multiclass classifier. A new instance xt is classified as follows:

yt = argmax
r

∑
i ∈SVr

αri ⟨xi , xt ⟩ (9)

where SVr represents the set of support vectors from the r th class.

3.4 Learning Nonlinear SVMs
The optimization problem presented in Equation (6) learns a lin-
ear function from the training data. The kernel trick can be used
in CMOE-SVM by replacing the inner product, ⟨xi , x⟩, in Equa-
tions (6) and (9), with a Kernel function, K (xi , x). Some commonly
used kernel functions are the following [23]:
• Linear kernel: K (xi , x) = ⟨xi , x⟩
• Polynomial kernel: K (xi , x) = (⟨xi , x⟩ + 1)d

• Radial basis function kernel: K (xi , x) = e−γ ∥xi−x∥
2

where d , γ are adjustable parameters for the above kernel functions.

4 EXPERIMENTAL SETUP
In this section, we describe the experimental settings adopted in
our study. In Section 4.1, we present the datasets used in our exper-
imental study. Section 4.2 describes the algorithms that are used
to compare the performance of CMOE-SVM. Finally, Section 4.3
presents the performance measures and statistical tests adopted to
assess the results produced by each algorithm.

4.1 Datasets
We used a set of 20 datasets available in the KEEL repository [1] to
experimentally validate the performance of
CMOE-SVM. Table 1 shows some characteristics of these datasets,
such as the number of instances, the number of features, the im-
balance rate (IR)2 and the number of classes. These datasets were
chosen based on those having three o more classes.

These datasets have been partitioned into 10 training/test sub-
sets by using the k-fold cross validation technique. Furthermore,
2The IR is computed as the average of the IR of all pairwise classes.
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Table 1: Description of the datasets used in our study. For
each dataset, we show the number of instances, the number
of attributes, and the number of classes.

ID Dataset Atts. Insts. IR Classes
1 Automobile 25 203 5.69 6
2 Cleveland 13 303 3.87 5
3 Contraceptive 9 1,473 1.55 3
4 Dermatology 34 366 2.17 6
5 Ecoli 7 336 15.27 8
6 Glass 9 214 3.60 6
7 Iris 4 150 1.00 3
8 Led7digit 7 500 1.16 10
9 Lymphography 18 148 18.30 4
10 Movement Libras 90 360 1.00 15
11 Newthyroid 5 215 3.48 3
12 Penbased 16 10,992 1.05 10
13 Satimage 36 6,435 1.73 6
14 Segment 19 2,310 1.00 7
15 Splice 60 3,190 1.77 3
16 Texture 40 5,500 1.00 11
17 Vowel 13 990 1.00 11
18 Wine 13 178 1.30 3
19 Yeast 8 1,484 11.65 10
20 Zoo 16 101 3.20 7

features have been pre-processed in order to have zero mean and
unit standard deviation.

4.2 Considered Algorithms
We compared the performance of CMOE-SVM against decompo-
sition strategies and single machine methods. To this end, the fol-
lowing reference methods were considered:

• Decomposition strategies using the sequential minimal opti-
mization (SMO) [16] implemented in KEEL:
– OVO
– OVA
• Single machine methods available at MSVMpack [13]:
– MSVM2

– MSVM-CS
– MSVM-LLW
– MSVM-WW

All methods use the radial basis function (RBF) kernel. In order to
allow a fair comparison, the values of the hyper-parameters for each
method are tuned for each dataset, as it is suggested in [26]. Thus,
we randomly sample 100 configurations following the methodology
described in [2]. We have specifically considered the ranges ofCR =
(0, 1], F = (0, 2]. The population size in all cases is set to 20, to avoid
increasing the computational cost in CMOE-SVM. Moreover, the
rangeγ =

[
2−10, 22

]
for the kernel’s parameter is set for all methods.

Reference methods further require to specify the regularization
parameter, which is tuned in the range C =

[
2−4, 210

]
. Each of

the 100 configuration is tested and the one with the best score in
accuracy is chosen for each dataset.

We have fixed to 200,000 the maximum number of evaluations
of the objective functions for all methods. The convergence crite-
rion of CMOE-SVM is defined as having an improvement in the
distance from the nondominated front to the reference vector after
25 iterations lower than 0.001.

CMOE-SVM is also compared with respect to common learn-
ing algorithms. The set of learning algorithms are Random Forest
(RF), K-Nearest Neighbor (KNN), and Naïve Bayes (NB). The hyper-
parameters of these methods are tuned. In RF, the number of trees
is adjusted in the range [1, 100] while in KNN the neighborhood
size is adjusted in the range [1, 10].

4.3 Performance Measures
Accuracy and Cohen’s kappa metrics are used to assess the perfor-
mance of all methods. These metrics are computed as follows:
• Accuracy (Acc) indicates the ratio of samples that are cor-
rectly classified, i.e.,

Acc =
1
N

M∑
i=1

TPi (10)

whereTPi is the number of correctly classified samples from
class i .
• Cohen’s kappa (K ) measures the degree of agreement be-
tween two observations: the predicted class and the correct
one. Cohen’s kappa is computed as follows:

K =
N
∑M
i=1TPi −

∑M
i=1 PiTi

N 2 −
∑M
i=1 PiTi

(11)

where Pi is the number of predicted samples as class i and
Ti is the number of samples from class i .
Cohen’s kappa ranges from−1, indicating total disagreement,
through 0 (random classification), to 1, which indicates a
perfect agreement.

Non-parametric statistical tests were used to contrast the differ-
ence amongmethods, since this is widely recommended for compar-
ing multiple classifiers over multiple datasets by [6, 8, 9]. We used
the Friedman Aligned Ranks test to compare among CMOE-SVM
and reference methods, and Holm’s procedure was used to find out
which algorithms are distinctive. In all cases, the significance level
was set to α = 0.05.

5 EXPERIMENTAL RESULTS
This section presents the results of our experimental study. First,
in Section 5.1, we compare with respect to decomposition strate-
gies. Next, Section 5.2 contrasts the proposed method against sin-
gle machine methods. Section 5.3 shows a comparison between
CMOE-SVM and standard learning algorithms. Finally, Section 5.4
compares the running time of each method.

5.1 Comparing with Decomposition Strategies
The aim of this experimental study is to assess the performance
of CMOE-SVM and the decomposition strategies: OVA and OVO.
Table 2 shows the average results obtained from the 20 datasets. The
detailed results on each dataset and the hyper-parameters values
of each method are provided as supplementary material. To allow
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Table 2: Comparison between CMOE-SVM and the decompo-
sition strategies SVM.

Method Acc K

CMOE-SVM 0.8363 ± 0.1577 0.7636 ± 0.2397
OVO 0.8239 ± 0.1636 0.7258 ± 0.2876
OVA 0.8174 ± 0.1647 0.7334 ± 0.2577

Table 3: Average rankings of the methods computed with
Friedman Aligned Ranks (FAR) and Holm’s adjusted p-
values (pHolm ).

Method Acc K

FAR pHolm FAR pHolm
CMOE-SVM 21.28 — 21.35 —
OVO 31.15 0.0738 31.60 0.0635
OVA 39.08 0.0025 38.55 0.0037

reproducibility, the supplementary material and source code are
available at ccc.inaoep.mx/~arosales/resources/CMOESVM.tar.gz.

Table 3 shows the ranking obtained by Friedman’s Aligned Ranks
both with accuracy score (Acc) and Cohen’s Kappa (K ). It also
shows the adjusted p-value with the Holm’s test (pHolm ).

Based on Tables 2 and 3, we stress the following:
• CMOE-SVM statistically outperforms the OVA decomposi-
tion strategy. The statistical tests have revealed significant
differences in both performance measures, under the consid-
ered level of α = 0.05.
• OVO decomposition is clearly the most competitive decom-
position strategy for the proposed CMOE-SVM in both ac-
curacy and Cohen’s Kappa metrics. This is noted with the
lack of a statistically significant difference between both
approaches.
• The most significant difference between CMOE-SVM with
OVO and OVA is in Cohen’s Kappa. This is interesting be-
cause the hyper-parameters for each method were set by
considering accuracy as the main criterion. Thus, CMOE-
SVM is not overfitted to this criterion.

5.2 Comparing with Single Machine Methods
In this section, our goal is to contrast the performance of CMOE-
SVM with respect to single machine methods. Table 4 shows the
average results obtained by each method and Table 5 shows the
ranking for each algorithm computed with Friedman’s Aligned
Ranks method and the adjustedp-values with the Holm’s test. Based
on these, the following is highlighted:
• The difference between CMOE-SVM and single machine
methods is statistically significant in most cases.
• MSVM-CS excels as the most prominent single machine
method. This is consistent with the fact that there is no
significant difference between CMOE-SVM and MSVM-CS.
• Both CMOE-SVM and MSVM-CS have the major improve-
ments in the Cohen’s Kappa. Moreover, they do not consider
the bias term in the optimization problem.

Table 4: Comparison between CMOE-SVM and single ma-
chine methods.

Method Acc K

CMOE-SVM 0.8363 ± 0.1577 0.7636 ± 0.2397
MSVM-CS 0.8307 ± 0.1687 0.7591 ± 0.2481
MSVM-WW 0.8082 ± 0.1699 0.7178 ± 0.2628
MSVM2 0.7897 ± 0.1740 0.6876 ± 0.2721
MSVM-LLW 0.8067 ± 0.1750 0.6993 ± 0.3033

Table 5: Average rankings of the methods computed with
Friedman Aligned Ranks (FAR) and Holm’s adjusted p-
values (pHolm ).

Method Acc K

FAR pHolm FAR pHolm
CMOE-SVM 32.88 — 33.35 —
MSVM-CS 40.10 0.4310 36.80 0.7069
MSVM-WW 59.08 0.0111 57.75 0.0156
MSVM2 59.50 0.0111 61.40 0.0067
MSVM-LLW 60.95 0.0088 63.20 0.0046

Table 6: Comparison between CMOE-SVM and standard
learning algorithms.

Method Acc K

CMOE-SVM 0.8363 ± 0.1577 0.7636 ± 0.2397
RF 0.8362 ± 0.1558 0.7638 ± 0.2339
KNN 0.8102 ± 0.1647 0.7317 ± 0.2508
NB 0.7611 ± 0.1714 0.6842 ± 0.2380

Table 7: Average rankings of the methods computed with
Friedman Aligned Ranks (FAR) and Holm’s adjusted p-
values (pHolm ).

Method Acc K

FAR pHolm FAR pHolm
CMOE-SVM 29.00 — 29.95 —
RF 31.75 0.7672 32.58 0.7209
KNN 45.85 0.0437 46.15 0.0550
NB 55.98 0.0002 53.33 0.0044

5.3 Comparing with Standard Learning
Algorithms

In this section, we aim at assessing the performance of the proposed
method against well-known learning algorithms. Table 6 shows the
average results over the 20 datasets and Table 7 reports the average
rankings and adjusted p-values.

From these tables, we remark:

• CMOE-SVM and RF have virtually the same performance.
This is an interesting result since RF is a powerful learning
algorithm based on an ensemble of several decision trees.

ccc.inaoep.mx/~arosales/resources/CMOESVM.tar.gz
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Thus, in spite of the fact that CMOE-SVM does not con-
sider building ensembles, it still has a highly competitive
performance.
• There is no statistically significant difference betweenCMOE-
SVM and KNN when Cohen’s Kappa is considered. However,
in accuracy, tests have shown a significant difference.
• NB is the worst one, both in accuracy and Cohen’s Kappa
metric. Statistical tests have revealed significant differences
in both scores.

5.4 Comparing Running Times
Figure 1 graphically depicts a comparison of the computational
time for each method. This figure represents the probability that a
given method learns the multiclass SVM in a given amount of time.
From it, we can note:
• Both OVO and OVA are the best approaches, and have virtu-
ally the same performance.
• CMOE-SVM is the third best method, requiring at most, 118
seconds for solving each benchmark problem.
• Single machine methods are clearly the slowest ones. This
is due to the fact that they deal with a larger optimization
problem.
• In the best case, single machine methods required around
280 seconds to ensure solving each dataset.
• In contrast to its outstanding performances, MSVM-CS is
the worst one in terms of computational time.

6 CONCLUSIONS
This paper introduced CMOE-SVM, an approach for handling mul-
ticlass problems with SVMs via multi-objective coevolutionary
optimization. The method resembles the decomposition strategies
and the single-machine methods, by decomposing the problem into
several subproblems and solving them via cooperative coevolu-
tion. However, unlike decomposition strategies, CMOE-SVM is able
to capture in a single model the multiclass classification problem,
and in contrast with single machine methods, it does not increase
the number of variables to be optimized. These features make the
proposed extension a more flexible approach.

The use of evolutionary algorithms has allowed us to formulate
the optimization problem as a multi-objective one, by explicitly and
simultaneously optimizing the margin and controlling the over-
fitting during the training. An inherent advantage of this is that
our formulation does not require to specify the penalty parameter
beforehand, but this trade-off is managed as part of the training
stage.

The experimental evaluationwas carried out using 20 benchmark
datasets. The experimental results give evidence of the suitability
of CMOE-SVM to handle multiclass problems, by outperforming
most of the multiclass SVM extensions. This claim is supported by
a set of non-parametric tests with a level of significance of α = 0.05.
MSVM-CS has shown to be the most competitive extension in terms
of the prediction performance, but it is also the slowest one during
the training process. CMOE-SVM is able to handle a better trade-off
between performance and training time than MSVM-CS.

Finally, non-positive semidefinite kernels lead to a non-convex
optimization problem, narrowing their applicability to the quadratic

solver of SVMs. As part of our future work, we want to exploit the
global search properties of EAs, so as to explore the use of non-
positive semidefinite kernels with SVMs.
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