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Jesús Moisés Osorio Velázquez
Instituto Tecnológico de Culiacán

Systems and Informatics Department
Culiacán, Sinaloa, MEXICO

Email: wcoder.mx@gmail.com

Abstract— This work presents a new algorithm that approxi-
mate the real function evaluation using supervised learning with
a surrogate method which is called support vector machine
(SVM). We perform a comparative study among the different
variants to select the leader in the PSO algorithm, and found
out that the selection based in Random and Random Generator
are suitable to deal with the type of problems that we are
interested, multimodal problems with high dimensionality (up
to 30 decision variables). However, the results show that the
spread of solutions achieved by the SVM-based MOEA is poor.
So, we decided to add a second phase approach based on a
mathematical approach called Rough sets in order to improve
the spread of solutions along the true Pareto front. In this case,
the rough sets act as a local search procedure which is able
to generate solutions in the neighborhood of the nondominated
solutions previously generated by the surrogate-based algorithm.
We show the performance of the hybrid algorithm with only
2,000 fitness function evaluations comparing the results with an
algorithm that is representative of the state-of-the-art.

I. I NTRODUCTION

I N recent years, the statement and solution of multi-objec-
tive optimization problems has become very common in a

wide variety of disciplines in which computational efficiency
is a critical issue.

Problems with multiple objectives are present in most
disciplines, the complexity of their solution is not trivial in
most cases, causing a great interest of many researchers to
find a suitable solution of these problems in which computa-
tional efficiency is a critical issue. From the many techniques
adopted to solve such multi-objective optimization problems,
evolutionary algorithms are among the most popular mainly
because of the population-based nature. However, dealing with
a large population and a large number of generations cause

Carlos A. Coello Coello acknowledges support from project CONACyT
number: 45683-Y.

the multi-objective evolutionary algorithms (MOEAs) to deal
with a large number of objective function evaluations that is
unaffordable in certain applications even when parallelism is
adopted. Such computational efficiency is precisely the focus
of this paper, in which we propose a hybrid scheme that aims
to minimize the total number of objective function evaluations
performed. Our proposed approach combines a MOPSO with
surrogates in order to produce a quick (i.e., with a low number
of fitness function evaluations) approximation of the Pareto
front. Then, rough sets are used to diversify the neighborhood
surrounding each of the nondominated solutions produced
before, such that the rest of the Pareto front is reconstructed.

The remainder of this paper is organized as follows. Sec-
tion II provides some basic background on surrogates. In
Section III, we provide a brief introduction to particle swarm
and rough sets theory. A review of the previous related work
is provided in Section IV. Section V describes our proposed
hybrid scheme. The comparison of results is provided in
Section VI. Finally, in Section VII we present our conclusions
as well as some possible paths to continue with this research.

II. SURROGATES

Surrogate models can perform a number of tasks in support
of a computational analysis. Through interpolation, extrapola-
tion and/or integration, these models can be used to address
complex problems involving experimental design, system anal-
ysis and prediction. In a single-objective optimization context,
surrogate models have been successful in dealing with highly
demanding problems where the cost of evaluating the real
fitness function is very expensive (computationally speaking).
The accuracy of the surrogate model relies on the number
of samples provided in the search space, as well as on the
selection of the appropriate model to represent the objective



functions. There exist a variety of techniques for constructing
surrogate models (see for example [17]). A surrogate model
is built when the objective functions are to be estimated.
This local model is built using a set of data points that
lie on the local neighborhood of the design. Since surrogate
models will probably be built thousands of times during the
search, computational efficiency is the main objective. This
motivates the use of different approaches such as: artificial
neural networks, radial basis functions, and support vector
machines. All of them can be applied to approximate multiple
data. Each of these approaches will be briefly discussed next.

A. Support Vector Machines

The Support Vector Machine learning algorithm is among
the best (and many believe is indeed the best) supervised
learning algorithms. In aSV M regression, our goal is to find a
functionf(x) that has at most anǫ deviation from the actually
obtained targetsyi for all the training data, and at the same
time is as flat as possible. Let’s suppose we are given training
dataχ = (xt, yt)

N

t=1
whereyt ∈ R. Then, thef(x) is given

by:

f(x) = 〈w, x〉 + b with w ∈ R
d, x ∈ R

d, b ∈ R

where〈·, ·〉 denotes the dot product inχ. A smallw means that
the regression is flat. One way to ensure this is to minimize
the norm,||w||2 = 〈w, w〉. The problem can be written as a
convex optimization problem:

minimize 1

2
||w||2 (1)

subject to

{

yi − 〈w, xi〉 − b ≤ ǫ
〈w, xi〉 + b − yi ≤ ǫ

And one can introduce slack variablesξi, ξ
∗
i , for positive

and negative deviations:

minimize 1

2
||w||2 + C

∑l

i=1
(ξi + ξ∗i ) (2)

subject to







yi − 〈w, xi〉 − b ≤ ǫ + ξi

〈w, xi〉 + b − yi ≤ ǫ + ξ∗i
ξi, ξ

∗
i ≥ 0

The constantC > 0 determines the trade-off between the
flatness off and the amount up to which deviations larger
thanǫ are tolerated. Theǫ-insensitive loss function (see eq. 3)
means that we tolerate errors up toǫ and also that errors
beyond that value have a linear effect and not quadratic. This
error function is therefore more tolerant to noise and is thus
more robust.

|ξ|ǫ =

{

0, if |ξ| ≤ ǫ;
|ξ| − ǫ, otherwise.

(3)

Figure 1, shows a graphic of theǫ-insensitive loss function.
Note that only the points outside the shaded region contribute
to the cost of the function.

In most cases, the optimization problem defined by equa-
tion (2) can be solved more easily in its dual formulation.

Fig. 1. ǫ-insensitive loss function for SVM

The dual formulation also provides the capability for extend-
ing SVM to nonlinear functions using a standard dualiza-
tion method utilizing Lagrange multipliers, as described by
Fletcher [6]. Further details on the use of SVM for regression
can be found in [16].

III. A LGORITHMIC BACKGROUND

A. Particle Swarm Optimization (PSO)

Kennedy & Eberhart [11] proposed an algorithm called
”Particle Swarm Optimization” (PSO) which was inspired on
the choreography of a bird flock. Each solution is represented
by a particle and the evolution of the swarm to the optimal
solutions corresponds to the velocity equation. This equation
is composed by three elements: a velocity inertia, a cognitive
componentpbestand a social componentgbest. Each particle
is affected by either the best local and the best global particle.

First, in the PSO algorithm the particles are initially ran-
domly through the search space and thepbestis also initialize.
Next, the fittest particle from all the swarm is selected and
assigned to thegbestsolution. Then, the particle swarm flies
the search space. This flight function is determined by the
equation 4, which updates the position and fitness of the
particle (equation 5). The new fitness is compared with respect
to particle’spbestposition and if its better, then replaces it in
thepbestposition. This procedure is repeated until the swarm
is updated and the termination criteria is reached.

vi,d = w·vi,d+c1·U(0, 1)(pbesti,d−xi,d)+c2·U(0, 1)(gbestd−xi,d)
(4)

xi,d = xi,d + vi,d (5)

wherec1 & c2 are constants that indicates the attraction form
thepbestor gbestposition respectively;w refers to the velocity
inertia of the previous movement;xi = (xi1, xi2, ..., xiD)
represents the i-th particle.

B. Rough Sets Theory

Rough Sets theory is a mathematical approach to imperfect
knowledge originally proposed by Pawlak [15]. Let’s assume
that we are given a set of objectsU called theuniverseand an
indiscernibility relationR ⊆ U × U , representing our lack of
knowledge about elements ofU (in our case,R is simply an
equivalence relation based on a grid over the feasible set; this
is, just a division of the feasible set in (hyper)-rectangles). Let



Fig. 2. Rough sets approximation

X be a subset ofU . We want to characterize the setX with
respect toR. The way rough sets theory expresses vagueness is
employing a boundary region of the setX built once we know
points both insideX and outsideX . If the boundary region
of a set is empty it means that the set iscrisp; otherwise,
the set isrough (inexact). A nonempty boundary region of a
set means that our knowledge about the set is not enough to
define the set precisely (see Figure 2).

Then, each element inU is classified ascertainly insideX
if it belongs to the lower approximation orpartially (probably)
insideX if it belongs to the upper approximation (see Figure
2). The boundary is the difference of these two sets, and
the bigger the boundary the worse the knowledge we have
of set X . On the other hand, the more precise is the grid
implicity used to define the indiscernibility relationR, the
smaller the boundary regions are. But, the more precise is the
grid, the bigger the number of elements inU , and then, the
more complex the problem becomes. Then, the less elements
in U the better to manage the grid, but the more elements in
U the better precision we obtain. Consequently, the goal is
obtaining “small” grids with the maximum precision possible.
These two aspects are calledDensity andQuality of the grid.
If q is the number of criteria (in our case, the number of
objectives),Qi is the i-th criteria, bi

j is the j-th value of the
i-th criteria (we assume these value are ordered increasingly),
then:

Density(G) =

q
∑

i=1

|Qi|
∑

j=1

xi
j ; Quality(G) =

|Low(X)|

|X |

wherexi
j is 1 if bi

j is active in the grid and|Low(X)| is the
cardinality of the lower approximation ofX .

IV. PREVIOUS RELATED WORK

Currently, there exist several evolutionary algorithms that
use a meta-model to approximate the real fitness function
and reduce the total number of fitness evaluations without
degrading the quality of the results obtained. However, most of
these approaches only deal with single-objective optimization
problems (see for example [9]). Evidently, in the discussion
presented next, we will only focus on the work that deals with
multi-objective evolutionary algorithms.

Ong et al. [14] used surrogate models (RBFs) to solve
computationally expensive design problems with constraints.

The authors used a combination of a parallel evolutionary
algorithm coupled with sequential quadratic programming in
order to find optimal solutions of an aircraft wing design
problem. In this case, the authors construct a local surrogate
model based on radial basis functions in order to approximate
the objectives and the constraint functions of the problem.

Karakasis et al. [10] used surrogate models based on RBFs
in order to deal with computationally expensive problems. A
method called Inexact Pre-Evaluation (IPE) is applied intoa
MOEA’s selection mechanism. Such method helps to choose
the individuals that are to be evaluated using the real objective
function, right after a meta-model approximation has been
obtained by the surrogate. The results are compared against
a conventional MOEA in two test problems, one from a
benchmark and one from the turbomachinery field.

Voutchkov & Keane [19] studied several surrogate models
(RSM, RBFs and Kriging) in the context of multi-objective op-
timization using the NSGA-II [5] as the MOEA that optimized
the meta-model function given by the surrogate. The surrogate
model is trained with 20 initial points and the NSGA-II is run
on the surrogate model. Then, the 20 best resultant points
given by the optimization are added to the existing data pool
of real function evaluations and the surrogate is re-trained with
these new solutions. A comparison of results is made in 4 test
functions (from 2 to 10 variables), performing 400 real fitness
function evaluations in each of them.

Knowles [12] proposed “ParEGO”, which consists of a
hybrid algorithm based on a single optimization model (EGO)
and a Gaussian process, which is updated after each function
evaluation, coupled to an evolutionary algorithm. EGO is a
single-objective optimization algorithm that uses Kriging to
model the search landscape from the solutions visited during
the search and learns a model based on Gaussian processes
(called DACE). This approach is used to solve multi-objective
optimization problems of low dimensionality (up to 6 decision
variables) with only 100 and 250 fitness function evaluations.

A. Multi-Objective PSO

Some multi-objective algorithms that are based in PSO are
briefly described next:

- MOPSO by Benitez in 2005 [1]The authors propose three
methods based on Pareto dominance for selecting leaders from
an (external) archive. One technique that explicitly promotes
diversity, one technique that explicitly promotes convergence
and finally one technique that is a weighted probabilistic
method and forms a compromise between diversity and con-
vergence. This approach uses a turbulence factor that is added
to the position of the particles with certain probability.

- DOPS by Bartz-Beielstein [2]This approach starts from
the idea of introducing elitism into PSO. Different methodsfor
selecting and deleting particles from the archive are analyzed
to generate a satisfactory approximation of the Pareto front.
Deleting methods are either inversely related to the selection
fitness value or based on the previous success of each particle.

- MOPSO by Coello & Lechuga [3] This proposal is
based on the idea of having an external archive in which



every particle will deposit its flight experiences after each
flight cycle. Additionally, the updates to the repository are
performed considering a geographically-based system defined
in terms of the objective function values of each individual;
this repository is used by the particles to identify a leader
that will guide the search. This approach also uses a mutation
operator that acts both on the particles of the swarm, and on
the range of each design variable of the problem to be solved.

V. OUR PROPOSEDAPPROACH

Our proposed approach is an hybrid composed by two
different phases, the first one (Surrogate-based) which uses the
PSO to optimize the approximation obtained by the surrogate
models and the main purpose is to produce a reasonably good
approximation of the true Pareto front. The second phase uses
Rough Sets as a local search engine in order to improve the
solutions produced in the previous phase. Each of these two
phases is described next.

A. Phase 1: Surrogate-based MOEA

The surrogate model adopted in this work is shown in Figure
3. A multi-objective particle swarm optimizer (MOPSO) is
adopted to optimize the approximate model generated by
the surrogate (using SVMs). Our MOPSO maintains two
populations: the main one (which is used to select the parents),
and a second population that retains the global nondominated
solutions.

First, we generateP individuals using Latin-Hypercubes
[13], which guarantees a good distribution of the initial popu-
lation in a multidimensional space. Our approximation model
requires a good distribution of the sample points provided in
order to build a good approximation of the real functions.
A Latin cube is a selection of one point from each row
and column of a square matrix. Then, we evaluate theseP
individuals with the real functions, and train the meta-model
using the surrogate model.

Our MOEA is based on the PSO algorithm [11], which
uses a leader selection based on theGbest model, in which we
choose the leader particle from the nondominated set. We also
add a turbulence operator in order to jump into search regions
that the PSO flight equation is not able to reach. Replacing
the comparison operator (to determine whether a solution is
betther than other solutionb is a natural modification to a PSO
algorithm aimed handle multiple objectives.

The analogy of PSO with EAs makes evident the notion that
using a Pareto ranking scheme [7] could be the straightforward
way to extend the approach to handle multiple objectives.
However, if we merge a Pareto ranking scheme with the PSO
algorithm, a set of nondominated solutions will be produced
(by definition, all nondominated solutions are equally good).
Having several nondominated solutions implies the inclusion
into the algorithm of both: an additional criteria to decide
whether a new nondominated solution isPbest or Gbest and a
strategy to select the guide particles (Pbest andGbest).

However, the selection of an “appropiate” leader becomes
a difficult task, since there can be more than one leader in the

Gbest set. Therefore, an additional strategy to select one of the
multiple Gbest to use in the PSO’s velocity equation is still
necessary. Some possible leader selection strategies are:(1)
a Randomly Dominator (the leader is randomly selected and
preferably if this leader dominates the particle, if not then a
random leader is selected), (2) randomly (a leader is randomly
selected - no constraints are imposed on what sort of leader
can a particle choose-), (3) the closest (a particle picks asa
leader the geographical closest leader) and (4) the fartest(a
particle picks as a leader the geographical fartest solution in
the set)

All the nondominated solutions found by the MOPSO,
are evaluated with the real function and added to the main
population. Once all the points are in the main population,
they are used to re-train the meta-model and get another
approximation of the real objectives. As it is shown in Figure
3, this procedure is repeated until theMaxGen number of
generations is reached. At the end of the first phase procedure,
we split the main population in two: 1) One which contains the
nondominated solutions and 2) a second one, which contains
the best dominated solutions that are needed for the second
phase. Both populations use thepaǫ-dominance grid proposed
in [8] to maintain diversity.

B. Phase 2: Rough Sets in Multi-Objective Optimization

For the problems of our interest, we will try to approximate
the Pareto front using a Rough Sets grid. In order to do
this, we will use an initial approximation of the Pareto front
(provided by the surrogate algorithm) and will implement a
grid in order to get more information about the front that will
let us improve this initial approximation. To this aim, we must
decide which elements ofU (that we will callatoms and will
be just rectangular portions of decision variable space) are
inside the Pareto optimal set and which are not. Once we have
the efficient atoms, we can easily intensify the search over in
decision variable space. To create this grid, we will have as
inputsN feasible points divided in two sets: the nondominated
points (ES) and the dominated ones (DS).

We must note the importance of theDS set as in a
rough sets method the information comes from the description
of the boundary of the two sets. Then, the more efficient
points provided the better. However, it is also required to
provide some dominated points, since we need to estimate the
boundary between being dominated and being nondominated.
Algorithm 1 describes a Rough Sets iteration.

VI. A NALYSIS OF RESULTS

Our main goal is to reduce the number of fitness function
evaluations. Thus, our experimental design considers thatonly
a few function evaluations are performed in several multi-
dimensional test problems from theZDT , which are bi-
objective, unconstrained and have between 10 and 30 decision
variables each. The detailed description of these test functions
was omitted due to space restrictions (see [20] for further
information). Three performance measures were adopted in
order to allow a quantitative assessment of our results: (1)



Fig. 3. Surrogate model adopted in this paper.

Algorithm 1 Rough Sets Iteration
1: Input nondominated points from the first phaseES.
2: Input dominated points from the first phaseDS.
3: Output nondominated solutions found by the RS.
4: ChooseNumEff unexplored points ofES.
5: ChooseNumDom unexplored points ofDS.
6: GenerateNumEff efficient atoms.
7: for i = 0 to NumEff do
8: for j = 0 to Offspring do
9: Generate (randomly) a pointnew in atom i and send it toES

10: if new is efficient then
11: Include it inES
12: end if
13: if A point old in ES is dominated bynew then
14: Sendold to DS
15: end if
16: if new is dominated by a point inES then
17: Removenew
18: end if
19: end for
20: end for

Inverted Generational Distance (IGD ), which is a variation
of a metric proposed by Van Veldhuizen [18] in which the
distance from the true Pareto to the approximation produced
is measured; (2) Two Set Coverage (SC), proposed by Zitzler
et al. [20], which performs a relative coverage comparison of
two sets; and (3) Spread (S), proposed by Deb et al. [4], which
measures both progress towards the Pareto optimal front and
the extent of spread. For each test problem, 10 independent
runs were performed.

This section is divided in two parts: in the first one, we run a
comparative analysis with only 600 real function evaluations,
comparing the leader selection in the PSO: (1) Randomly
Dominator, (2) Randomly, (3) Closest and (4) Fartest. In the
second part, the Rough Sets Theory algorithm is applied for
another 1,400 real function evaluations and the results are
compared with respect to the NSGA-II [5] performing 2,000
fitness function evaluations in total.

A. PSO Phase Analysis

The first phase of our approach uses several parameters:
main population sizeP = 100, maximum number of evalu-
ations =600, MOPSO’s internal population size (Pmopso =

100), maximum number of generations (Gmopso = 100),
PSO flight equation (W=0.1, C1 = 1.4 and C2 = 0.1),
turbulencerate =1/n (n = number of decision variables).

The results reported in Table I correspond to the perfor-
mance metrics adopted (IGD, S and SC). We show in boldface
the best mean values per test function of 10 independently runs
by all the leader selection models compared. We show the
plot of all the nondominated solutions generated by a single
run of the different algorithms in Figure 4. In all cases, we
generatedPFtrue, so we could make a graphical comparison
of the quality of the solutions produced by our approach. The
summary of our results is the following:

MOPSO-1 (Randomly Dominator): When we select the
leader that usually dominates the Particle, the algorithm shows
a good performance in general, obtaining the best results for
ZDT1, ZDT2 and ZDT3 in IGD and Spread. Graphically, it
can be seen that it obtained a good approximation to the true
Pareto front in ZDT1, ZDT2 and ZDT3.

MOPSO-2 (Randomly):When we use the randomly selec-
tion from the nondominated set, the performance of the algo-
rithm is acceptable, showing the best performance in ZDT4
and ZDT6 with respect the others approaches. Graphically, it
can be seen that is not able to produce better results than other
approaches and that this approach stays far away from the true
Pareto front.

MOPSO-3 (Closest):When we select the closest particle
as a leader from theGbest set, the algorithm shows a poor
performance in general except for ZDT4, outperforming the
other schemes only in this test function.

MOPSO-4 (Fartest): When we select the fartest particle as
the leader from theGbest set, we intend to help the algorithm
to maintain diversity in the population, but apparently cause
that the algorithm couldn’t approximate quickly to the Pareto
front instead of accelerate the convergence. The performance
of this scheme was very poor and only in ZDT6 obtain good
results.

From the first phase analysis, we can see that in ZDT4 the
performance was very poor in general, getting trapped in one
of the multiple local optima that this problem contains, butin
the others approaches the result is not bad at all if we consider



that only 600 real evaluations are performed. So if we need to
choose only one scheme to move forward in the algorithm, the
best scheme is MOPSO-1 (randomly dominator), so we choose
this scheme and decided to hybridize it with the Rough Sets
to extent the solutions generated by the first phase and then
compared it against the NSGA-II, an algorithm representative
of the state of the art.

B. Second Phase Analysis

After our first experiments with the surrogate methods, it
became clear that despite the fact that a good convergence
was achieved, this was obtained at the expense of a poor
distribution of the results. Thus, we decided to use rough sets
as a local search engine, in order to find the solutions that are
missing in the approximations obtained during the first phase
of our approach. The second phase uses three more parame-
ters: number of points randomly generated inside each atom
(Offspring), number of atoms per generations (NumEff )
and the number of dominated points considered to generate
the atoms (NumDom). Offspring = 1, NumEff = 2 and
NumDom = 10. The parameters used by the NSGA-II are
the following: crossover rate =0.9, mutation rate =1/n, ηc

= 15, ηm = 20, population size = 52 and maximum number
of generations = 39. These parameters make the NSGA-II to
perform 2,000 fitness function evaluations in total.

The results reported in Table II are the mean values for each
of the three performance measures adopted (SC, IGD and S)
and the standard deviation of the 10 runs performed with 2000
evaluations in total of both approaches (SVM+RS and NSGA-
II). The best mean values in each case are shown in boldface in
Table II. The plot of all the nondominated solutions generated
by a single run of both algorithms are in Figure 5.

It can be observed that in the ZDT test problems, our
approach produced the best results with respect to the SC
performance measure in all cases except for ZDT4. The
same applies for the IGD performance measure. Also, our
approach outperformed the NSGA-II with respect to the spread
performance measure in three cases (ZDT2, ZDT3 and ZDT4).
Graphically, it can be seen that our approach gets closer than
the NSGA-II to the true Pareto front in ZDT1, ZDT2, ZDT3
and ZDT6, but not in ZDT4. The poor performance of all the
approaches in ZDT4 might be attributed to the bad scalability
presented by both approaches.

Our results indicate that the NSGA-II, despite being a
highly competitive MOEA, is not able to converge to the
true Pareto front in most of the test problems adopted when
performing only 2,000 fitness function evaluations. It is worth
noting, however, that if more evaluations are allowed, the
NSGA-II is able to generate a very good (and well-distributed)
approximation. Nevertheless, our aim was to propose a scheme
for situations in which the allowable number of fitness function
evaluations is low (no more than 2,000 in our case).

VII. CONCLUSIONS ANDFUTURE WORK

In this work, we use the surrogate models in combination of
a local search procedure based on Rough Sets to solve multi-

ZDT1

Perf. Meas. - Algorithm mean St. dev. best worst
MOPSO-1 0.0122 0.0039 0.0074 0.0199

IGD MOPSO-2 0.0178 0.0034 0.0134 0.0222
MOPSO-3 0.0201 0.0013 0.0176 0.0227
MOPSO-4 0.0163 0.0037 0.0117 0.0219
MOPSO-1 0.6044 0.0709 0.5160 0.7291

S MOPSO-2 0.6730 0.0677 0.5402 0.7744
MOPSO-3 0.7287 0.0373 0.6782 0.7936
MOPSO-4 0.6598 0.0502 0.5312 0.7179

SC MOPSO-1 MOPSO-2 MOPSO-3 MOPSO-4 Mean
MOPSO-1 – 0.0164 0.0817 0.1000 0.066
MOPSO-2 0.9417 – 0.3462 0.5343 0.6074
MOPSO-3 0.8829 0.5385 – 0.6225 0.6613
MOPSO-4 0.6598 0.3290 0.2646 – 0.4178

ZDT2

Perf. Meas. - Algorithm mean St. dev. best worst
MOPSO-1 0.0346 0.0048 0.0200 0.0365

IGD MOPSO-2 0.0357 0.0003 0.0354 0.0362
MOPSO-3 0.0366 0.0024 0.0353 0.0437
MOPSO-4 0.0356 0.0003 0.0348 0.0361
MOPSO-1 0.1832 0.3679 0.0000 0.9892

S MOPSO-2 0.2960 0.4522 0.0000 0.9981
MOPSO-3 0.2993 0.4572 0.0000 1.000
MOPSO-4 0.3985 0.4881 0.0000 0.9995

SC MOPSO-1 MOPSO-2 MOPSO-3 MOPSO-4 Mean
MOPSO-1 – 0.6300 0.6200 0.9200 0.7266
MOPSO-2 0.2750 – 0.2000 0.6000 0.3583
MOPSO-3 0.2500 0.7500 – 0.9000 0.6333
MOPSO-4 0.0000 0.3500 0.1000 – 0.150

ZDT3

Perf. Meas. - Algorithm mean St. dev. best worst
MOPSO-1 0.0287 0.0099 0.0170 0.0462

IGD MOPSO-2 0.0351 0.0087 0.0221 0.0489
MOPSO-3 0.0439 0.0109 0.0329 0.0742
MOPSO-4 0.0314 0.0062 0.0197 0.0397
MOPSO-1 0.7178 0.0718 0.5638 0.8179

S MOPSO-2 0.7544 0.0263 0.7081 0.8016
MOPSO-3 0.7810 0.0222 0.7307 0.8127
MOPSO-4 0.7582 0.0797 0.6055 0.8405

SC MOPSO-1 MOPSO-2 MOPSO-3 MOPSO-4 Mean
MOPSO-1 – 0.2381 0.2025 0.3489 0.2631
MOPSO-2 0.6286 – 0.1711 0.4912 0.4303
MOPSO-3 0.7344 0.6835 – 0.7011 0.7063
MOPSO-4 0.5153 0.2799 0.1446 – 0.3132

ZDT4

Perf. Meas. - Algorithm mean St. dev. best worst
MOPSO-1 1.2384 0.2204 0.8144 1.6364

IGD MOPSO-2 1.1121 0.2442 0.8715 1.6318
MOPSO-3 1.0162 0.1538 0.7503 1.2818
MOPSO-4 1.2157 0.2108 0.8910 1.6635
MOPSO-1 0.9806 0.0279 0.9234 1.0338

S MOPSO-2 0.9802 0.0135 0.9614 0.9981
MOPSO-3 0.8560 0.2890 0.0000 1.0516
MOPSO-4 0.8786 0.2932 0.0000 0.9968

SC MOPSO-1 MOPSO-2 MOPSO-3 MOPSO-4 Mean
MOPSO-1 – 0.7333 0.6583 0.6333 0.6749
MOPSO-2 0.1821 – 0.3815 0.4125 0.3253
MOPSO-3 0.2850 0.6217 – 0.3000 0.4022
MOPSO-4 0.2857 0.5000 0.6000 – 0.4619

ZDT6

Perf. Meas. - Algorithm mean St. dev. best worst
MOPSO-1 0.0351 0.0028 0.0285 0.0405

IGD MOPSO-2 0.0327 0.0028 0.0286 0.0371
MOPSO-3 0.0339 0.0034 0.0286 0.0377
MOPSO-4 0.0330 0.0026 0.0271 0.0361
MOPSO-1 0.9494 0.1284 0.7218 1.1933

S MOPSO-2 0.8850 0.1057 0.6669 1.0961
MOPSO-3 0.8998 0.0944 0.7791 1.1026
MOPSO-4 0.8715 0.0508 0.7921 0.9764

SC MOPSO-1 MOPSO-2 MOPSO-3 MOPSO-4 Mean
MOPSO-1 – 0.4494 0.4333 0.5494 0.4773
MOPSO-2 0.3560 – 0.3176 0.5501 0.4079
MOPSO-3 0.3526 0.3536 – 1.0000 0.5687
MOPSO-4 0.3286 0.2087 0.3306 – 0.2893

TABLE I

RESULTS OFINVERSEGENERATIONAL DISTANCE (IGD), SPREAD (S)

AND SET COVERAGE (SC)FOR THEZDT TEST PROBLEMS.



Set Coverage IGD Spread
Function SVM+RS NSGA-II SVM+RS NSGA-II SVM+RS NSGA-II

Mean σ Mean σ Mean σ Mean σ Mean σ Mean σ

ZDT1 0.0725 0.1676 0.8755 0.1785 0.0061 0.0046 0.0168 0.0021 0.8308 0.1987 0.8194 0.0324
ZDT2 0.0000 0.0000 0.9690 0.0505 0.0026 0.0027 0.0382 0.0062 0.5684 0.2338 0.9711 0.0696
ZDT3 0.0372 0.0668 0.6453 0.3343 0.0145 0.0071 0.1190 0.0113 0.8684 0.0943 0.9475 0.0296
ZDT4 0.7937 0.2512 0.0167 0.0500 0.7397 0.1554 0.1511 0.0405 0.9572 0.0411 1.0795 0.1026
ZDT6 0.0000 0.0000 0.9208 0.1886 0.0135 0.0025 0.0548 0.0092 1.1000 0.1297 0.9588 0.0274

TABLE II

COMPARISON OF RESULTS BETWEENSVM+RSALGORITHM AND THE NSGA-II FOR THE FIVE TEST PROBLEMS ADOPTED(2000EVALUATIONS ).

objective problems with moderate dimensionality (between10
and 30 decision variables). We used four different schemes to
select a leader in the PSO flight equation in combination of the
surrogate model to approximate the functions using supervised
learning. From the initial comparison, we concluded that the
PSO scheme based on selecting a leader that dominates the
particle were the most appropriate model to use as the search
engine, because it provides a good (but not enough) approxi-
mation of the Pareto front. The local search procedure intensify
the search around those solutions that the surrogate model find
in the first phase. This hybrid algorithm provides competitive
results in most of the test problems adopted. We believe that
our approach can be used in real-world problems in which
each evaluation of the fitness function is very expensive.

As part of our future work, we are interested in refining the
interaction mechanism between the surrogate method and the
MOPSO, such that the interleaving of these two approaches
maximizes performance. We are also interested in including
another scheme to retain solutions in the training set, helping
the surrogate models to get a better approximation of the real
functions.
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Fig. 4. Pareto fronts generated by the Surrogates methods for the ZDT test problems.
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Fig. 5. Pareto fronts generated by SVM+RS and NSGA-II for theZDT test problems.


