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ABSTRACT
Data imbalance is still so far a challenging issue in data
classification. Recent works suggest the use of cost sensitive
learning with genetic programming as an effective tool to
design classification trees with automatically learned costs.
Although promising results were obtained, evaluating a clas-
sification tree with a single cost matrix is not a wise choice.
Indeed, the tree quality evaluation requires trying several
misclassification cost matrices to be more precise and fair.
Motivated by this observation, we propose in this paper a
bi-level modeling of the cost-sensitive classification tree induc-
tion problem where the upper level evolves the classification
trees, while the cost matrix of each tree is optimized at the
lower level. Our bi-level modeling is solved using an improved
version of an existing co-evolutionary algorithm, and the
resulting method is named Bi-COS (Bi-level COst Sensitive).
The obtained comparative experimental results on several
imbalanced benchmark datasets show the merits of Bi-COS
with respect to the state-of-the art.
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1 INTRODUCTION
Several classification problems face the class imbalance is-
sue which means having a majority class with high accuracy
and a minority class with poor accuracy. It is challenging
to address this issue because in many practical situations,
the minority class must gain core atttention. For instance, in
oil spills detection and medical diagnosis, the minority class
is more important than the majority one. To address the
class imbalance issue, cost sensitive learning represents an
important method that treats classification errors in different
manners to make the classification algorithms sensitive to
them. However, cost information requires domain experts
which makes the misclassification cost unknown. Recent works
have considered the use of Genetic Programming (GP) and
cost sensitive learning to design classification trees with au-
tomatically learned misclassification costs. This combination
has shown interesting results. However, existing methods
share the same incovenient which manifests in generating a
single cost information for each classifier. Since the classifier
performance depends on the cost quality, the classifier evalu-
ation requires trying several misclassification cost matrices
to be more precise and fair. To address this issue, we model
the cost-sensitive classification tree induction problem as a
bi-level optimization problem that is solved using the base-
line of an existing bi-level co-evolutionary algorithm called
CEMBA (Co-Evolutionary Migration-Based Algorithm) [8]
while using a novel migration process. The overall algorithm
is named Bi-COS and performs classifier construction at the
upper level, while the learning costs task is performed at the
lower level. The main goal is to generate several costs for each
classifier at the lower level and the obtained optimal cost
will be sent to the upper level to evaluate the corresponding
classifier. In fact, we focus on the binary classification be-
cause many real-world imbalanced data situations are binary
and even multi-class classification could be seen as multiple
binary classification tasks. The main contributions are stated
as follows:

(1) Proposing a bi-level modeling of the cost-sensitive classifi-
cation tree induction problem that evolves the classification
trees at the upper level and optimizes the misclassification
costs for each classifier at the lower level to allow more
precise and fair evaluation of any classification tree.

(2) Designing an enhanced and adapted version of an exist-
ing algorithm to solve the proposed bi-level modeling by
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Figure 1: Single-level modeling of existing ap-
proaches [6].

modifying its migration strategy with the aim of ensuring
efficacious variation and diversification of the classification.

(3) Assessing the performance of Bi-COS on ten commonly-
used imbalanced datasets with up to 12600 features and
336 instances.

2 BACKROUND AND RELATED
WORKS

Several applications face an unequality issue among classes
[4]. For instance, in clinical databases, a large amount of
medical patients’ information is stored. However, compared
with normal cases, the disease cases are fairly rare. This situ-
ation presents an imbalanced data issue in which the used
dataset does not have an equal distribution among classes.
The imbalanced classification faces many challenges such as
the difficulty of the imbalance ratio learning and noisy class
label. In the literature, several approaches have been pro-
posed for imbalanced data classification by using three main
strategies which are [4]: (1) resampling techniques, (2) devel-
oping new fitness functions, and (3) cost sensitive learning.
Cost sensitive learning consists in considering the information
cost in order to minimize the total cost of misclassification
caused by several mistakes. Indeed, there are two types of
misclassification costs which are (1) class-dependent cost in
which instances of the same class have the same misclassifi-
cation cost, and (2) class-independent cost in which, for each
instance, a different misclassification cost is assigned. The
investigation of cost sensitive learning in GP has gained the
attention of researchers. For instance, Li et al. [5] proposed
two GP methods for cost sensitive classification. These two
methods are applied for the manipulation of training data
and the modification of the learning algorithm. However, the
adopted cost matrix is manually designed. More recently, Pei
et al. [6] designed the Genetic-Programming-Cost Sensitive
(GP-CS) for the construction of classifiers when the cost in-
formation is unknown. The goal was to automatically learn
cost values. However, a single cost value is generated which
makes the classifier evaluation not precise.

3 PROPOSED APPROACH
3.1 Main idea and motivations
Existing methods have a single-level modeling characterized
by generating a single cost value for each classifier [6] (cf.

Figure 2: Main idea of the proposed Bi-COS.

Figure 1). The left sub-tree represents a classifier Eclasssifier

that selects features f1, f3, and f4 and the right sub-tree
is its corresponding cost value Ecost. By generating a single
Ecost, the Eclasssifier cannot be precisely evaluated since
the performance of Eclasssifier depends on the quality of
its Ecost. In other words, the Eclasssifier evaluation requires
trying several misclassification cost matrices to be more fair
and precise. To address this issue, we propose to model the
cost-sensitive classification tree induction problem as a bi-
level optimization problem. The classifiers construction is
performed at the upper level problem, while their cost values
are learned at the lower level problem. Figure 2 illustrates an
example for the evaluation of a single upper level individual
(i.e., classifier) using the proposed Bi-COS. Indeed, the left
sub-tree is generated at the upper level problem and then it
is sent to the lower level problem. By using Eclasssifier as a
fixed parameter, the lower level generates a population of cost
values (i.e. right sub-trees) and then, the best Ecost for the
corresponding Eclasssifier is determined and passed to the
upper level. Based on the best Ecost received from the lower
level, Eclasssifier is evaluated. By using tournament selection,
the best individuals are selected, then, new populations are
created by applying mutation, crossover, and elitism. In a bi-
level optimization problem, the evaluation of each upper level
solution requires the use of its corresponding optimal lower
level solution which leads to a high number of evaluations [7],
[2], [1]. For this reason, we have used an existing algorithm
called CEMBA [8] as an effective and efficient evolutionary bi-
level algorithm. To ensure the diversification of classification
trees, we have proposed an improved migration strategy as
follows. First, if a Left Sub-Tree (LST) is selected at the upper
level while having a Right Sub-Tree (RST) at the lower level,
then this LST remains selected; and if the LST is discarded
and its corresponding RST is also discarded then this LST
remains discarded. Second, when a LST exists without its
RST, then, a random variable V is generated in the range [0,
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Table 1: Terminal and function sets.

Terminal set Function set
Name Type Name Input type Output type*

Upper
level
(Left
sub-
tree)

A random constant Iput (float) +, –, .
. (protected), and × [Iput, Iput] Iput

Features dataset Iput (float) If [Iput, Iput, Iput] Iput
Eclasssifier [Iput] Predi (float)*

Lower
level
(Right
sub-
tree)

Random numbers which are Icost (float) ×, +, SubCost, and DivCost [Icost, Icost] Icost
uniformally distributed in the range [1, 2] Eclasssifier [Icost] Ocost (float)

Table 2: Default parameters settings.

Upper and Lower levels Populations UP1 = UP2 = LP1 = LP2 = 25
Upper and Lower level Generations UG = 25, LG = 25
Stopping criterion 781250 evaluations
Initialization Ramped half-and-half
Crossover type and probability Sub-tree crossover, probability = 0.8
Mutation type and probability Sub-tree mutation, probability = 0.2
Selection Tournament selection (size = 6)
Maximum tree depth 10
Elitism 1
Runs 30

1]. If V < 0.5, then, the LST will be discarded; otherwise, it
remains selected and we choose a random RST from the lower
level population. Third, when the LST is discarded while its
corresponding RST exists at the lower level; if V < 0.5, the
LST will be selected and the RST will be used to compute
the cost value; otherwise, the LST remains discarded and
RST will be discarded.

3.2 Detailed description of Bi-COS
Bi-COS is based on Strongly-Typed GP. Details about termi-
nal and function sets are given by Table 1. We mention that
the root node of a tree is a function termed Combine that
takes two arguments: (1) Eclassifier output and (2) Ecost

output. Details about Bi-COS structure are given as follows.

3.2.1 Upper level.
– Classifier construction: The left sub-tree represents the

classifier that selects several features.
– Classification predictions: The threshold-moving idea

[6] is used to predict classification decisions. First, values of
the left sub-tree output are normalized into [0, 1] using the
min-max normalization. Based on the learned cost value
C received from the lower level, a threshold is determined
as follows: T H = C

C+1 [6]. Therefore, if the prediction is
≥ T H, then the instance is classified into the majority class;
otherwise it is classified into the minority class.

– Variation operators: To create new upper level popula-
tions, crossover, mutation and elitism are applied.

– Fitness function: After taking the classification decisions,
individuals are evaluated using G-Mean.

3.2.2 Lower level.
– Cost learning: The right sub-tree represents the cost learn-

ing task. For each Eclassifier, several Ecost values are gener-
ated. The use of the range of [1, 2] is explained by the fact
that the misclassification cost for the minority class should
be greater than or equal to the misclassification cost for the
majority class (i.e. 1) [6]. SubCost and DivCost are slightly
different from the original - and .

. to avoid producing risky
cost values for the minority class [6].

– Variation operators: To search for optimal learned costs,
the lower level search space must be varied through the use
of crossover, mutation, and elitism.

– Evaluation: Each lower level sub-tree generates a misclas-
sification cost using the corresponding Ecost function and
the individual with the minimum misclassification cost will
be passed to the upper level.

4 EXPERIMENTAL STUDY
Experiments were performed using ten datasets 1. Bi-COS
was compared with two Cost-Sensitive GP methods (i.e.
CS-GP [6], GPrcw [5]) and six GP-methods utilizing sev-
eral fitness functions (i.e. GPave [9], GPG−mean, GPamse,
GPcorr, GDist [3], GPaucw [10]). A trial-and-error method
was adopted for tuning Bi-COS parameters (cf. Table 2) while
the Friedman and holm statistical tests were also used.

Table 3 gives the obtained results of the Area Under a
Curve (AUC) that measures the classifier ability to distin-
guish between classes. It is observed that Bi-COS outperforms
existing methods. Compared to CS-GP, Bi-COS achieves the
best performance on 6 datasets. For the Colon dataset, Bi-
COS achieves 10.06 % higher AUC compared to CS-GP. On
the other datasets, Bi-COS achieves slightly better perfor-
mance (eg. 1.92% higher on yeoh-2002-v1). Compared to
GPrcw, Bi-COS achieves significantly better performance on
all datasets (e.g. 16.01% higher on colon).

Compared to GPave, Bi-COS achieves significantly better
performance in 8 datasets. For the 2 other datasets, GPave

achieves slightly wost performance on new-thyroid1 ( 1.72%
lower) and leukemia (1.57% lower). It is observed that the
superiority of Bi-COS appears on lung (15.65% higher) and
Yeoh-2002-v1 (15.74% higher). Furthermore, Bi-COS outper-
forms GPamse on the majority of datasets (e.g. 15.19% higher
in colon and 17.36% higher in lung).

Compared to GPG−mean, Bi-COS achieves significantly
better performance in 9 out of the 10 datasets. However,
for the new-thyroid1 dataset, Bi-COS is slightly better with
1.58% higher result. Compared to GP methods which ap-
plies AUC approximation measures as a fitness function (i.e.
GPcorr, GPdist , and GPaucw), Bi-COS achieves better re-
sults in 8 datasets. On the 2 other datasets, Bi-COS obtains
0.18% and 0.14% lower result than GPaucw.

The previous observations are explained by the ability
of Bi-COS in optimizing the misclassification cost for each
classifier. Indeed, the best cost will be chosen to be used for
the classifier evaluation. By following the bi-level scheme, we
guarantee a fair and precise evaluation for any classifier.
1 https://schlieplab.org/Static/Supplements/CompCancer/datasets.
htm and https://sci2s.ugr.es/keel/imbalanced.php

https://schlieplab.org/Static/Supplements /CompCancer/datasets.htm
https://schlieplab.org/Static/Supplements /CompCancer/datasets.htm
https://sci2s.ugr.es/keel/imbalanced.php
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Table 3: The obtained best, median, and standard (std) AUC results (%) (IR is the class imbalance ratio).

Dataset Method Best Median Std*

Lung
(IR
=8)

Bi-COS 100 98.55 2.10
CS-GP 100(≈) 96.80(-) 2.70(-)
GPrcw 100(≈) 79.95(-) 15.70(-)
GPave 100(≈) 82.90(-) 15.00(-)
GPG−mean 98.61(-) 80.25(-) 18.60(-)
GPamse 100(≈) 81.16(-) 16.88(-)
GPcorr 100(≈) 80.05(-) 17.81(-)
GPdist 100(≈) 83.79(-) 15.05(-)
GPaucw 100(≈) 91.99(-) 3.70(-)*

tomlins-
2006-
v1
(IR
=8)

Bi-COS 100 99.25 1.15
CS-GP 100(≈) 96.25(-) 4.77(-)
GPrcw 100(≈) 85.97(-) 13.20(-)
GPave 100(≈) 88.01(-) 13.78(-)
GPG−mean 100(≈) 83.80(-) 15.00(-)
GPamse 100(≈) 92.40(-) 8.55(-)
GPcorr 100(≈) 90.02(-) 14.20(-)
GPdist 100(≈) 95.13(-) 6.90(-)
GPaucw 100(≈) 90.76(-) 10.11(-)*

Yeoh-
2002-
v1(IR
=5)

Bi-COS 100 98.94 2.32
CS-GP 100(≈) 97.02(-) 4.35(-)
GPrcw 100(≈) 89.03(-) 10.01(-)
GPave 100(≈) 83.20(-) 12.09(-)
GPG−mean 95.29(-) 65.99(-) 16.50(-)
GPamse 91.89(-) 63.17(-) 12.59(-)
GPcorr 100(≈) 92.72(-) 8.10(-)
GPdist 100(≈) 90.88(-) 8.67(-)
GPaucw 100(≈) 99.12(+) 2.30(+)*

New-
thyroid1
(IR
=5)

Bi-COS 100 99.51 2.06
CS-GP 100(≈) 96.29(-) 4.60(-)
GPrcw 100(≈) 96.10(-) 4.31(-)
GPave 100(≈) 97.79(-) 3.00(-)
GPG−mean 100(≈) 97.93(-) 3.42(-)
GPamse 100(≈) 96.04(-) 4.56(-)
GPcorr 100(≈) 96.22(-) 6.50(-)
GPdist 100(≈) 98.69(-) 3.77(-)
GPaucw 100(≈) 99.65(+) 2.05(+)*

DLBCL
(IR
=3)

Bi-COS 100 86.50 5.10
CS-GP 94.50(-) 80.15(-) 9.24(-)
GPrcw 97.10(-) 79.15(-) 13.02(-)
GPave 98.20(-) 75.03(-) 15.71(-)
GPG−mean 100(≈) 76.91(-) 15.82(-)
GPamse 100(≈) 76.88(-) 13.53(-)
GPcorr 98.20(-) 80.76(-) 11.87(-)
GPdist 99.10(-) 83.98(-) 10.03(-)
GPaucw 100(≈) 85.40(-) 10.95(-)

Dataset Method Best Median Std*

Ecoli1
(IR
=3)

Bi-COS 100 90.01 3.17
CS-GP 95.10(-) 83.40(-) 8.30(-)
GPrcw 97.01(-) 82.50(-) 11.12(-)
GPave 99.00(-) 82.80(-) 9.79(-)
GPG−mean 96.10(-) 83.20(-) 9.11(-)
GPamse 96.10(-) 82.90(-) 13.21(-)
GPcorr 99.01(-) 80.76(-) 11.87(-)
GPdist 99.01(-) 84.09(-) 9.09(-)
GPaucw 100(≈) 82.12(-) 9.50(-)*

Leukemia
(IR
=2)

Bi-COS 100 89.97 5.11
CS-GP 95.90(-) 84.80(-) 9.30(-)
GPrcw 99.20(-) 81.14(-) 14.53(-)
GPave 97.92(-) 88.40(-) 7.98(-)
GPG−mean 100(≈) 81.42(-) 15.60(-)
GPamse 100(≈) 81.33(-) 11.95(-)
GPcorr 100(≈) 85.90(-) 10.97(-)
GPdist 97.01(-) 86.03(-) 9.00(-)
GPaucw 100(≈) 85.98(-) 9.77(-)*

Colon
(IR
=2)

Bi-COS 97.88 89.51 5.20
CS-GP 90.18(-) 78.91(-) 7.20(-)
GPrcw 87.89(-) 73.50(-) 10.51(-)
GPave 91.36(-) 75.21(-) 10.40(-)
GPG−mean 92.50(-) 71.14(-) 13.05(-)
GPamse 94.99(-) 74.32(-) 10.88(-)
GPcorr 96.03(-) 74.99(-) 10.34(-)
GPdist 92.50(-) 76.25(-) 9.76(-)
GPaucw 91.36(-) 78.50(-) 7.43(-)*

Glass0
(IR
=2)

Bi-COS 100 99.21 1.52
CS-GP 100(≈) 98.67(-) 2.92(-)
GPrcw 100(≈) 88.02(-) 12.99(-)
GPave 100(≈) 91.71(-) 10.15(-)
GPG−mean 100(≈) 90.00(-) 11.70(-)
GPamse 100(≈) 82.37(-) 11.85(-)
GPcorr 100(≈) 95.96(-) 6.40(-)
GPdist 100(≈) 96.41(-) 5.55(-)
GPaucw 100(≈) 97.90(-) 3.53(-)*

Iris0
(IR
=2)

Bi-COS 100 98.98 2.79
CS-GP 100(≈) 98.00(-) 3.00(-)
GPrcw 100(≈) 95.55(-) 5.51(-)
GPave 100(≈) 93.97(-) 8.00(-)
GPG−mean 100(≈) 91.90(-) 8.30(-)
GPamse 100(≈) 89.99(-) 7.20(-)
GPcorr 100(≈) 94.01(-) 7.11(-)
GPdist 100(≈) 95.90(-) 3.55(-)
GPaucw 100(≈) 93.91(-) 5.01(-)

5 CONCLUSION AND FUTURE
WORKS

The aim of this paper was to propose a bi-level modeling
for the cost-sensitive classification tree induction problem
while performing classifiers construction at the upper level
and cost learning at the lower level. Indeed, cost values are
automatically learned and the best cost information is deter-
mined from a population of generated cost values. Compared
to recent and pertinent works, the proposed Bi-COS is able
to achieve better classification performance while ensuring a
precise and fair evaluation.

Several perspectives could be extended from this work.
First, we attempt to investigate the performance of Bi-COS
for the multi-class classification case. Second, it would be
interesting to apply other types of cost information such as the
class-independent cost in which a different misclassification
cost is assigned for each instance.
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