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ABSTRACT

This paper presents an approach in which a multi-objective
evolutionary algorithm (MOEA) is coupled to a surrogate
method in order to explore the search space in an efficient
manner. A small comparative study among three surrogate
methods is conducted: an artificial neural network (ANN),
a radial basis function (RBF') and a support vector machine
(SVM). The winner in this comparative study was the SVM.
However, our results indicated that the spread of solutions
achieved by our surrogate-based MOEA was poor. Thus,
we decided to introduce a second phase to the algorithm
in which it is hybridized with the rough sets in order to
improve the spread of solutions and help to reach the true
Pareto front. We show that our proposed hybrid approach
only requires 2,000 fitness function evaluations in order to
solve test problems with up to 30 decision variables.

Introduction.

In recent years, the statement and solution of multi-ob-
jective optimization problems has become very common in a
wide variety of disciplines in which computational efficiency
is a critical issue. However, multi-objective evolutionary al-
gorithms (MOEAS) are normally expensive in the sense that
they require a high number of objective function evaluations
(e.g., in aeronautical engineering). Through interpolation,
extrapolation and/or integration, surrogate models can be
used to address complex problems involving experimental
design, system analysis and prediction. There exist a variety
of techniques for constructing surrogate models [12], models
that will probably be built dozens of times. Currently, there
exist several evolutionary algorithms that use a meta-model
(surrogate) to approximate the real fitness function (see for
example [6, 7, 8, 9, 14]).

Our Proposed Approach.

Our proposed approach is divided in two different phases,
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each of which consumes a fixed number of fitness function
evaluations. In the first phase, our surrogate-based MOEA
is applied for 600 fitness function evaluations (this value was
empirically derived). In order to determine the most ap-
propriate surrogate method to be adopted, we performed
a small comparative study. Although the surrogate-based
MOEA can produce reasonably good approximations of the
Pareto front, the distribution of solutions is normally poor.
This motivated a second phase for our approach, in which
rough sets are applied as a local search engine during 1,400
fitness evaluations in order to improve the solutions pro-
duced at the previous phase.

Phase 1: Surrogate-based MOEA.

The surrogate model adopted in this work is shown in Fig-
ure 1. A multi-objective particle swarm optimizer (MOPSO)
is adopted to optimize the approximate model generated by
the different surrogates (artificial neural networks (ANNs)[1],
radial basis functions (RBFs), and support vector machines
(SVMs) [11]). Our MOPSO maintains two populations: the
main one (which is used to select the leaders), and a second
population that retains some solutions that were dominated
by the global nondominated solutions that is needed for the
second phase. Both populations use the pae-dominance grid
proposed in [5] to maintain diversity.
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Figure 1: Surrogate model adopted in this paper.

Perform the local search using| M
Rough Sets Theory

Phase 2:Rough Sets in Multi-Objective Optimization.
Rough Sets theory is a mathematical approach to deal
with imperfect knowledge originally proposed by Pawlak
[10]. We will try to approximate the Pareto front using a
Rough Sets grid. In order to do this, we will use an initial ap-
proximation of the Pareto front (provided by the surrogate
algorithm) and will implement a grid in order to get more



ZDT1 ANN RBF SVM Mean ZDT2 | ANN RBF SVM Mean ZDT3 ANN RBF SVM Mean
ANN - 0.1033  0.9561 | 0.5297 ANN - 0.2667 1.0 0.6333 ANN - 0.1 0.9165 | 0.5082
RBF 0.8581 0.9256 | 0.8918 RBF 0.75 1.0 0.875 RBF 0.8584 0.9150 | 0.8867
SVM 0.0 0.0 - 0.0 SVM 0.0 0.0 - 0.0 SVM 0.0 0.0 — 0.0
ZDT4 ANN RBF SVM Mean ZDT6 ANN RBF SVM Mean
ANN - 0.6717 0.83 0.7508 ANN - 0.4582  0.7864 | 0.6223
RBF 0.2824 - 0.7774 | 0.5299 RBF 0.2696 - 0.7280 | 0.4988
SVM | 0.0250 0.1 - 0.0625 SVM 0.0 0.0 — 0.0
Table 1: Results of Set Coverage (SC) for the ZDT test problems.
Set Coverage IGD Spread
Function SVM+RS NSGA-II SVM+RS NSGA-II SVM+RS NSGA-IT
Mean o Mean o Mean o Mean o Mean o Mean o
ZDT1 0.0725 0.1676 | 0.8755 ~ 0.1785 | 0.0061 0.0046 | 0.0168  0.0021 0.8308  0.1987 | 0.8194 0.0324
ZDT?2 0.0000 0.0000 [ 0.9690  0.0505 | 0.0026 0.0027 | 0.0382 0.0062 | 0.5684 0.2338 | 0.9711  0.0696
ZDT3 0.0372 0.0668 | 0.6453 0.3343 | 0.0145 0.0071 0.1190 0.0113 | 0.8684 0.0943 0.9475  0.0296
ZDT4 0.7937 0.2512 0.0167 0.0500 0.7397 0.1554 0.1511 0.0405 0.9572 0.0411 1.0795 0.1026
ZDT6 0.0000 0.0000 | 0.9208 0.1886 | 0.0135 0.0025 | 0.0548  0.0092 1.1000  0.1297 | 0.9588 0.0274

Table 2: Results of SVM+RS and the NSGA-II for the ZDT test problems (2000 evaluations).

information about the front that will let us improve this ini-
tial approximation. To create this grid, we use N feasible
points divided in two sets: the nondominated points (ES)
and the dominated ones (DS). Using these two sets we want
to create a grid to describe the set E'S in order to intensify
the search on it (see [4] for further details).

Analysis of Results.

For our experiments, we adopted the ZDT test problems
[15]. Three performance measures were adopted in order to
allow a quantitative assessment of our results: (1) Inverted
Generational Distance (IGD) [13]; (2) Two Set Coverage
(SC) [15]; and (3) Spread (S)[2]. For each test problem, 10
independent runs were performed.

In this study, we perform 600 real function evaluations
using different surrogate methods: ANNs, RBFs and SVMs.
The results reported in Table 1 correspond to SC metric.
From the results, we can conclude that the SVM approach
is the one that shows the best overall performance in these
particular multi-dimensional test functions. So, we decided
to choose this approach to hybridize it with the Rough Sets.

We decided to compare our hybrid (using SVM and RS)
with an algorithm representative of the state of the art
(NSGA-II) [3]. The parameters used by the NSGA-II are
the following: crossover rate = 0.9, mutation rate = 1/n, 7.
= 15, nm = 20, population size = 52 and maximum number
of generations = 39. These parameters make the NSGA-II to
perform 2,028 fitness function evaluations in total (allowing
a fair comparison between both approaches).

The results are reported in Table 2 for the three perfor-
mance measures (SC, IGD and S) performing the same num-
ber of evaluations of both approaches (SVM+RS and NSGA-
II). It can be observed that in the ZDT test problems, our
approach produced the best results with respect to the SC
and IGD in all cases except for ZDT4. The poor perfor-
mance in ZDT4 might be attributed to the bad scalability
presented by both approaches.

Conclusions and Future Work.

We have presented an initial study of surrogate methods
to solve bi-objective problems. Three different methods were
used in our comparative study: ANNs, RBFs and SVMs, all
of them in their regression form to approximate the functions
using supervised learning. From this study, we concluded
that the SVMs were the most appropriate model for deal-
ing with the kind of problems of our interest, although it is

unable to produce a good spread of solutions. Thus, we de-
cided to include a local search procedure based on rough sets
theory to intensify the search around the solutions obtained
by the SVMs. This hybrid algorithm provides competitive
results in most of the test problems adopted.

As part of our future work, we are interested in refining the
interaction mechanism between the surrogate method and
the MOEA, or use an Ensemble Method to help the surro-
gate models get a better approximation of the real functions.
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