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the multi-objective evolutionary algorithms (MOEAS) toale
with a large number of objective function evaluations ttsat i

Abstract— This work presents a new algorithm that approxi-
mate the real function evaluation using supervised learnig with

a surrogate method which is called support vector machine ; ; i ;
(SVM). We perform a comparative study among the different unaffordable in certain applications even when paratielis

variants to select the leader in the PSO algorithm, and found adOPted- Such ComDUtational efficiency iS_ precisely the'go_c
out that the selection based in Random and Random Generator Of this paper, in which we propose a hybrid scheme that aims
are suitable to deal with the type of problems that we are to minimize the total number of objective function evaloas
interested, multimodal problems with high dimensionality (up  performed. Our proposed approach combines a MOPSO with
to 30 decision variables). However, the results show that th surrogates in order to produce a quick (i.e., with a low numbe

spread of solutions achieved by the SVM-based MOEA is poor. . . . . .
So, we decided to add a second phase approach based on of fitness function evaluations) approximation of the Raret

mathematical approach called Rough sets in order to improve front. Then, rough sets are used to diversify the neighbadho
the spread of solutions along the true Pareto front. In this ese, surrounding each of the nondominated solutions produced

the rough sets act as a local search procedure which is able hefore, such that the rest of the Pareto front is reconsdict

to generate solutions in the neighborhood of the nondominad
solutions previously generated by the surrogate-based abgithm.
We show the performance of the hybrid algorithm with only
2,000 fitness function evaluations comparing the results i an
algorithm that is representative of the state-of-the-art.

The remainder of this paper is organized as follows. Sec-
tion Il provides some basic background on surrogates. In
Section lll, we provide a brief introduction to particle swa
and rough sets theory. A review of the previous related work
is provided in Section IV. Section V describes our proposed

. INTRODUCTION . . . . ;
_ ~hybrid scheme. The comparison of results is provided in
I N recent years, the statement and solution of multi-objeggction V1. Finally, in Section VIl we present our conclusso

tive optimization problems has become very common in & \ve|| as some possible paths to continue with this research
wide variety of disciplines in which computational effic@n
is a critical issue. Il. SURROGATES

_Problems with multiple objectives are present in most gyrrogate models can perform a number of tasks in support
disciplines, the co_mplexny of Fhelr solution is not triviem 5 5 computational analysis. Through interpolation, gxia-
most cases, causing a great interest of many researchergdg andjor integration, these models can be used to address
find a suitable solution of these problems in which computgpmplex problems involving experimental design, systeai-an
tional efficiency is a critical issue. From the many teche|U ysis and prediction. In a single-objective optimizatiomtxt,
adopted to solve such multi-objective optimization protge gyrrogate models have been successful in dealing withyighl
evolutionary algorithms are among the most popular mainjomanding problems where the cost of evaluating the real
because of the populauon—based nature. However, d_ealihg Yitness function is very expensive (computationally spegki
a large population and a large number of generations cay§§s accuracy of the surrogate model relies on the number

Carlos A. Coello Coello acknowledges support from proje@NACYT of samples prowded n _the search space, as well as _On _the
number: 45683-Y. selection of the appropriate model to represent the objecti



functions. There exist a variety of techniques for congingc
surrogate models (see for example [17]). A surrogate model
is built when the objective functions are to be estimated.
This local model is built using a set of data points that
lie on the local neighborhood of the design. Since surrogate
models will probably be built thousands of times during the
search, computational efficiency is the main objective.sThi
motivates the use of different approaches such as: artificia
neural networks, radial basis functions, and support vecto
machines. All of them can be applied to approximate multiple Fig. 1. e-insensitive loss function for SVM
data. Each of these approaches will be briefly discussed next

A. Support Vector Machines The dual formulation also provides the capability for exten
The Support Vector Machine learning algorithm is amoniggg SVM to nonlinear functions using a standard dualiza-
the best (and many believe is indeed the best) supervidih method utilizing Lagrange multipliers, as described b
learning algorithms. In &V M regression, our goal is to find aFletcher [6]. Further details on the use of SVM for regressio
function f(x) that has at most andeviation from the actually can be found in [16].
obtained targetg; for all the training data, and at the same Il ALGORITHMIC BACKGROUND
time is as flat as possible. Let's suppose we are given ti@inin '
datax = (1, y:)r_, wherey; € R. Then, thef(z) is given A. Particle Swarm Optimization (PSO)
by: Kennedy & Eberhart [11] proposed an algorithm called
"Particle Swarm Optimization” (PSO) which was inspired on
F(z) = (w, ) + b with w e R4,z € RY, b € R the chore_ography of a bird flpck. Each solution is represi?nte
by a particle and the evolution of the swarm to the optimal
where(-, -) denotes the dot product jn A smallw means that solutions corresponds to the velocity equation. This dqnat
the regression is flat. One way to ensure this is to minimize composed by three elements: a velocity inertia, a cogmiti
the norm, |[w||* = (w,w). The problem can be written as acomponenpbestand a social componegbest Each particle

convex optimization problem: is affected by either the best local and the best globalgarti
First, in the PSO algorithm the particles are initially ran-
Minimize %”sz (1) domly throm_Jgh the se_arch space and phestis a_lso initialize.
< Next, the fittest particle from all the swarm is selected and
subject to yi = (w, zi) — € assigned to thgbestsolution. Then, the particle swarm flies
(w,z;) +b—1y; <e

the search space. This flight function is determined by the
And one can introduce slack variablés ¢/, for positive equation 4, which updates the position and fitness of the
and negative deviations: particle (equation 5). The new fitness is compared with retspe
to particle’spbestposition and if its better, then replaces it in
o 1 I . the pbestposition. This procedure is repeated until the swarm
menimize allwlP + O3 (& + €7) (2) is ugdate% and the terrﬁination criteriapis reached.
yi — (w, i) —=b <e+§;
subject to (wyz)) +b—y; <e+&F

&, & >0 vi,a = wv; g+c1-U(0, 1) (pbest; g—wxi q)+c2-U(0, 1)(gbestq—x;.q)
The constant” > 0 determines the trade-off between the (4)
Tid = Ti,d + Vid (%)

flatness of f and the amount up to which deviations larger

thane are tolerated. The-insensitive loss function (see eq. 3)vherec; & ¢, are constants that indicates the attraction form

means that we tolerate errors up toand also that errors thepbestor gbestposition respectivelyy refers to the velocity
beyond that value have a linear effect and not quadratics Thwertia of the previous movement; = (Ti1, iz, .oy TiD)

error function is therefore more tolerant to noise and issthyepresents the i-th particle.
more robust.
B. Rough Sets Theory
1€ = { 0, if €] S_E; (3) Rough Sets theory is a mathematical approach to imperfect
€] —e, otherwise. knowledge originally proposed by Pawlak [15]. Let's assume

Figure 1, shows a graphic of theinsensitive loss function. that we are given a set of objediscalled theuniverseand an
Note that only the points outside the shaded region cortgibundiscernibility relationR C U x U, representing our lack of
to the cost of the function. knowledge about elements 6f (in our case,R is simply an

In most cases, the optimization problem defined by equegquivalence relation based on a grid over the feasible lsist; t
tion (2) can be solved more easily in its dual formulatioris, just a division of the feasible set in (hyper)-rectasyléet



u.| -|° ol u, -|° Jdoel The authors used a combination of a parallel evolutionary
T algorithm coupled with sequential quadratic programmimg i
order to find optimal solutions of an aircraft wing design
problem. In this case, the authors construct a local suteoga
model based on radial basis functions in order to approxmat
the objectives and the constraint functions of the problem.
Karakasis et al. [10] used surrogate models based on RBFs
in order to deal with computationally expensive problems. A
method called Inexact Pre-Evaluation (IPE) is applied iato
MOEA's selection mechanism. Such method helps to choose
the individuals that are to be evaluated using the real tilsgec

X be a subset of/. We want to characterize the s&t with function, right after a meta-model approximation has been
respect taR. The way rough sets theory expresses vaguenes§i¥ained by the surrogate. The results are compared against
employing a boundary region of the sktbuilt once we know @ conventional MOEA in two test problems, one from a
points both insideX and outsideX. If the boundary region benchmark and one from the turbomachinery field.

of a set is empty it means that the setcissp; otherwise, ~ VYoutchkov & Keane [19] studied several surrogate models
the set isrough (inexact). A nonempty boundary region of 8RSM, RBFs and Kriging) in the context of multi-objective-op

set means that our knowledge about the set is not enougHifaization using the NSGA-II [5] as the MOEA that optimized
define the set precisely (see Figure 2). the meta-model function given by the surrogate. The sutenga

Then, each element il is classified as;ertair“yinsideX model is trained with 20 initial pOintS and the NSGA-II is run

if it be'ongs to the lower approximation par“a”y (probabb) on the Surrogate model. Then, the 20 best resultant pOintS
inside X if it belongs to the upper approximation (see Figuriven by the optimization are added to the existing data pool
2). The boundaryis the difference of these two sets, an®f real function evaluations and the surrogate is re-trhinih

the bigger the boundary the worse the knowledge we hathese new solutions. A comparison of results is made in 4 test
of set X. On the other hand, the more precise is the griginctions (from 2 to 10 variables), performing 400 real fise
implicity used to define the indiscernibility relatior, the function evaluations in each of them.

smaller the boundary regions are. But, the more preciseeis th Knowles [12] proposed “ParEGO”, which consists of a
grid, the bigger the number of elements (i and then, the hybrid algorithm based on a single optimization model (EGO)
more complex the problem becomes. Then, the less elemedtdl a Gaussian process, which is updated after each function
in U the better to manage the grid, but the more elements§Maluation, coupled to an evolutionary algorithm. EGO is a
U the better precision we obtain. Consequently, the goal §§19le-objective optimization algorithm that uses Krigito
obtaining “small” grids with the maximum precision possibl model the search landscape from the solutions visited durin
These two aspects are callBénsity andQuality of the grid. the search and learns a model based on Gaussian processes
If ¢ is the number of criteria (in our case, the number dgalled DACE). This approach is used to solve multi-objeti
objectives),Q; is thei-th criteria, b is the j-th value of the Optimization problems of low dimensionality (up to 6 deorsi

1-th criteria (We assume these Va|ue are ordered |ncre®]ngyarlab|eS) with Only 100 and 250 fitness function evaluaion

* Points Inside X  Points Outside X [ Lower Approximation B Boundary

Fig. 2. Rough sets approximation

then: A. Multi-Objective PSO
0 Some multi-objective algorithms that are based in PSO are
Density(C) = zq: le . Quality(C) = | Low(X)] briefly described next:
4 4 <~ o 4 | X| - MOPSO by Benitez in 2005 [1]The authors propose three
1=1 7=

methods based on Pareto dominance for selecting leadens fro

wherez’ is 1 if b’ is active in the grid andLow(X)| is the an (external) archive. One technique that explicitly présso
cardinality of the lower approximation oX. diversity, one technique that explicitly promotes conwesrce
and finally one technique that is a weighted probabilistic
method and forms a compromise between diversity and con-

Currently, there exist several evolutionary algorithmatth vergence. This approach uses a turbulence factor that isdadd
use a meta-model to approximate the real fitness functitmthe position of the particles with certain probability.
and reduce the total number of fithess evaluations without- DOPS by Bartz-Beielstein [2]This approach starts from
degrading the quality of the results obtained. However,trabs the idea of introducing elitism into PSO. Different methdaols
these approaches only deal with single-objective optitiira selecting and deleting particles from the archive are aealy
problems (see for example [9]). Evidently, in the discussido generate a satisfactory approximation of the Paretot.fron
presented next, we will only focus on the work that deals witheleting methods are either inversely related to the select
multi-objective evolutionary algorithms. fitness value or based on the previous success of each particl

Ong et al. [14] used surrogate models (RBFs) to solve- MOPSO by Coello & Lechuga [3] This proposal is
computationally expensive design problems with constsainbased on the idea of having an external archive in which

IV. PREVIOUS RELATED WORK



every particle will deposit its flight experiences after leacG,.s: set. Therefore, an additional strategy to select one of the
flight cycle. Additionally, the updates to the repositorye armultiple Gy.s; to use in the PSO’s velocity equation is still
performed considering a geographically-based systematbfimecessary. Some possible leader selection strategieglare:
in terms of the objective function values of each indiviquah Randomly Dominator (the leader is randomly selected and
this repository is used by the particles to identify a lead@referably if this leader dominates the patrticle, if notrtree
that will guide the search. This approach also uses a muatatimndom leader is selected), (2) randomly (a leader is ratdom
operator that acts both on the particles of the swarm, and selected - no constraints are imposed on what sort of leader
the range of each design variable of the problem to be solvedn a particle choose-), (3) the closest (a particle picka as
leader the geographical closest leader) and (4) the fafgest
particle picks as a leader the geographical fartest saiutio
Our proposed approach is an hybrid composed by twhe set)
different phases, the first one (Surrogate-based) which e  All the nondominated solutions found by the MOPSO,
PSO to optimize the approximation obtained by the surrogaiee evaluated with the real function and added to the main
models and the main purpose is to produce a reasonably gpagulation. Once all the points are in the main population,
approximation of the true Pareto front. The second phasg usieey are used to re-train the meta-model and get another
Rough Sets as a local search engine in order to improve gygproximation of the real objectives. As it is shown in Figur
solutions produced in the previous phase. Each of these t@othis procedure is repeated until tddaxGen number of
phases is described next. generations is reached. At the end of the first phase proegdur
we split the main population in two: 1) One which contains the
A. Phase 1: Surrogate-based MOEA nondominated solutions and 2) a second one, which contains
The surrogate model adopted in this work is shown in Figuthe best dominated solutions that are needed for the second
3. A multi-objective particle swarm optimizer (MOPSO) isphase. Both populations use theéc-dominance grid proposed
adopted to optimize the approximate model generated by[8] to maintain diversity.
the surrogate (using SVMs). Our MOPSO maintains two . S o
populations: the main one (which is used to select the pajenB: Phase 2: Rough Sets in Multi-Objective Optimization
and a second population that retains the global nondontnate For the problems of our interest, we will try to approximate
solutions. the Pareto front using a Rough Sets grid. In order to do
First, we generate” individuals using Latin-Hypercubesthis, we will use an initial approximation of the Pareto fron
[13], which guarantees a good distribution of the initiappe (provided by the surrogate algorithm) and will implement a
lation in a multidimensional space. Our approximation modgrid in order to get more information about the front thatlwil
requires a good distribution of the sample points provided let us improve this initial approximation. To this aim, we sbu
order to build a good approximation of the real functionslecide which elements @f (that we will callatoms and will
A Latin cube is a selection of one point from each rovbe just rectangular portions of decision variable space) ar
and column of a square matrix. Then, we evaluate theseinside the Pareto optimal set and which are not. Once we have
individuals with the real functions, and train the meta-rmlodthe efficient atomswe can easily intensify the search over in
using the surrogate model. decision variable space. To create this grid, we will have as
Our MOEA is based on the PSO algorithm [11], whiclinputsN feasible points divided in two sets: the nondominated
uses a leader selection based on@hg,; model, in which we points (#'S) and the dominated one®().
choose the leader particle from the nondominated set. Vée als We must note the importance of thBS set as in a
add a turbulence operator in order to jump into search regiorough sets method the information comes from the descriptio
that the PSO flight equation is not able to reach. Replacin§ the boundary of the two sets. Then, the more efficient
the comparison operator (to determine whether a solutionpsints provided the better. However, it is also required to
betther than other solutidnis a natural modification to a PSOprovide some dominated points, since we need to estimate the
algorithm aimed handle multiple objectives. boundary between being dominated and being nondominated.
The analogy of PSO with EAs makes evident the notion thAtgorithm 1 describes a Rough Sets iteration.
using a Pareto ranking scheme [7] could be the straightfiawa
way to extend the approach to handle multiple objectives.
However, if we merge a Pareto ranking scheme with the PSOOur main goal is to reduce the number of fitness function
algorithm, a set of nondominated solutions will be produceslaluations. Thus, our experimental design considersothist
(by definition, all nondominated solutions are equally gooda few function evaluations are performed in several multi-
Having several nondominated solutions implies the inclusi dimensional test problems from th2DT, which are bi-
into the algorithm of both: an additional criteria to decid®bjective, unconstrained and have between 10 and 30 decisio
whether a new nondominated solutionfs.s; or Gyes; @and a variables each. The detailed description of these testifurs
strategy to select the guide particleé®,{s; and Gpest). was omitted due to space restrictions (see [20] for further
However, the selection of an “appropiate” leader becomedgormation). Three performance measures were adopted in
a difficult task, since there can be more than one leader in tbeler to allow a quantitative assessment of our results: (1)

V. OUR PROPOSEDAPPROACH

VI. ANALYSIS OF RESULTS



Evaluate th -dominated -
Initialize the Population using olutions obtained from the MOE Optimize the meta-model
Latin-Hypercubes with the Real function with MOEA
1 v
Evaluate the solutions with | Add new solutions
the Real function in the main population

Train the meta-model
using the training set

i

Add the solutions to
the training set

Is the last
internal generation?

Perform the local search using
Rough Sets Theory

End

Fig. 3. Surrogate model adopted in this paper.

Algorithm 1 Rough Sets lteration 100), maximum number of generation€{,opso = 100),
;: :npu: gondon:ir:jated r;oi?ts ff<t>r:n ;hetfifzt EQS%- PSO flight equation (W=0.1, C; = 1.4 and Cy = 0.1),
- Inpu ominated points rrom tne Trst pna . — — s .
3+ Output nondominated solutions found by the RS. turbulencerate =1/n (n = number of decision variables).
4: ChooseNumE f f unexplored points of2S. The results reported in Table | correspond to the perfor-
gf g;?]gfaetfévumDg?f“gfﬁéggtfe;ofﬁ'snts oDsS. mance metrics adopted (IGD, S and SC). We show in boldface
7:for i=0to NumEff do the best mean values per test function of 10 independently ru
8: for j=0to Offspring do by all the leader selection models compared. We show the
1%:- i(fe”efai‘s é;fai‘(’:‘i‘imk’e)na pointew in atom< and send it taZ.S plot of all the nondominated solutions generated by a single
. new . n . "
11 Include it in £S run of the different algorithms in Figure 4. In all cases, we
12: end if _ _ _ generated” F},..., SO we could make a graphical comparison
ﬁf if /;;?énzftﬁ '5575 is dominated bynew then of the quality of the solutions produced by our approach. The
. O . .
15 endif summary of our results is the following:
16: if new is dominated by a point if£S then MOPSO-1 (Randomly Dominator): When we select the
g; eng?fmo"e”ew leader that usually dominates the Particle, the algorithaws
19:  end for a good performance in general, obtaining the best results fo
20: end for ZDT1, ZDT2 and ZDT3 in IGD and Spread. Graphically, it

can be seen that it obtained a good approximation to the true
Pareto front in ZDT1, ZDT2 and ZDT3.
Inverted Generational DistancéGD), which is a variation =~ MOPSO-2 (Randomly): When we use the randomly selec-
of a metric proposed by Van Veldhuizen [18] in which theion from the nondominated set, the performance of the algo-
distance from the true Pareto to the approximation producdthm is acceptable, showing the best performance in ZDT4
is measured; (2) Two Set CoveradgQd), proposed by Zitzler and ZDT6 with respect the others approaches. Graphically, i
et al. [20], which performs a relative coverage comparisbn ean be seen that is not able to produce better results than oth
two sets; and (3) Sprea®); proposed by Deb et al. [4], which approaches and that this approach stays far away from tae tru
measures both progress towards the Pareto optimal front @wteto front.
the extent of spread. For each test problem, 10 independenlOPSO-3 (Closest):When we select the closest particle
runs were performed. as a leader from thé&,.,; set, the algorithm shows a poor
This section is divided in two parts: in the first one, we run performance in general except for ZDT4, outperforming the
comparative analysis with only 600 real function evaluagio other schemes only in this test function.
comparing the leader selection in the PSO: (1) RandomlyMOPSO-4 (Fartest): When we select the fartest particle as
Dominator, (2) Randomly, (3) Closest and (4) Fartest. In thRe leader from the,.,; set, we intend to help the algorithm
second part, the Rough Sets Theory algorithm is applied f@ maintain diversity in the population, but apparently s&au
another 1,400 real function evaluations and the results argit the algorithm couldn’t approximate quickly to the Rare
compared with respect to the NSGA-II [5] performing 2,00@ront instead of accelerate the convergence. The perfatenan
fitness function evaluations in total. of this scheme was very poor and only in ZDT6 obtain good
) results.
A. PSO Phase Analysis From the first phase analysis, we can see that in ZDT4 the
The first phase of our approach uses several parametg@msiformance was very poor in general, getting trapped in one
main population size? = 100, maximum number of evalu- of the multiple local optima that this problem contains, lout
ations =600, MOPSO’s internal population sizeP{,,,sc = the others approaches the result is not bad at all if we censid



that only 600 real evaluations are performed. So if we need to
choose only one scheme to move forward in the algorithm, the

. i Perf. Meas. - Algorithm| mean | St. dev. best worst
best scheme is MOPSO-1 (randomly dominator), so we choose MOPSO-1 | 0.0122 | 0.0039 | 0.0074 | 0.0199
H H idi H H IGD MOPSO-2 | 0.0178 0.0034 | 0.0134 | 0.0222
this scheme and d_eC|ded to hybridize it W|_th the Rough Sets MoP<03 | 00201 | 00013 | 00176 | 0.0227
to extent the solutions generated by the first phase and thenoT1 MOPSO-4 | 0.0163 | 0.0037 | 0.0117 | 0.0219
H i _ H i MOPSO-1 | 0.6044 0.0709 | 0.5160 | 0.7291
compared it against the NSGA-II, an algorithm represeveati s MOPSO2 | 06730 | 0.0677 | 02402 | 0744
of the state of the art. MOPSO-3 | 0.7287 | 0.0373 | 0.6782 | 0.7936
MOPSO-4 | 0.6598 0.0502 | 0.5312 | 0.7179
B. Second Phase Analysis SC MOPSO-1 ~ MOPSO-2  MOPSO-3  MOPSO-4 ean
MOPSO-1 - 0.0164 0.0817 0.1000; 0.066
After our first experiments with the surrogate methods, it mgggg-g 8'2;% 05585 0.3462 8-224213 8-221‘31
became clear that despite the fact that a good convergence | wiopsoa | 06598 03290 02646 - | 04178
was achieved, this was obtained at the expense of a poor Perf. Meas. - Algorithm| mean | St. dev. [ best [ worst
it ; MOPSO-1 | 0.0346 | 0.0048 | 0.0200 | 0.0365
distribution of the resglts. _Thus, we d_eC|ded to use rougs se 1GD MOPS0-2 | 00357 | 0.0003 | 0.0352 | 0.0362
as a local search engine, in order to find the solutions theat ar MOPSO-3 | 0.0366 | 0.0024 | 0.0353 | 0.0437
P : H ; H : . ZDT2 MOPSO-4 | 0.0356 0.0003 | 0.0348 | 0.0361
missing in the approximations obtained during the first phas MOPSoT o185 03675 T 0.0000 + 09592
of our approach. The second phase uses three more parame- s MOPSO-2 | 0.2960 | 0.4522 | 0.0000 | 0.9981
. H H MOPSO-3 | 0.2993 0.4572 | 0.0000 1.000
ters: number of points randomly generated_|n5|de each atom MoPSoa | 03985 | 04881 | 0.0000 | 0.9995
(Of fspring), number of atoms per generationS¢mFE f f) SC MOPSO1 _ MOPSOZ _ MOPSO3 _ MOPSO4 Mean
i i i MOPSO-1 - 0.6300 0.6200 0.9200] 0.7266
and the number of domlnated. points considered to generate MOPS02 | 0.2750 S 02000 058000 04503
the atoms YumDom). Of fspring =1, NumEff =2 and MOPSO-3 | 0.2500  0.7500 - 0.9000| 0.6333
NumDom = 10. The parameters used by the NSGA-II are MO;fﬁo'hﬁeaso-Oz‘l)gorithn(:-350r?qean 0-1§t°°de - best0-15° 1
. . o 0@ . V. Wi
the following: crossover rate 6.9, mutation rate =1/n, 7. MOPSO-1 1 00287 | 0.0009 T 00170 | 0.0462
= 15, n,, = 20, population size = 52 and maximum number IGD mg:;gg-g 8-822; 8-823; 8-83; 8-8‘7123
of generations = 39. These parameters make the NSGA-Il to;pr3 MOPSO-4 | 00314 | 00062 | 00197 | 0.0397
perform 2,000 fitness function evaluations in total. < mgggg-; 8-;;12 8-8;;2 8-383? 8-3(1)12
The results reported in Table Il are the mean values for each MOPSO-3 | 07810 | 00222 | 0.7307 | 0.8127
of the three performance measures adopted (SC, IGD and S) MOPSO-4 | 0.7582 | 0.0797 | 0.6055 | 0.8405
g : SC MOPSO-1 ~ MOPSO-2  MOPSO-3  MOPSO-4 ean
and the_ stan_dard deviation of the 10 runs performed with 2000 —spsa = 02381 02025 0.3489 02631
evaluations in total of both approaches (SVM+RS and NSGA- MOPSO-2 | 0.6286 - 01711  0.4912 0.4303
; H : MOPSO-3 | 0.7344 0.6835 - 0.7011| 0.7063
[1). The best mean values in each case are shovyn inboldface in | yoc30u| 05153 02799 0.1446 " 03130
Table II. The plot of all the nondominated solutions gerentat Perf. Meas. - Algorithm| _mean | St. dev. best | worst
i i in Ei MOPSO-1 | 1.2384 | 0.2204 | 0.8144 | 1.6364
by a single run of both algor!thms are in Figure 5. Gb MOPS02 | 11191 | 02445 | 0.8715 | 16318
It can be observed that in the ZDT test problems, our MOPSO-3 | 1.0162 | 0.1538 | 0.7503 | 1.2818
approach produced the best results with respect to the SCPT4 %E?gi‘i é-gégg 8-5;33 8-33;2 igggg
performance measure in all cases except for ZDT4. The s MOPSO-2 | 0.9802 | 0.0135 | 0.9614 | 0.9981
i MOPSO-3 | 0.8560 | 0.2890 | 0.0000 | 1.0516
same applies for the IGD performan_ce measure. Also, our Mopsoa | 05786 | 05932 | 00000 | 0.996
approach outperformed the NSGA-II with respect to the gprea SC oPSOL WoPSoZ  moPsos  worsod Mean
performance measure in three cases (ZDT2, ZDT3 and ZDT4). | MOPSO-1 - 0.7333  0.6583  0.6333] 0.6749
hicallv. it b that h t | th MOPSO-2 | 0.1821 - 0.3815 0.4125| 0.3253
Graphically, it can be seen that our approach gets closer tha MOPSO-3 | 0.2850  0.6217 - 0.3000| 0.4022
the NSGA-II to the true Pareto front in ZDT1, ZDT2, ZDT3 MOPS”O-4 0-28?7 h0-5000 0-6000d — 0.4619
. Perf. Meas. - Algorithm| mean | St. dev. est worst
and ZDT6, b_ut not in ZI_DT4. The poor performance of all th_e 50351 | 0.0028 | 00285 | 0.0405
approaches in ZDT4 might be attributed to the bad scalgbilit IGD MOPSO-2 | 0.0327 | 0.0028 | 0.0286 | 0.0371
MOPSO-3 | 0.0339 | 0.0034 | 0.0286 | 0.0377
presented by both approaches. _ _ ZDT6 MOPSO-4 | 0.0330 | 0.0026 | 0.0271 | 0.0361
Our results indicate that the NSGA-II, despite being a MOPSO-1 | 0.9494 | 0.1284 | 0.7218 | 1.1933
; " ; s MOPSO-2 | 0.8850 | 0.1057 | 0.6669 | 1.0961
highly competmve_z MOEA, is not able to converge to the MOPS0-3 | 08998 | 0.0044 | 07791 | 11026
true Pareto front in most of the test problems adopted when MOPSO-4 | 0.8715 | 0.0508 | 0.7921 | 0.9764
H i H H i SC MOPSO-1 ~ MOPSO-2  MOPSO-3  MOPSo-4 Mean
per_formlng only 2,000 f_|tness function gvaluatlons. It isrthio — > —
noting, however, that if more evaluations are allowed, the MOPSO-2 | 0.3560 - 0.3176  0.5501] 0.4079
1l ~dictri MOPSO-3 | 0.3526 0.3536 - 1.0000{ 0.5687
NSGA _II is gble to generate a very good (and well-distribijte MOPSO4 | 03986 09087 0.3306 N 0500
approximation. Nevertheless, our aim was to propose a sehem ABLE |

for situations in which the allowable number of fithess fumact

evaluations is low (no more than 2,000 in our case). RESULTS OFINVERSEGENERATIONAL DISTANCE (IGD), SPREAD(S)

AND SET COVERAGE (SC)FOR THEZDT TEST PROBLEMS
VIlI. CONCLUSIONS ANDFUTURE WORK

In this work, we use the surrogate models in combination of
a local search procedure based on Rough Sets to solve multi-



Set Coverage IGD Spread
Function SVM+RS NSGA-II SVM+RS NSGA-II SVM+RS NSGA-II
Mean o Mean o Mean o Mean o Mean o Mean o
ZDT1 0.0725 0.1676 | 0.8755 0.1785| 0.0061 0.0046 | 0.0168 0.0021| 0.8308 0.1987| 0.8194 0.0324
ZDT2 0.0000 0.0000 | 0.9690 0.0505| 0.0026 0.0027 | 0.0382 0.0062| 0.5684 0.2338 | 0.9711 0.0696
ZDT3 0.0372 0.0668 | 0.6453 0.3343| 0.0145 0.0071 | 0.1190 0.0113| 0.8684 0.0943 | 0.9475 0.0296
ZDT4 0.7937 0.2512| 0.0167 0.0500 | 0.7397 0.1554| 0.1511 0.0405| 0.9572 0.0411 | 1.0795 0.1026
ZDT6 0.0000 0.0000 | 0.9208 0.1886| 0.0135 0.0025 | 0.0548 0.0092| 1.1000 0.1297| 0.9588 0.0274
TABLE Il

COMPARISON OF RESULTS BETWEENSVM+RSALGORITHM AND THE NSGA-Il FOR THE FIVE TEST PROBLEMS ADOPTEH2000EVALUATIONS).

objective problems with moderate dimensionality (betw&én

and 30 decision variables). We used four different schemmes t

select a leader in the PSO flight equation in combination ef tt[nlo]

surrogate model to approximate the functions using supedvi
learning. From the initial comparison, we concluded tha& th

PSO scheme based on selecting a leader that dominates;the

[9] Y. Jin. A comprehensive survey of fithess approximatiorevolutionary

computation.Soft Computing9(1):3-12, 2005.

M. K. Karakasis and K. C. Giannakoglou. Metamodel-Ats=i Multi-
Objective Evolutionary Optimization. In R. Schilling, W.adse, J. Pe-
riaux, H. Baier, and G. Bugeda, editoSBUROGEN 2005. Evolutionary
Methods for Design, Optimization and Control with Applioas to
Industrial Problems Munich, Germany, 2005.

J. Kennedy and R. C. EberhaBwarm Intelligence Morgan Kaufmann

particle were the most appropriate model to use as the search Publishers, San Francisco, California, 2001.

engine, because it provides a good (but not enough) apprd&

mation of the Pareto front. The local search procedure gifgn
the search around those solutions that the surrogate madel fi.3] M. McKay, R. Beckman, and W. Conover. A comparison ofethr

in the first phase. This hybrid algorithm provides compet

results in most of the test problems adopted. We believe tfha,{]

iti

our approach can be used in real-world problems in which

each evaluation of the fitness function is very expensive.

J. Knowles. ParEGO: A hybrid algorithm with on-line tistape ap-
proximation for expensive multiobjective optimizationoptems. IEEE
Transactions on Evolutionary Computatjah0(1):50-66, January 2006.

methods for selecting values of input variables in the asislgf output
from a computer codeTechnometrics21(2):239-245, 1979.

Y. Ong, P. Nair, and A. Keane. Evolutionary optimizatiof compu-
tationally expensive problems via surrogate modelifgAA Journal
41(4):687-696, 2003.

Z. Pawlak. Rough sets. International Journal of Computer and

. . . 15

As part of our future work, we are interested in refining th[e ] Information Sciencesl1(1):341-356, Summer 1982.

interaction mechanism between the surrogate method and 6 A. J. Smola and B. Scholkopf. A tutorial on support \@ctegression.
; ; Technical report, NeuroCOLT, September 2003.
MOF.)S.O’ such that the mterleavmg of .these two _ap_proac_ ?ﬁ V. N. Vapnik. Statistical Learning TheoryWiley, 1998.
maximizes performancg. We are al_so 'ntere_St_ed in ”‘PCIUd|[ ] D. A. V. Veldhuizen. Multiobjective Evolutionary Algorithms: Classi-
another scheme to retain solutions in the training set,ihglp fications, Analyses, and New InnovationBhD thesis, Department of
; ; Electrical and Computer Engineering. Graduate School afifigering.

the syrrogate models to geta better approximation of thee rea Air Force Institute of Technology, Wright-Patterson AFBhi@, May
functions. 1999.
I. Voutchkov and A. Keane. Multiobjective Optimizatiousing Sur-
rogates. In |. Parmee, editoAdaptive Computing in Design and
Manufacture. Proceedings of the Seventh International f€ence
pages 167-175, Bristol, UK, April 2006. The Institute foropke-
centered Computation (IP-CC).
E. Zitzler, K. Deb, and L. Thiele. Comparison of Multjebtive
Evolutionary Algorithms: Empirical Result&volutionary Computatian
8(2):173-195, Summer 2000.
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Fig. 4. Pareto fronts generated by the Surrogates methadbdaZDT test problems.
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Fig. 5. Pareto fronts generated by SVM+RS and NSGA-I| for ZI¥T test problems.



